

LT200

User’s manual
ISaGRAF V5 programming

P DOC LT200 001 E V04

 Page 3

Overview
LT200 is part of the LT family, PLC programmable in two languages :

• LT200 in language C under Linux, with Eclipse IDE.

• LT200 in languages IEC 61131 3 ISaGRAF 5 workbench from ICS Triplex

The LT200 hardware implementation is explained in the wiring manual available on our
website.

Prerequisite
Developpement of applications on LT200 ISaGRAF require the knowledge of programming
in IEC61131 3 languages.

The actual implementation of the LT200 requires skills in electricity and industrial
automation.

The equipment required is:

• A development PC running Windows XP, with an USB port and an Ethernet network card.

• An USB cable

• An Ethernet cable

Version
This documentation describes the features in the LT200 ISaGRAF version 1.0

Property
LT200 is a registered trademark of Leroy Automation.
ISaGRAF is a registered trademark of ICS Triplex.
Windows XP is a trademark of Microsoft Corporation.
LEROY Automation is constantly developing and improving its products. The information
contained herein is Action to change without notice and is in no way legally binding upon
the company. This manual may not be duplicated in any form without the prior consent of
LEROY Automation.

Contact
 Leroy Automation

35 Boulevard du Libre Echange

31650 SAINT ORENS

France

33 (0) 5.62.24.05.50

33 (0) 5.62.24.05.55

 http://www.leroy automation.com

support technique :

33 (0) 5.62.24.05.46

mailto:support@leroy autom.com

Contents

Chapter 1 General Overview1

Introduction .. 1

LT200 hardware................................... 1

LT200 embedded software 1

Chapter 2 Quick start.........................3

Overview .. 3

Installing the USB driver 3

Installing ISaGRAF V5........................... 4

Creating a new project.......................... 4

Modification of target parameters of an
existing project 4

I/O wiring ... 5

Build... 5

console configuration link : PC < > LT2006

Download.. 6

Debug .. 6

Chapter 3 I/O wiring7

Overview .. 7

I/O wiring ... 7

CPU610 board...................................... 8

Ethernet settings.................................. 9

DI310 board : 32 digital inputs10

DI410 board : 64 digital inputs10

DI312 board : 32 safety inputs10

DO310 board : 32 digital outputs11

DIO210 board : 16 digital inputs and 8
digital outputs11

AI110 board : 8 analog inputs11

AI210 board : 16 analog inputs.............11

AO121 board : 8 analog outputs11

AIO320 board : 8 analog inputs and 4
analog outputs....................................12

Inputs/ Outputs Board Status12

Chapter 4 CPU Specific Functions13

Overview ...13

Retain variables13

Time management13

Data Storage14

PID controller function block.................16

Functions de commande des Leds des
Cartes d’entrée sorties :.......................18

Error codes...20

Chapter 5 bytes and ASCII serial
communication 21

Overview... 21

communication principle...................... 21

initialization and closing functions 22

Sending and receiving bytes 22

Sending and receiving characters 23

error codes.. 23

Chapter 6 Modbus RTU and TCP
communication 25

Overview... 25

Modbus protocol................................. 25

Modbus slave protocol......................... 27

Modbus master protocol 30

modbus error codes............................ 33

Chapter 7 Ethernet TCP and UDP
functions 34

Overview... 34

Types of variables 34

Opening a socket 34

Closing a socket 34

Data waiting to read 35

Reading bytes.................................... 35

Writing bytes 35

Ethernet functions error codes 36

Chapter 8 LT200 monitoring and
diagnosis 37

LT200 ISaGRAF LEDs : Power Supply, CPU
and I/O boards 37

console link troubleshooting : PRM mode38

LT200 log file:.................................... 39

 Page 1

General Overview

Introduction

This chapter describes the basics of LT200. We detail in this chapter :

• LT200 hardware,

• LT200 software

LT200 hardware

Application in LT200, will run and use all of its components hardware base:

LT200 embedded software

LT200 is based on Linux 2.6.12 Operating System : the ISaGRAF V5 run time was focused
on this core. The BSP ISaGRAF LT200, (Board Support Package), is a specific Linux
distribution.

The Linux kernel and file system is the main element: it is the only interface between the
system and hardware: its essential functions are the task manager, memory management,
and devices monitoring.
The libraries are the interface of applications launched automatically at startup.

After powering up the system, the first software running is U boot : it performs the
initialization of components on the CPU board (micro processor, clock, RAM and Flash
component Ethernet ...), then performs the launch of Linux in RAM memory, and at the
startup end of ISaGRAF virtual machine .

LT200 embedded software is naturally programmable with the workbench ISaGRAF V5.13
or higher.

Chapter

1

IO boards

digital and analog

Serial port RS232/RS422

Ethernet port 10/100 base T

USB port device

3 serial ports

 RS232/485/422

Power supply

CPU610 : Processor Intel ARM PXA255 cadenced at 300MHz

Flash memory 16 Mo, RAM memory32 Mo

Real Time Clock saved

General Overview

Page 2

 Page 3

Quick start

Overview

This chapter describes all the operations necessary to implement and test a basic program
for the LT200 in less than 15 minutes.
We detail in this chapter the following steps:

• Installing the USB driver

• Installing ISaGRAF Workbench

• Creating a new project

• Target settings modification of an existing project

• I/O wiring

• Build, download and debug

Installing the USB driver

This driver enables the workshop to communicate with the LT200 USB: this driver has
been developed exclusively for Windows XP.

