Инструкция по установке связки Linux-ISaGRAF на процессорный модуль Fastwel CPC 108

Оглавление

1Настройка СРС 108	2
2Создание загружаемой CF карты 1Гб	2
ЗЗагрузка	3
4Использование демо проектов	3
4.1Демонстрационный проект demokrFBIEE	3
4.2Демонстрационный проект demokr5600	3
4.3Демонстрационный проект demokrunioxx1	3
4.4Демонстрационный проект demokr5710	3
5Создание демо проектов	4
5.1Создание проекта demokrFBIEE	4
5.2Создание проекта demokr5600	6
6Описание драйверов ввода-вывода	7
6.1Пакет kr unioxx1	7
6.2Пакет kr 5710	7
6.3Пакет функциональных блоков krAnalog	8
6.4Пакет krCPC108	8
6.5Пакет krAl16-aimux32	8
6.6Пакет KrFBIEE	9
6.7Пакет Kr5600	9

Демоверсия таргета ISaGRAF 5 работает с ограничением по времени непрерывной работы — 1 час. Linux с целевой системой ISaGRAF записывается на карту CF ёмкостью 1 Гбайт.

1 Настройка СРС 108

Устанавливаем в биосе карты «Basic cmos configuration»: IDE Drive GEOMETRY : Master — not installed, Slave — AUTOCONFIG, LBA Disk C: IDE Slave, остальное по умолчанию.

2 Создание загружаемой СF карты 1Гб

Что бы записать образ на CF карту, вставляем её в кардридер. Под Linux: Набираем dmesg и смотрим какой она буквой обозначена (например sdb). Далее набираем с правами администратора: «dd if=./demo.iso of=/dev/sdb», где «./demo.iso» путь до образа демо диска. Ждем окончания процесса. Под Windows: используем dd.ехе нижеследующим образом: смотрим какой букве назначена наша флеш карта (в нашем случае «g:»), даем команду - «dd --list» Ищем что то похожее :

rawwrite dd for windows version 0.5. Written by John Newbigin <jn@it.swin.edu.au> This program is covered by the GPL. See copying.txt for details Win32 Available Volume Information

\\.\Volume{30c9d4d6-6709-11de-9286-00155847cad0}\
link to \\?\Device\Harddisk3\DP(1)0-0+15
removeable media
Mounted on \\.\g:

\\?\Device\Harddisk3\Partition0
link to \\?\Device\Harddisk3\DR20
Removable media other than floppy. Block size = 512
size is 1014644736 bytes

Даем команду «dd bs=512k if=c:\demo.iso of=\\?\Device\Harddisk3\Partition0» rawwrite dd for windows version 0.5. Written by John Newbigin <jn@it.swin.edu.au> This program is covered by the GPL. See copying.txt for details 1935+1 records in 1935+1 records out

Диск готов. Подробнее о использовании dd.exe:

- <u>http://www.chrysocome.net/dd</u> на английском языке;
- <u>http://www.liveinternet.ru/users/olegm/post97350445/</u> на русском языке.

3 Загрузка

Вставляем флеш карту в процессор и включаем питание. Через 20-30 секунд ОС должна быть загружена.

ISaGRAF должен уже быть загружен, что можно проверить выполнением команды «ps -A». IP адрес платы фиксированный: 192.168.1.22

4 Использование демо проектов

На компьютере с установленным Windows запускаем ISaGRAF 5 и открываем один из прилагаемых демопроектов. Компилируем проект и записываем его на контроллер.

Если демопроекты не открываются, то надо их создать с нуля (смотри <u>5 Создание демо</u> <u>проектов</u>).

4.1 Демонстрационный проект demokrFBIEE

Проект, демонстрирует работу пакета драйверов <u>KrFBIEE</u>. Для работы с экраном фирмы IEE серии <u>036X2</u> используется функциональный блок (ФБ) KrFBIEE с подключением соответствующих переменных согласно описания ФБ. В данном проекте ФБ добавлен в программу на языке FBD.

Подключите экран в соответствии с документацией, настройте ФБ на вашу скорость обмена и ком порт. Скомпилируйте проект и загрузите его на контроллер. При правильном подключении и настройки на экране сразу должно появиться содержимое переменной, подключенной к входу «str». Для изменения надписи войдите в режим отладчика и изменяйте значения переменных для получения требуемых результатов.