The file to run a setup file is shipped on CD ROM in the folder "Driver PC" file "Setup.exe"

Installation procedure:
- IMPORTANT: The LT200 should not be connected with USB to the PC, during installation of

driver
- Run the file « Setup.exe »
- Connect the USB port of your PC to the LT200: a "beep" must be heard
- Identify the USB port com for LT200 in your PC: open the « configuration panel», then run

the application « System », tab « Hardware », « device manager », « Ports (Com and LPT) » :
note the number x of com : « Leroy USB Device (COMx)»

Note : the number of USB com port for the LT200 is assigned automatically by Windows ;
ISaGRAF workbench requires to have a number strictly inferior to COM10: if it is superior
or equal to COM10, you have to release a port
of the first 9, and in the advanced settings of
the port « Leroy USB device », change your com
port number and select the one that is not used,
inferior to COM10 :

Chapter

2

Quick start

Page 4

Installing ISaGRAF V5

Installating of ISaGRAF V5 workbench:

Insert the CD Rom ISaGRAF V5 ICS Triplex in your Windows XP PC, then run the
installation of the workbench. The recognition of your USB donggle can be checked via the
tool "Licensing ISaGRAF 5" in the menu ICS Triplex.

Integration Leroy Automation LT200 ISaGRAF files to the workbench

Copy from the CD Rom Leroy Automation the file « LT200_LNX Jx.y.tdb » , in the directory
« TDB » from CD, in the directory : « C:\Program Files\ICS Triplex
ISaGRAF\Projects\ISaGRAF 5.x\Prj».

Startup ISaGRAF V5 workbench with the new link from start menu.

Creating a new project

Creating a new project :

Open the menu « File / New Project » , fill in the name of your new project, and submit.

Import the definition of the PLC :

This operation will allow recovery of the definitions of configuration LT200: the file to
retrieve the text file is " LT200_LNX Jx.y.tdb " previously copied.

Open the menu "File / Import / PLC Definition" and select the file above, in the directory
before the new project: « \Prj »

Modification of target parameters of an existing project

Open your project :

Open the menu « File/Open Project » : select the file « PrjLibrary.mdb » contained in the
directory of your project and submit.

Import the definition of the PLC :

This will allow recovery of the definitions of LT200 configuration:
The file to retrieve is the text file "LT200_LNX Jx.y.tdb" previously copied.
Open the menu "File / Import / PLC Definition" and select the file above, in the directory
before the new project: "\ Prj"

 Page 5

Select Target LT200 in the properties of your project

Select your ressource, then click on the menu « Edit/Properties ». In tab « Target/Code »,
select in the dropdown « Target », « PNG_LNX ».

Cancelling the current build of the project :

This will allow the deletion of files compiled for the old target.
Click the menu « Project / Cancellation build project ».

Import a new time the definition of the PLC :

This operation is necessary for a good build : retrieve a new time the tdb file or
"LT200_LNX Jx.y.tdb" previously imported : open the menu "File / Import / PLC Definition"
and select the file above, in the directory before the new project: "\ Prj".

I/O wiring

In the button bar click the icon for wiring I/O: the result is the opening of the editor of
wiring I/O, then click the button to add I/O boards:

Select in dropdown the CPU 6xx board:

Close the I/O wiring editor.

Build

In the menu bar, select the menu "Project / Build Project" or the button bar, click the icon to compile
the project: the result is the compilation of your project, with the following message appears in the
window messages:
 « Name of your project: 0 error (s), 0 warning (s) ».

Quick start

Page 6

console configuration link : PC < > LT200

Double click the Setup icon in the project tree: it becomes the physical architecture of your project:

Change the « ISARSI » link with a double click, the window
« Network – Properties » appears : modifiy then the com port
number, and validate.

If you want to use the Ethernet connection as a console, you
have to double click on « ISARSI », and select the link "ETCP" in the dropdown ;
then set up communication with the network by double clicking on this link and set the LT200 IP
address:

Download

Click the download button in the main toolbar: it appears the window "Download", select
the config1, and click the "Download" button.
After downloading, the following message should appear in the message window: "The
download is completed successfully"

Debug

Double click on the "Debug" in the main toolbar: your project is in debug mode: all parts
of the project can be viewed.
To return to edit mode for your project, click "Stop debug mode":

 Page 7

I/O wiring

Overview

This chapter describes the board configuration of LT200.
We detail in this chapter the settings of CPU and IO boards:

• I/O wiring

• CPU 610 board

• Ethernet settings

• Digital I/O boards : DI310, DI312, DI410, DO310, DIO210

• Analog I/O boards : AI110, AI210, AO121, AIO320

• I/O Board Status

I/O wiring

Click on the menu « Project » / « I/O wiring » or on the corresponding button: the
wiring editor appears.

16 boards maximum can be added.

Each board will be identified with an « Device Index».

Device Index n° 0 : reserved to the CPU 610.

Note : CPU communications ports are managed in ISaGRAF project with C functions.

Device Index n° 1 à 15 : they are reserved to I/O boards. The device index corresponds
to the physical position of these boards on the main rack and extensions racks (2
maximum).

Example : hardware configuration on 2 racks, and associated software
configuration:

Chapter

3

D0

310

AI

110

DIO

210

DI

310

DI

310

COM

xx

CPU

6xx

PSD

3xx

0

1

2

5

4

3

DI

410

Libre DI

312
AO

121

9

8

7

6

I/O wiring

Page 8

CPU610 board

Board parameters are:
- CardID (Word, readonly) : Internal identification code of the board. Read only. Value = 610
- SecuredStart (BOOL) : Verification of the configuration before starting IO.

 FALSE (default) : no verification.

 TRUE : verification before startup : if the physical configuration and the software
configuration do not, LT200 stay in general watchdog.

NB : The verification is performed only on the boards reported in the workbench. If
Supernumeraries boards are present, they will not be managed by ISaGRAF and the
watchdog will not be triggered.