4.2 Демонстрационный проект demokr5600

Проект, демонстрирует работу пакета драйверов <u>Kr5600</u> с платой Octagon 5600. В разделе «Монтаж BB» добавлены 2 простых устройства: kr_5600_spl24ib - 24 входных сигнала и kr_5600_spl24ob - 24 выходных сигнала.

Необходимо в параметрах устройств выбрать адрес вашей платы и номера разъемов.

После компиляции и загрузки в контроллер работу программы можно проверить в режиме «Отладка».

4.3 Демонстрационный проект demokrunioxx1

Проект, демонстрирует работу пакета драйверов <u>Kr unioxx1</u> с платой Fastwell <u>unioxx-1</u>. В разделе «Монтаж BB» добавлены 2 простых устройства: kr_unioxx1_spl24ib - 24 входных сигнала и kr_unioxx1_spl24ob - 24 выходных сигнала.

Необходимо в параметрах устройств выбрать адрес вашей платы и номера разъемов.

После компиляции и загрузки в контроллер работу программы можно проверить в режиме «Отладка».

4.4 Демонстрационный проект demokr5710

Проект, демонстрирует работу пакета драйверов <u>kr 5710</u> с платой Octagon Systems <u>5710</u> и коммутаторами аналоговых сигналов КН-16. В разделе «Монтаж BB» добавлено 1 комплексное устройство: kr_5710_kn16_cpxaio. Оно в свою очередь состоит из трех простых:

kr_5710_kn16_spl96ia — 96 коммутируемых аналоговых входа через коммутатор КН-16 (с цифровым фильтром 2-го порядка);

kr_5710_kn16_spl16ia — 16 не коммутируемых аналоговых входа;

kr_5710_kn16_spl2oa — 2 аналоговых выхода.

Необходимо в параметрах устройств выбрать адрес вашей платы. Если коммутатор КН-16 не подключен, то в настройках kr_5710_kn16_spl16ia оставляем nm=1. После компиляции и загрузки в контроллер работу программы можно проверить в режиме «Отладка».

Измеренные значения - коды АЦП. Для перевода кодов АЦП в значения физ. величин используется функциональный блок kr_anpar.

5 Создание демо проектов

5.1 Создание проекта demokrFBIEE

Запускаем ISaGRAF 5, создаем новый проект. Даем имя проекта «demokrFBIEE», комментарий любой, Шаблон Prjmonoresource. Далее идем в меню «Файл-Импорт-Определение ПЛК», выбираем файл «AceLarge_Krona_v.1.4.tdb» и нажимаем ок. Ждем выполнения операции. Заходим в свойства ресурса. На вкладке «Целевая система/Код» из выпадающего списка «Целевая система» выбираем «ACE-TARGET_L». Нажимаем ок Этими действиями мы настраиваем наш проект на работу под ОС Linux с использованием драйверов ООО «Крона».

Заходим в раздел «Аппаратная архитектура» и присваиваем контроллеру IP адрес 192.168.1.22 (дабл клик на линии, соединяющей линию ETCP и Config1).

Заходим в раздел «Словарь-переменные». Добавляем переменные в соответствии с иллюстрацией:

	TC-CDAL [d]CDTC /* 000 #	· ·		*	TEC #1 C				•						· ·
	TSARKAL - LOGWOKLEDICC (., OOO K	фона. дем	о работы	с экраном	тее -) - сло	варь - переме	нныеј								<u>= 0</u>
	🖩 Файл Правка Отладка Инструменты Вид Окно Справка 📃 🛃														
]															
		FBIEE													
		Имя	Алиас	Тип	0	Нач. значение	Размер	Группа	Атрибут	Видимо	Направ	Сохран	Монтаж	Адрес	Комментарий
	Resource1 (Config1)	reset		BOOL				None	Free	Global	Внутрен	No			Сброс панели
		str		STRING	120	'krFBIEE-демо		None	Free	Global	Внутрен	No			Строка вывода на экран
	— 🛄 Объединения	error		BOOL				None	Free	Global	Внутрен	No			Ошибка инициализации экрана
	Все переме														
	Плобальны														
	FBIEE														

Добавляем программу «Добавить: Программный модуль — FBD: Function Block Diagram». Даем произвольное имя и заходим в редактирование программы. Создаем программу, согласно иллюстрации:

Далее действуем в соответствии с пунктом: <u>Демонстрационный проект demokrFBIEE</u>.

5.2 Создание проекта demokr5600

Запускаем ISaGRAF 5, создаем новый проект. Даем имя проекта «demokr5600», комментарий любой, Шаблон Prjmonoresource. Далее идем в меню «Файл-Импорт-Определение ПЛК», выбираем файл «AceLarge_Krona_v.1.4.tdb» и нажимаем ок. Ждем выполнения операции. Заходим в свойства ресурса. На вкладке «Целевая система/Код» из выпадающего списка «Целевая система» выбираем «ACE-TARGET_L». Нажимаем ок Этими действиями мы настраиваем наш проект на работу под ОС Linux с использованием драйверов ООО «Крона».

Заходим в раздел «Аппаратная архитектура» и присваиваем контроллеру IP адрес 192.168.1.22 (дабл клик на линии, соединяющей линию ETCP и Config1).

Заходим в раздел «Монтаж ввода-вывода». Нажимаем кнопку «добавить устройство», и из списка выбираем «kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *)» - для добавления 24 каналов дискретного вывода, нажимаем ок:

Выбор устройства	x
Целевая система: ACE-TARGET_L	
kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *)	•
kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *) kr_5600: kr_5600_spl24ib: kr_5600_spl24ib(* *) kr_5710_kn16: kr_5710_cpxaio: kr_5710_kn16_cpxaio(* *) CPC108: CPC108_wd: CPC108_wd(* *) kr_unioxx1: kr_unioxx1_spl24ob: kr_unioxx1_spl24ob(* *) kr_unioxx1: kr_unioxx1_spl24ib: kr_unioxx1_spl24ib(* *) rt: logs: control(* *) rt: logs: state(* get status if 'open' completed with errors; number of logged variable rt: logs: in(* *) rt: logs: rtlog(* FDA variables registrator*) realtime: sched: RtSched(* *)	
Помощь ОК Отмена	

Аналогично добавляем : «kr_5600: kr_5600_spl24ib: kr_5600_spl24ib(* *)» - 24 каналов дискретного ввода. Сохраняем изменения. Далее действуем в соответствии с <u>4.2 Демонстрационный проект demokr5600</u>.

5.3 Создание проекта demokrunioxx1

Запускаем ISaGRAF 5, создаем новый проект. Даем имя проекта «demokrunioxx1», комментарий любой, Шаблон

© ООО «Крона» 2009. Инструкция по установке Linux — ISaGRAF 5 на СРС108

Prjmonoresource. Далее идем в меню «Файл-Импорт-Определение ПЛК», выбираем файл «AceLarge_Krona_v.1.4.tdb» и нажимаем ок. Ждем выполнения операции. Заходим в свойства ресурса. На вкладке «Целевая система/Код» из выпадающего списка «Целевая система» выбираем «ACE-TARGET_L». Нажимаем ок Этими действиями мы настраиваем наш проект на работу под ОС Linux с использованием драйверов ООО «Крона».

Заходим в раздел «Аппаратная архитектура» и присваиваем контроллеру IP адрес 192.168.1.22 (дабл клик на линии, соединяющей линию ETCP и Config1).

Заходим в раздел «Монтаж ввода-вывода». Нажимаем кнопку «добавить устройство», и из списка выбираем «kr_unioxx1 spl24ob: kr_unioxx1_spl24ob(* *)» - для добавления 24 каналов дискретного вывода, нажимаем ок:

Выбор устройства	×
Целевая система: ACE-TARGET_L	
kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *)	-
kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *) kr_5600: kr_5600_spl24ib: kr_5600_spl24ib(* *) kr_5710_kn16: kr_5710_cpxaio: kr_5710_kn16_cpxaio(* *) kr_ai16_aimux32: kr_ai16_aimux32_cpxaio: ai16_aimux32_cpxaio(* *) CPC108: CPC108_wd: CPC108_wd(* *) kr_unioxx1: kr_unioxx1_spl24ob: kr_unioxx1_spl24ob(* *) kr_unioxx1: kr_unioxx1_spl24ib: kr_unioxx1_spl24ob(* *) rt: logs: control(* *) rt: logs: state(* get status if 'open' completed with errors; number of logged variable rt: logs: in(* *) rt: logs: rtlog(* FDA variables registrator*) realtime: sched: RtSched(* *) все 24 канала расотаюТ на вывод дискретной информации.	
Помощь ОК Отмена	

Аналогично добавляем : «kr_unioxx1: kr_unioxx1_spl24ib: kr_unioxx1_spl24ib(* *)» - 24 каналов дискретного ввода.

Сохраняем изменения. Далее действуем в соответствии с 4.3 Демонстрационный проект demokrunioxx1.