- WDGTimems (WORD) : watchdog value in ms ; minimal value : 100ms.

 0 (default): no watchdog.

 >0 : Time maximum allocated for the cycle

Advice : For safety, set this value to twice the average cycle time
- FailOnWdg (BOOL)

 TRUE : FAIL led lights on exceeding the time set in WDGTimems

 FALSE : no action
- BusWdgOnWdg (BOOL)

 TRUE : Enabling watchdog IO bus on exceeding the time set in WDGTimems

 FALSE : no action
- StopOnWdg (BOOL) :

 TRUE : ISaGRAF will change to step by step mode on exceeding the time set in
WDGTimems

 FALSE : no action
- RebootOnWdg (BOOL) :

 TRUE : LT200 will reboot on exceeding the time set in WDGTimems

 FALSE : no action

This board has a boolean output : Wdg : it drives the relay that is on the power supply
board PSD3xx.

 Wdg Once triggered, it is required to reboot the LT200 hardware (power cut
and power up).

 Page 9

Ethernet settings

The changes in the Ethernet network settings is done via the window properties of your
resource, you can access via the menu "Edit / Properties" ; in the window, change the
value in the "Extended" tab :

Ethernet settings are :
- Interface : name of Ethernet interface : « eth0 » by default.
- IpAddress : IP address of LT200 on an TCP/IP network. By default IP address is « NULL ». In

this case, the LT ignores the other parameters and uses a BOOTP address server, which will
send a free IP address to the LT.

Format : xxx.xxx.xxx.xxx where xxx [0..255]
- Gateway : IP address of the gateway on the network. If the LT wishes to communicate outside

the network to which it belongs, it must address this gateway. By default, this address is
« NULL ».

 Format : xxx.xxx.xxx.xxx where xxx [0..255]
- Netmask : address mask used to show the breakdown of the IP address into sub network

address and device address on the sub network. This 32 bit mask is composed entirely of 1's
for all the sub network address parts and entirely of 0's for the device address parts. Using the
sub network mask, the LT determines if it must contact the gateway to reach a recipient
according to the IP address of the recipient and the sub network mask according to the
following algorithm:

 Format : xxx.xxx.xxx.xxx where xxx [0..255]

I/O wiring

Page 10

DI310 board : 32 digital inputs

It is made up of 3 sub boards :
- VStatus_: board status
- V32ETOR_ : 32 digital inputs

DI410 board : 64 digital inputs

It is made up of 3 sub boards :
- VStatus_: board status
- V64ETOR_ : 64 digital inputs

DI312 board : 32 safety inputs

Principle :

DI312 modules are equipped with an adjustable comparison device used to check the
wiring of sensors by connecting a network of 2 resistors to them: safety inputs. These
resistor networks are of 2 types: the serial arrangement (i.e. the 2 serial resistors) and
the parallel arrangement (i.e. the 2 parallel resistors). The serial resistor is always
present. In the parallel arrangement, the sensor is mounted in series with Rp which it
eliminates by opening. In the serial arrangement, the sensor is mounted in parallel with Rp
which it eliminates by closing.

Rs

Rp

Rs Rp
R line

Rline

Parallel arrangement Serial arrangement

LT Input

+V

LT Input

+V

Sensor Sensor

Wiring of Safety Inputs

In order to preserve the general nature of parameter setting, ISaGRAF can indicate the
equivalent resistance of the resistor network when the sensor is normally open (Rcno)
and when the sensor is normally closed (Rcnf). Resistance values are given in OHMS.

Parallel Arrangement Serial Arrangement

Rcnf = Rs//Rp + Rline Rcnf = Rs + Rline

Rcno = Rs + Rline Rcno = Rs+Rp + Rline

CAUTION: Parameter setting is unique for the resistance values of a DI312 board
and is therefore the same for all the channels of a single DI312 module.

DI312 board parameters are as follows:

• 32 bit mask for the wiring check of the 32 inputs. The wiring check is active at input n if
the bit of order n is set to 1. By default, the 32 bits of the mask are set to 1.

• RCNO: only one value for all inputs.

• RCNF: only one value for all inputs.

• Rline: only one value for all inputs.

For each channel, the status bit and alarm bit encode 4 possible states:

Input
Status
(Green
LED)

Alarm
(Red LED)

Description

0 (OFF) 0 (OFF) Sensor normally open

 Page 11

1 (ON) 0 (OFF) Sensor normally closed
0 (OFF) 1 (ON) Input not connected or short circuit at 0V

1 (ON) 1 (ON) Short circuit at +V

Resistance constraints:

• Resistors must have a tolerance of no more than 1%.

• 0.7 kΩ < Rcno < 22 kΩ

• Rcno induces the current in the measuring device: I (mA) = 22 (V)/(1+ Rcno (kΩ)) given
that I must be between 1 mA and 9.96 mA . If the calculated value of I is more than 9.96 mA,
saturate it at 9.96 mA.

• (2.95(V)/I (mA)) < Rcnf (kΩ) < Rcno (kΩ) Rline (kΩ) 1.95 (V)/I (mA)

• Rline < 0.2 kΩ.ρ

The DI312 module is made up of 2 boards:

• V32ETOR_ : 32 Boolean inputs

• VState_ : 32 faults relating to inputs.

DO310 board : 32 digital outputs

It is made up of 3 boards :
- VStatus_: board status
- V32STOR_ : 32 digital outputs

DIO210 board : 16 digital inputs and 8 digital outputs

It is made up of 3 boards :
- VStatus_: board status
- V16ETOR_ : 16 digital inputs
- V8STOR_ : 8 digital outputs

AI110 board : 8 analog inputs

It is made up of 2 boards :
- VStatus_: board status
- V8EANA_ : 8 analog inputs

conversion table : current/voltage <=> number of points

Current Inputs ±21,1mA => ±32767 points.

Voltage Inputs ±10,25V => ±32767 points.

AI210 board : 16 analog inputs

It is made up of 2 boards :
- VStatus_: board status
- V16EANA_ : 16 analog inputs

the conversion table is the same than for the AI110 board.

AO121 board : 8 analog outputs

It is made up of 2 boards :
- VStatus_: board status
- V8SANA_ : 8 analog outputs

conversion table : number of points <=> current/voltage

Currents Outputs 0 / 32767 points => 4 / 20mA

Voltage Outputs ±32767 points => ±10V

I/O wiring

Page 12

AIO320 board : 8 analog inputs and 4 analog outputs

It is made up of 3 boards :
- VStatus_: board status
- V8EANA_ : 8 analog inputs
- V4SANA_ : 4 analog outputs

Current to Voltage Conversion Table <=> Number of Points on AIO320

current inputs ±20mA => ±32767 points.

voltage inputs ±10V => ±32767 points.

Current outputs 0/32767 points => 4/20mA

Voltage outputs ±32767 points => ±10V

PT100 sensors inputs 50°C=> 500 points
+350°C=>+3500 points

Inputs/ Outputs Board Status

Each I/O board declared in the I/O wiring has a status word : it consists of :

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

position of board on
the bus [0..15]

Fault Wdg
pow
er

VCC Board Code identification

Input/output board codes:

Board Status Bit
11

Status
Bit 9

Board Code [0..FFh]
Mask Bit 6: BFh

DI310 1 Al Ext 03h or 43h

DI312 NS Al Ext 14h

DI410 1 Al Ext 06h

DO310 Fault Al Ext 05h or 45h

DIO210 Monostable VRel 16h

AI110 0 0 80h

AI210 0 0 81h

AO121 0 0 88h

AIO320 Monostable 0 83h

Where:

• NS: not significant

• Al Ext: set to 1 if the external power supply at the terminal blocks is in the Valim ±20%
range.

• (*) Al ext of DI312: External power supply equal to 24V±10%

• Fault: set to 0 in the event of overload on a digital output channel

• Monostable: set to 1 if board is correctly refreshed; for 4TCD/TSD operation is reversed.

• Vrel: set to 1 if relays are correctly powered.

 Page 13

CPU Specific Functions

Overview

This chapter describes the specific functions of LT200 CPU.
We detail in this chapter the management of :

• Retain variables

• CPU Time

• Data storage in CPU flash memory

• PID regulation function block

• I/O boards Leds

Retain variables

To make a variable as retain, you just have to declared it as « retain » in the ISaGRAF5
dictionary. The maximum total size of the variables is 3K.

The retain variables are stored in the following three cases :

• On ISaGRAF stop/restart : retain variables are not saved at shutdown and restored in re
starting.

• On download: retain variables are saved at the time of ISaGRAF stop. They will be returned
to re start if the "retain" has not changed in the project.

• On power failure: variables are stored at the break and restored when re booting.

At startup, if the retain variables are corrupted or unavailable (case of the first startup of
the project), the Fail LED lights, but the backup service is active. If there is no major
problem, the Fail LED turns off after the second startup.

In case of problems, diagnostic information is contained in the log file "isasys.txt": see
Chapter 8, "Diagnostics and Troubleshooting" section "Reading File event in the LT200.

Time management

The LT200 is equipped with a Real Time Clock (RTC). This clock gives the date, time and
day of the week. Theses data can be read or written using following C functions in your
ISaGRAF project.

Writing the date

Function Date_Write()

Action Write the date in LT200 clock

Parameters (String[10])DateToWrite : date to write
format : “jj/mm/aaaa”

Returned
Value

(DINT) Operation status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of the
document.

Chapter

4

CPU Specific Functions

Page 14

Reading the date

Function Date_Read()

Action Read the date in LT200 clock

Parameters (String[10])DateToWrite : date read
format : “jj/mm/aaaa”

Returned
Value

(DINT) Operation status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of the
document.

Writing the time

Function Time_Write()

Action Write the time in LT200 clock

Parameters (String[12])TimeToWrite : time to write in the clock
format : “hh:mm:ss:xxx” avec xxx in milliseconds

Returned
Value

(DINT) Operation status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of the
document.

Reading the time

Function Time_Read()

Action Read the time

Parameters (String[12])TimeToRead : time read in the clock
format : “hh:mm:ss:xxx” with xxx in milliseconds

Returned
Value

(DINT) Operation status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of the
document.

Data Storage

LT200 has flash memory available for the user project : the amount available is 1 Mo.

The user can store in this space files containing either word 16bits, or strings.

The user has to manage this space memory.

Type WordTab

WordTab (WORD)[0..1023]

Reading words

Function FlashByte_Read()

Action Read words in flash memory

Parameters • (String[255]) FileName : name of the file to access.

• (WordTab) Data : Array to receive words read.

• (UDINT) OffsetInWords : Offset of reading in words number.

• (UINT) SizeInWords : number of words to read (Max 1024)

 Page 15

Returned
Value

(DINT) Operation status :

• >=0 : number of elements read, operation successful,

• other : operation failed, check the error code at the end of the
document.

Write words

Function FlashByte_Write()

Action Write words in flash memory
NB : writing is always at end of file

Parameters • (String[255]) FileName : name of the file to access (or create if does’nt
exist).

• (WordTab) Data : array of words to write.

• (UDINT) OffsetInWords : Offset of writing in words number.

• (UINT) SizeInWords : Number of words to write (Max 1024)

Returned
Value

(DINT) Operation status :

• >=0 :number of elements written, operation successful,

• other : operation failed, check the error code at the end of the
document.