5.4 Создание проекта demokr5710

Запускаем ISaGRAF 5, создаем новый проект. Даем имя проекта «demokrunioxx1», комментарий любой, Шаблон Prjmonoresource. Далее идем в меню «Файл-Импорт-Определение ПЛК», выбираем файл «AceLarge_Krona_v.1.4.tdb» и нажимаем ок. Ждем выполнения операции. Заходим в свойства ресурса. На вкладке «Целевая система/Код» из выпадающего списка «Целевая система» выбираем «ACE-TARGET_L». Нажимаем ок Этими действиями мы настраиваем наш проект на работу под ОС Linux с использованием драйверов ООО «Крона».

Заходим в раздел «Аппаратная архитектура» и присваиваем контроллеру IP адрес 192.168.1.22 (дабл клик на линии, соединяющей линию ETCP и Config1).

Заходим в раздел «Монтаж ввода-вывода». Нажимаем кнопку «добавить устройство», и из списка выбираем «kr_5710_kn16: kr_5710_cpxaio: kr_5710_kn16_cpxaio(* *)» вывода, нажимаем ок:

Выбор устройства							
Целевая система: ACE-TARGET_L							
kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *)							
kr_5600: kr_5600_spl24ob: kr_5600_spl24ob(* *) kr_5600: kr_5600_spl24ib: kr_5600_spl24ib(* *) kr_5710_kn16: kr_5710_cpxaio: kr_5710_kn16_cpxaio(* *) kr_5710_kn16: kr_5710_cpxaio: kr_5710_kn16_cpxaio(* *)							
CPC108: CPC108_wd: CPC108_wd(* *)							
kr_unioxx1: kr_unioxx1_spl24ob: kr_unioxx1_spl24ob(* *) kr_unioxx1: kr_unioxx1_spl24ib: kr_unioxx1_spl24ib(* *) tr loas: control(* *)							
rt: logs: state(* get status if 'open' completed with errors; number of logged variable rt: logs: in(* *)							
rt: logs: rtlog[^ FDA variables registrator^] realtime: sched: RtSched(* *)							
все 24 канала работают на вывод дискретной информации.							
Помощь ОК Отмена							

Если раскрыть комплексное УВВ, то можно увидеть 3 простых:

krAnnar

Сохраняем текущее состояние и выходим в основное меню. Добавляем переменные согласно иллюстрации:

Имя	Алиас	Тип	0	Нач. значение	Pas	Груп	Атр	Види	Направ	Cox	Монтаж	A	Комментарий
Ai		UINT				None	Read	Global	Вход	No	%IW0.1.0		
freeze		BOOL				None	Free	Global	Внутрен	No			
fp		BOOL				None	Free	Global	Внутрен	No			Полином подключить
🖃 Polinom		REAL		0.619173407554626465,0.9	[010]	None	Free	Global	Внутрен	No			
Polinom[0]		REAL		0.619173407554626465		None	Free	Global	Внутрен	No			
Polinom[1]		REAL		0.937474906444549561		None	Free	Global	Внутрен	No			
Polinom[2]		REAL		-0.00100181857123970985		None	Free	Global	Внутрен	No			
Polinom[3]		REAL		1.24826110550202429E-05		None	Free	Global	Внутрен	No			
Polinom[4]		REAL		-7.48708686160171055E-08		None	Free	Global	Внутрен	No			
Polinom[5]		REAL		1.59034604929608747E-10		None	Free	Global	Внутрен	No			
Polinom[6]		REAL				None	Free	Global	Внутрен	No			
Polinom[7]		REAL				None	Free	Global	Внутрен	No			
Polinom[8]		REAL				None	Free	Global	Внутрен	No			
Polinom[9]		REAL				None	Free	Global	Внутрен	No			
Polinom[10]		REAL				None	Free	Global	Внутрен	No			
Ao		REAL				None	Free	Global	Внутрен	No			Значение в физ.величинах
Err		BOOL				None	Free	Global	Внутрен	No			Ошибка канала
Aonf		REAL				None	Free	Global	Внутрен	No			Значение в физ. величинах б

Сохраняем и переходим в основное меню. Добавляем программу «Добавить: Программный модуль — FBD: Function Block Diagram». Даем произвольное имя и заходим в редактирование программы. Создаем программу, согласно иллюстрации:

Сохраняем изменения. Далее действуем в соответствии с <u>4.4 Демонстрационный проект demokr5710</u>.