Reading characters

Function FlashChar_Read()

Action Reading characters in flash memory

Parameters • (String[255]) FileName : name of the file to access.

• (String[255]) Data : Message to receive data.

• (DINT) OffsetInChar : Offset of reading in characters.

• (USINT) Size : Number of characters to read. Max 255

Returned
Value

(DINT) Operation status :

• >=0 :numbers of elements read, operation successful,

• other : operation failed, check the error code at the end of the
document.

Writing characters

Function FlashChar_Write()

Action Writing characters in flash memory
NB : writing is always at end of file

Parameters • (String[255]) FileName : name of the file to access (or create if does’nt
exist).

• (String[255]) Data : Message to write.

• (USINT) Size :Number of characters to write. Max 255

• (BOOL) CRLF : Activate / desactivate newline option when writing.

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of the
document.

CPU Specific Functions

Page 16

File removal

Function FlashDelete()

Action User File deletion

Parameters (String[255]) FileName : name of file to delete.

Returned
Value

DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of the
document.

Reading customer files : ftp connexion

LT200 ISaGRAF has an FTP server : with a client software installed on your PC, you’ll be able to
connect you to LT200 FTP server, and to download all files created with ISaGRAF functions.
FTP connection parameters must be from type : « anonymous »

PID controller function block

A PID is a generic control loop feedback mechanism. The system output is controlled using the
difference between the actual output of the system and the state it should have. This principle is
summarized by the block diagram below.

SP = Set Point = Order, PV = Process Value

)
)(

)()(1)(()(
0
∫ ++=

t

dt

td
Tdtdt

Ti
tKptXout

ε
εε in continuous then

)))1()(()()(()(−−++= kk
Ts
TdkI

Ti
TstKpkXout εεε in discret with TskkIkI)()1()(ε+−= .

Implementation

The PID calculation involves three separate actions: the proportional, the integral, the derivative.
Each action can be adjust in order to control the system.
The PID implementation La mise en oeuvre d’un PID est réalisée par l'utilisation d'un bloc
Functionnel C Pid_AL() :

• Declare a PID instance: in ISaGRAF dictionary / tab « Global variables», add a block

function instance of PID_AL type ; for example "pid1",

• At each PLC cycle, call "pid1" with its parameters ; for example : pid1(Auto1, Pv1 ,Sp1,
X01, Kp1, Ti1, Td1, Ts1, Min1, Max1);

• Use the instance block value : output1 is a numeric variable ; the returned value is :
output1 := pid1.Xout;

-

PID System to
control

SP εεεε Xout PV +

 Page 17

Function
Block

Instance_PidAl()

Action PID controller

Parameters 1. Auto mode (BOOL)
• TRUE : automatic
• FALSE : manual

2. PV (REAL) : process measure
3. SP (REAL) : order
4. X0 (REAL) : Setting Value for manual mode
5. Kp (REAL) : proportional gain
6. Ti (REAL): intégral gain (in s)
7. Td (REAL) : derivative gain (in s)
8. TS (TIME) : sampling period (in ms)
9. Min (REAL) : output lower limit
10. Max (REAL) : output upper limit
11. Xout : output PID value
12. Iterm
13. Old_Iterm
14. memerror
15. old_date
16. last_date

Returned
values

DINT) Operation status :
• >=0 : number of elements written, operation successful,
• other : operation failed, check the error code at the end

of the document.

It is possible to compose a P, or PI, or PD, or PID controller. To do this, simply disable the action
that is not used. An action (proportional, integral or derivative) is disabled when the parameters
are as following: Kp=1 or Ti=0 or Td=0.

Adjustment method

The PID controller setting is done through the choice of parameters Kp, Ti, Td.
Some experimental analysis process methods are available to determine the parameters Kp, Ti, Td.
For example, the typical specifications for the control of chemical process or thermal process are as
following:

• Ti from 3 to 1000 seconds,

• Td from 3 to 150 seconds.

A method of controller setting : the method by trial and error.
The online setting can be done empirically using a procedure that can be summarized as follows:

- Start the PID controller,
- Remove the integral and derivative actions,
- Set the proportional gain Kp to a low value,
- Do a small change in the setpoint and observe the system response. As the gain is very small,

the response will be very damped,
- double the gain and repeat the previous step. Continue so until the response becomes

oscillatory. Call this value Kpu (ultimate Kp),
- set Kp to (Kpu / 2),
- Do the same by reducing Ti by a factor 2, to obtain an oscillatory response to a small variation

of the setpoint,
- set Ti to the double of that value,

The procedure is the same for the derivative constant: increase Td until a oscillating response, then
set Td to 1/3 of that value.

CPU Specific Functions

Page 18

Functions de commande des Leds des Cartes d’entrée sorties :

Input/output LEDs are automatically refreshed by the kernel. However, the workbench
provides functions to control the status of these LEDs differently (e.g. reversing the logic
of digital I/Os). There is one function per board:

 LedDI310(RangCarte, Leds_1_32);

 LedDI410(RangCarte, Leds_1_32, Leds_33_64);

 LedDI312(RangCarte, Leds_1_32, Leds_33_64);

 LedDO310(RangCarte, Leds_1_32);

 LedDIO210(RangCarte, LedsI_1_16, LedsO_1_8);

 LedAI110(RangCarte, LedsV_1_8, LedsR_1_8);

 LedAI210(RangCarte, LedsV_1_16, LedsR_1_16);

 LedAO121(RangCarte, Leds_1_8);

 LedAIO320(RangCarte, Leds_1_8);

Caution : the Led command must be rewritten every cycle, otherwise it is overwritten by
the ISaGRAF kernel.

Function LedDI310()

Action Controls the LEDs of a DI310 board

Parameters • Rank (USINT) : Board order (1 to 15).

• Leds_1_32 (UDINT) : state of the 32 leds (0=OFF, 1=ON)

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of the document.

Function LedDI410()

Action Controls the LEDs of a DI410 board

Parameters • Rank (USINT) : Board order (1 to 15).

• Leds_1_32 (UDINT) : state of the first 32 leds (0=OFF, 1=ON)

• Leds_33_64 (UDINT) : state of the last 32 leds (0=OFF, 1=ON)

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of the document.

Function LedDI312()

Action Controls the LEDs of a DI312 board

Parameters • Rank (USINT) : Board order (1 to 15).

• LedsV_1_32 (UDINT) : state of the 32 green leds (0=OFF, 1=ON)

• LedsR_1_32 (UDINT) : state of the 32 red leds (0=OFF, 1=ON)

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

Function LedDO310()

Action Controls the LEDs of a DO310 board

Parameters • Rank (USINT) : Board order (1 to 15).

• Leds_1_32 (UDINT) : state of the 32 leds (0=OFF, 1=ON)

 Page 19

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

Function LedDIO210()

Action Controls the LEDs of a DIO210 board

Parameters • Rank (USINT) : Board order (1 to 15).

• LedsI_1_16 (UDINT) : state of the 16 green leds (0=OFF, 1=ON)

• LedsO_1_8 (UDINT) : state of the 8 red leds (0=OFF, 1=ON)

Returned
Value

 (DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

Function LedAI110()

Action Controls the LEDs of a AI110 board

Parameters • Rank (USINT) : Board order (1 to 15).

• LedV_1_8 (UDINT) : state of the 8 green leds (0=OFF, 1=ON)

• LedR_1_8 (UDINT) : state of the 8 red leds (0=OFF, 1=ON)

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

Function LedAI210()

Action Controls the LEDs of a AI210 board

Parameters • Rank (USINT) : Board order (1 to 15).

• LedV_1_16 (UDINT) : state of the 16 green leds (0=OFF, 1=ON)

• LedR_1_16 (UDINT) : state of the 16 red leds (0=OFF, 1=ON)

Returned
Value

 (DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

Function LedAO121()

Action Controls the LEDs of a AO121 board

Parameters • Rank (USINT) : Board order (1 to 15).

• Leds_1_8 (UDINT) : state of the 8 green leds (0=OFF, 1=ON)

Returned
Value

(DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

Function LedAIO320()

Action Controls the LEDs of a AIO320 board

Parameters • Rank (USINT) : Board order (1 to 15).

• Leds_1_8 (UDINT) : state of the 8 green leds (0=OFF, 1=ON)

Returned
Value

 (DINT) Operation status :

• >=0 : number of elements written, operation successful,

• other : operation failed, check the error code at the end of this chapter.

CPU Specific Functions

Page 20

Error codes

Error code Meanings

325 LED command : error on the board position

326 LED command : error on the board type

400 Length of parameter invalid

410 Date reading error

411 Date conversion error

412 Date invalide

413 Date writing error

420 Time reading error

421 Time conversion error

422 Time invalide

423 Time writing error

500 Length of parameter invalid

501 Error in generating the file path

502 Error in opening the file

503 Error in moving up to the offset

504 Error in reading the file

505 Error in writing the file

506 Parameter Size too high

507 Error closing file

508 Error file deleting.

 Page 21

bytes and ASCII serial communication

Overview

This chapter describes the serial communication functions with a simple protocol.

We detail in this chapter the management of :

• Serial communication principle

• Initialization functions and closing

• Reading and writing bytes functions

• Reading and writing characters functions

communication principle

LT200 can manage on its four serial ports a simple protocol : this simple protocol is
designed to manage terminals and devices with an ASCII protocol, without the time
constraints associated with byte transmission and reception.

We have defined the type SerialParam : it is a data structure within the modbus RTU, used
in initialization serial ports functions, to specify the parameters setting of the port.

Data Structure SerialParam

Speed (UINT)
Port Speed (unity : bauds) :
1200, 2400, 4800, 9600, 19200, 38400

Parity (USINT) Parity : 0 (none), 1 (odd), 2 (even)
StopBit (USINT) Number of stops bits : 1 or 2

DataSize (USINT) Number of data bits : 7 ou 8
Mode (USINT) 0 (RS232), 1 (RS485), 2 (RS422)

Example : declaration in dictionnary ISaGRAF

Chapter

5

bytes and ASCII serial communication

Page 22

initialization and closing functions

Serial port opening

Function Serial_Open()

Action Serial port initialization

Parameters • COM (USINT) : COM number : 0 to 3

• SerialParams (Serialparam) : serial port parameters.

• Modem (BOOL) : TRUE : modem signals managed ; FALSE : modem
signals not managed.

Returned
value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this
chapter.

Example (* initialization serial port com 1 *)
IF Status_i_serop = 0 THEN
 Status_i_ serop := Serial_Open(1, SerPar1, True);
END_IF;

Serial port closing

Function Serial_Close()

Action Serial port closing

Parameters COM (USINT) : COM number : 0 to 3

Returned
value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Sending and receiving bytes

Sending bytes

Function SerialByte_Write()

Action Sending bytes on a serial port

Parameters • COM (USINT) : COM number : 0 to 3

• Tab (ByteTab) : variable containing the bytes to transmit.

• ByteNumber (WORD) : number of bytes to transmit.