6 Описание драйверов ввода-вывода

6.1 Пакет kr_unioxx1

kr_unioxx1_spl24ib	Простое устройство ввода дискретной информации через плату Fastwell
	unioxx-1. 24 канала, т.е. описывает один разъем этой платы,
	программирует ее на ввод.
	Параметры:
	- Базовый адрес платы (в шеснадцатиричном виде)
	- Номер разъема [14]
	- Версия драйвера (только для чтения)
kr_unioxx1_spl24ob	Простое устройство вывода дискретной информации через плату Fastwell
	unioxx-1. 24 канала, т.е. описывает один разъем этой платы,
	программирует ее на вывод.
	Параметры:
	- Базовый адрес платы (в шеснадцатиричном виде)
	- Номер разъема [14]
	- Версия драйвера (только для чтения)

6.2 Пакет kr_5710

kr_5710_kn16_cpx96aio	Это комплексное УВВ описывает плату АЦП 5710 с подключенными к ней коммутаторами КН-16 от 1 до 6. Описание плат 5710 В состав входят простые УВВ: Kr_5710_kn16_spl96ai – 96 мультиплексированных каналов (через коммутатор производства ООО "Крона"); Kr_5710_kn16_spl16ai — 16 не мультиплексированных канала; Kr_5710_kn16_spl2ao - 2 выходных канала.

Это комплексное УВВ описывает плату АЦП 5710 с подключенными к ней коммутаторами КН-16 от 1 до 6. В состав входят простые УВВ:

Kr_5710_kn16_spl96ai - ввод до 96 мультиплексированных канала с KH-16 (коммутатор производства ООО "Крона".

Параметры:

- Базовый адрес платы (в шеснадцатиричном виде)

- Коэффициент фильтра

- Кол-во циклов измерения каждого канала

- Версия драйвера (только для чтения)

Kr_5710_kn16_spl16ai - ввод до 16 не мультиплексированных канала. Параметры:

- Базовый адрес платы (в шеснадцатиричном виде)
- Номер канала, с которого надо начинать отсчет (первый не мультиплексированный)
- Кол-во циклов измерения каждого канала
- Версия драйвера (только для чтения)

Kr_5710_kn16_spl2ao - вывод 2 аналоговых каналов.

Параметры:

- Базовый адрес платы (в шеснадцатиричном виде)
- Версия драйвера (только для чтения)

6.3 Пакет функциональных блоков krAnalog

kr_anpar	Функциональный блок, описывающий один преобразователь из кодов						
	АЦП в физические величины.						
Это функциональный блок, описывающий один преобразователь из кодов АЦП в физические величины.							
Input parameters:							
- Ai (* Входные коды АЦП *)							
- CodeMin (* Значение минимума сигнала в кодах *)							
- CodeMax (* Значение максимума сигнала в кодах *)							
- PhyMin (* Значение минимума си	гнала в физ. вел. *)						
- PhyMax (* Значение максимума си	игнала в физ. вел. *)						
- Code0 (* Код нуля для подстройки	і канала *)						
- Freeze (* "Ремонт" канала *)							
- FP (* FP *) (* Флаг, нужно ли дела	ть преобразование по полиному *)						
BOOL							
- NP (* NP *) (* Порядок полинома	(от 3 до 10) *)						
INT							
- CP (* Массив коэффициентов пол	инома *)						
REAL							
Local data:							
- AoOld (* Значние физ.вел. на пред	į. цикле *)						
- К (* Коэф. наклона прямой преобј	разования *)						
Output parameters:							
- Ао (* Значение аналогового сигна	ла в физ.вел. *)						
- Bad (* Неисправность канала изме	ерений (только по зашкалу)*)						
- AoNF (* nf *) (* Значение Ан.Пара	зметра без эффекта фрииз. *)						
REAL							
Kr_anpolinom	Функция, реализующая полиномиальную интерполяцию.						
Это функция, реализующая полином	шальную интерполяцию. Параметры функции:						
 Аі (* тип real, входное значение 	величины *)						
 N (* тип int (int16 в «с»), порядо 	к полинома (от 3 до 10) *)						
 – С[010] (* тип массив real, коэф 	фициенты полинома *)						
Функция возвращает интерполируе	мое значение.						
Коэффициенты полинома можно вь	асчитать используя программу polinom. Как показала практика коэффициенты						
необходимо задавать с точностью до 20-го знака.							
Вот пример коэффициентов полинома для датчика TCM100M и преобразователя pt100 (0200 C):							
Полином 6-го порядка							
C[0]=0.619173407554626465							
C[1]=0.937474906444549561							
C[2]=-0.00100181857123970985							
C[3]=1.24826110550202429e-05							
C[4]=-/.48708686160171055e-08							
C[5]=1.59034604929608747e-10							

6.4 Пакет krCPC108

kr_cpc108_wd	Сторожевой таймер

Это драйвер сторожевого таймера, встроенного в процессорную плату. Для того что бы он начал работать необходимо включить его в устройства ввода-вывода.