• Offset (WORD) : offset in bytes of the first element to be transmitted in
Tab

Returned
value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Number of elements in reception queue

Function Serial_Number()

Action Number of elements in reception queue

Parameters COM (USINT) : COM number : 0 to 3

Returned
value

 (DINT) Number of elements in reception queue

 Page 23

Reading bytes

Function SerialByte_Read()

Action Reading bytes in reception queue

Parameters • COM (USINT) : COM number : 0 to 3

• Tab (ByteTab) : Variable receiving bytes read

• ByteNumber (WORD) : number of bytes to read

• Offset (WORD) : offset in bytes of the first element read in Tab

Returned
value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Sending and receiving characters

Sending characters

Function SerialChar_Write()

Action Sending characters on a serial port

Parameters • COM (USINT) : COM number : 0 to 3

• Msg (STRING[255]) : message containing the characters to transmit

• CharNumber (USINT) : number of characters to transmit.

• Offset (USINT) : offset in characters of the first element to transmit in
Msg (0 to 254)

Returned
value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Reading characters

Function SerialChar_Read()

Action Lecture de caractères sur un port série

Parameters • COM (USINT) : COM number : 0 to 3

• Msg (STRING[255]) : message containing the characters read

• CharNumber (USINT) : number of characters to read

• Offset (USINT) : offset in characters of the first element read in Msg (0
à 254)

Returned
value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

error codes

Error code Meaning

100 Bad COM number

101 Unable to open the COM

102 Bad speed settings

103 Bad parity settings

104 Bad number of stop bits settings

105 Bad number of data bits

bytes and ASCII serial communication

Page 24

Error code Meaning

106 Unable to configure the COM

107 Configuration RS232/485/422 impossible

108 Unable to initialize the port

109 The specified port is already open

110 Bad mode

111 The specified port is closed

112 offset error or elements number error

113 No elements or error of port access

114 This port is busy by the console connection

 Page 25

Modbus RTU and TCP communication

Overview

This chapter describes the modbus RTU and TCP use on LT200.
We detail in this chapter the following steps :

• Modbus protocol

• Modbus Slave protocol: RTU and TCP

• Modbus Master protocol: RTU and TCP

• Modbus failure codes

Modbus protocol

Modbus is a communication protocol that allow the exchange of data between several
devices ; it’s a master / slave protocol ; the hardware link on LT200 can be either a serial
link (RS232, RS485, RS422), than an Ethernet link (100Mb).

This protocol is described in several downloadables documents : http://www.modbus.org/

LT200 can handle simultaneously the following features :
- on each of its 4 serial connections : master or slave modbus RTU
- on its Ethernet link : master or slave modbus/TCP

A data table may be associated with each slave.

Data are bit and word (16 bits) type, and slaves tables have their size in word : bit and
word tables are the same.

Example of modbus table:

It can be represented as an array of 16 columns, representing the 16 bits in a word, and x
lines representing the words:

Word
address

bit
range

F E D C B A 9 8 7 6 5 4 3 2 1 0 Words value

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 =255
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 =4
2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 =1*212+1*26=4160
3 1
4 0 1 1

5

Bit at address : 16 * 2 + 12 = 75

For the modbus address of a bit, you must do the following calculation:

Address Bit = 16 * address of word + rank of bit

The sum of all sizes tables slaves should not exceed 16384 words.

Only bits of the 4096 first words are accessible (the addressing format can not exceed
65535).

Chapter

6

Modbus RTU and TCP communication

Page 26

Maximum number manageable by LT200 on RTU and TCP:
- maximum number of modbus masters : 9.
- maximum number of modbus slaves : 16.

Functions modbus codes managed by the LT200 are:
- 1 : read_coils : reading bits
- 2 : read_input_discretes : reading input bits
- 3 : read_multiple_registers : reading words
- 4 : read_input_registers : reading input words
- 5 : write_coil : writing a bit
- 6 : write_single_register : writing a word
- 15 : force_multiple_coils : writing bits
- 16 : write_multiple_registers : writing words
- 23 : read_write_register : reading and writing words

We have defined the type ModbusTable : it is the type of variable created to represent the
Modbus table in LT200 :

Data Structure ModbusTable
(WORD) Table of modbus words [0.. 16383]

NB: All Modbus protocols work with the same table. This is the variable ModbusTable first
transmitted to a Modbus Function to be taken into account.

Bits can be accessed only up to the word at address 4095.

All addresses have an offset at 0 by default.

Example of declaration in ISaGRAF dictionary:

Function Modbus_Init :

Function Modbus_Init()

Action Initialisation of Modbus service

Parameters Table (ModbusTable): Table Modbus.

Returned
Value

 (DINT) Status of operation :

• 1: operation successful,

• autre: operation failed, check the error code at the end of this
chapter.

Example (* initialization modbus service *)
IF Status_i_modb = 0 THEN
 Status_i_modb := Modbus_Init(ModTab);
END_IF;

We have defined the type SerialParam : it is a data structure within the modbus RTU, used
in initialization serial ports functions, to specify the parameters setting of the port.

Example : declaration in ISaGRAF dictionary

Data Structure SerialParam

Speed (UINT)
Port Speed (unity : bauds) :
1200, 2400, 4800, 9600, 19200, 38400

 Page 27

Data Structure SerialParam
Parity (USINT) Parity : 0 (none), 1 (odd), 2 (even)

StopBit (USINT) Number of stops bits : 1 or 2
DataSize (USINT) Number of data bits : 7 ou 8

Mode (USINT) 0 (RS232), 1 (RS485), 2 (RS422)
Example IF Status_i_modb = 0 THEN

 Status_i_modb := Modbus_Init(ModTab);
(* initialization modbus comA parameters *)
 Params_com0.Speed := 9600;
 Params_com0.Parity := 2;
 Params_com0.StopBit := 1;
 Params_com0.DataSize := 8;
 Params_com0.mode := 0;(* RS232*)
END_IF;

Modbus slave protocol

Modbus service must first have been initialized.