6.5 Пакет krAl16-aimux32

Это комплексное УВВ. Описывает плату AI16-5A с подключенным к ней коммутаторами AIMUX32 (до 3-х).

kr_ai16_aimux32_cpxaio	Это комплексное УВВ. Описывает плату АІ16-5А с подключенным к ней коммутаторами АІМUX32. Параметры: - ba (* Базовый адрес платы АІ16-5А *) - ku (* Четыре байта коэффициентов усиления *) - ver (* Версия пакета *)
kr ai16 aimux32 spl16ia	Это простое УВВ описывает все не мультиплексированные каналы на
	плате АІ16-5А.
	Параметры:
	- nm (* Номер первого канала с которого начинать *)
	- nc (* Кол-во циклов измерения каждого канала для усреднения *)
	- onoff (* Драйвер включен *)
	- ver (* Версия драйвера *)
kr_ai16_aimux32_spl2oa	Это простое УВВ описывает 2 аналоговых выхода на плате АІ16-5А.

	Параметры:						
	- onoff (* Драйвер включен *)						
	- ver (* Версия драйвера *)						
kr_ai16_aimux32_spl96ia	Это простое УВВ описывает все платы AIMUX-32, подключенные к						
	плате AI16-5A.						
	Параметры:						
	- nc (* Кол-во циклов измерения каждого канала для усреднения *)						
	- alfa (* Коэффициент фильтра *)						
	- onoff (* Драйвер включен *)						

На данный момент не реализован аналоговый вывод.

6.6 Пакет KrFBIEE

Пакет KrFBIEE	Функциональный	блок	для	работы	С	вакуумно-флюоресцентными			
	экранами фирмы IEE серии 036Х2.								

Функциональный блок для работы с вакуумно-флюоресцентными экранами фирмы IEE серии 036X2. Input parameters:

- ver (* Версия драйвера *)

- Strings (* str *) (* Строка для вывода на экран (макс. 120 символов) *) STRING(120)
- SpeedOfChange (* sc *) (* Скорость обмена с панелью (1200; 9600; 19200) *) UINT
- NameOfPort (* np *) (* Linux имя ком порта ("/dev/ttyS1") *) STRING(20)
- Reset (* res *) (* Сброс панели *)
- BOOL
- RawMode (* rm *) (* Режим низкоуровневой работы с экраном *) BOOL

Output parameters:

- error (* err *) (* Установлен если появляется ошибка *) BOOL

Осуществляет автоматическую конвертацию кодировки Win1251 в кодировку панели. Для поддержки всех функций панели реализован режим гаw в котором программист может посылать в панель любые команды.

6.7 Пакет Kr5600

kr_5600_spl24ib	Это простое УВВ описывает один разъем платы Octagon 5600,						
	включенный в режим: все 24 канала работают на ввод дискретной						
	информации.						
	Параметры:						
	- Базовый адрес платы (в шеснадцатиричном виде)						
	- Номер разъема [14]						
	- Версия драйвера (только для чтения)						

Простое устройство ввода дискретной информации через плату Octagon 5600. 24 канала, т.е. описывает один разъем этой платы, программирует ее на ввод.

Параметры:

- Базовый адрес платы (в шеснадцатиричном виде)
- Номер разъема [1...4]

- Версия драйвера (только для чтения)

kr_5600_spl24ob	Это	простое	УBB	описывает	один	разъем	платы	Octagon	5600,	
	вклю	ченный в	режим	I						
	все 24 канала работают на вывод дискретной информации.									
	Параметры:									
	- Базовый адрес платы (в шеснадцатиричном виде)									
	- Hon	лер разъем	ла [14	4]						
	- Bep	сия драйв	вера (то	лько для чте	ния)					

Простое устройство вывода дискретной информации через плату Octagon 5600. 24 канала, т.е. описывает один разъем этой платы, программирует ее на вывод.

Параметры:

- Базовый адрес платы (в шеснадцатиричном виде)

- Номер разъема [1...4]

- Версия драйвера (только для чтения)