Each open slave is working on a segment ; a segment is a sub modbus table, part of the
general table and being positioned within it with an offset and length.

Opening a modbus RTU slave port :

Function Modbus_OpenSerialSlave

Action Opening a modbus RTU slave.

Parameters • SlaveNumber (USINT): slave address on the network (1 to 255).

• ComName (STRING) : « /dev/tts/0 » for COM0, « /dev/tts/1 » for COM A,
« /dev/tts/2 » for COM B, « /dev/tts/3 » for COM C

• Params (SerialParam) : port parameters structure

• GeneralOffset (UINT) : offset in words to open the segment compared to the
general table.

• Size (UINT) : size in words of the segment to open

• TimeOut : not used

Returned
Value

 (DINT) slave handle:

• >0 : slave handle open

• < 0 : operation failed, check the error code at the end of this chapter.

Example (* initialization modbus RTU slave com A *)
IF Status_i_modb = 1 AND Status_o_modbs_comA_slave = 0 THEN
 Status_o_modbs_comA_slave := Modbus_OpenSerialSlave(1,
'/dev/tts/1',Params_comA,0,100,0);
END_IF;

NB1 : slave number corresponds to the address of the slave on the network.
NB2 : data bit number must be 8. Any other value will result in an error at the opening.

Opening a modbus/TCP slave port :

Function Modbus_OpenTCPSlave

Action Opening a modbus TCP slave.

Parameters • SlaveNumber (USINT) : slave number (1 to 255).

• Port (UINT) : local TCP slave port (502 by default).

• GeneralOffset (UINT) : offset in words of the segment to open compared to
the general table.

• Size (UINT) : size in words of the segment to open.

• TimeOut (UINT) : time out in milliseconds.

Modbus RTU and TCP communication

Page 28

Returned
Value

(DINT) slave handle :

• >0 slave handle open

• < 0 : operation failed, check the error code at the end of this chapter.

Example (* initialization modbus TCP slave *)
IF Status_i_modb = 1 AND Status_o_modbTCP_slave = 0 THEN
 Status_o_modbTCP_slave := Modbus_OpenTCPSlave(10, 502,
0, 1000, 100);
END_IF;

Master supervision

Function Modbus_AddSupervision

Action Monitor the activity of a master.

Parameters • SlaveID (DINT) : slave handle, returned by the Opening Function

• MasterName (STRING) : IP address of the master to monitor (ignored for
RTU communication)

• TimeOut (UDINT) : TimeOut in milliseconds (minimum 1000)

• PresenceState (BOOL) : Dictionary variable that will automatically receive
the status of the monitored master presence.

 False : master absent,

 True : master present.

Returned
Value

 (DINT) Function status:

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Example (* master supervision *)
IF Status_addsup1 = 0 THEN
 Status_addsup1:= Modbus_AddSupervision(
Status_o_modbTCP_slave, '192.168.1.10', 5000, Supervis1);
END_IF;

Master filtering

Function Modbus_CreateTCPFilter

Action The slave will respond to requests only for masters identified with
this function.
NB : Function as this is not called, the slave accepts the requests of
all masters. The number of masters is limited to 8

Parameters • SlaveID (DINT) : slave handle, returned by the Opening Function

• MasterName (STRING) : IP address of the master autorized

Returned
Value

 (DINT) Operation status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Example (* master filter *)
IF Status_filtsup1 = 0 THEN
 Status_filtsup1:= Modbus_CreateTCPFilter(
Status_o_modbTCP_slave, '192.168.1.10');
END_IF;

 Page 29

Closing a modbus slave port

Function Modbus_CloseSlave

Action Close a modbus slave port.

Parameters SlaveID (DINT) : slave handle, returned by the Opening Function

Returned
Value

 (DINT) Function Status:

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Example (* Close modbus/TCP slave connection *)
IF dem_ferm AND Status_ferm_esclave = 0 THEN
 Status_ferm_esclave :=
Modbus_CloseSlave(Status_o_modbTCP_slave);
END_IF;

Modbus RTU and TCP communication

Page 30

Modbus master protocol

A modbus RTU master works with one COM port only. If there are several slaves (network
485 or 422), it is the slave number (in the structure Modbus Request) that differentiates.
A modbus/TCP master can have only a single TCP slave (single IP address provided to
initialize the master).
The total number of masters is 10 maximum.

Opening a master modbus RTU connection :

Function Modbus_OpenSerialMaster

Action Opening a modbus RTU master

Parameters • MasterNumber (USINT): master number (0 to 50).

• ComName (STRING): name of the com to use: « /dev/tts/0 » for COM0,
« /dev/tts/1 » for COM A, « /dev/tts/2 » for COM B, « /dev/tts/3 » for
COM C

• Params (SerialParam): port parameters

• TimeOut (UINT): timeout in milliseconds.

Returned
Value

 (DINT) operation status :

• 1: operation successful,

• other : operation failed, check the error code at the end of this chapter.

Example (* initialization modbus master comA*)
IF Status_o_modbs_comA_master = 0 THEN
 Status_o_modbs_comA_master :=
Modbus_OpenSerialMaster(1,'/dev/tts/1',Params_comA,100);
END_IF;

NB1 : master number is a unique identifier, used to obtain the diagnosis of the
communication. The number of master must be different for each new opening.

NB2 : data bit number must be 8. Any other value will result in an error at the opening.

Opening a master modbus/TCP connection :

Function Modbus_OpenTCPMaster

Action Opening a modbus/TCP master.

Parameters • MasterNumber (USINT): master number (0 à 50).

• TargetAddress (STRING): IP address of the slave

 Format : « 192.168.1.156 »

• Port (UINT): number TCP port of the slave (standard port is 502).

• TimeOut (UINT): timeout in milliseconds

Returned
Value

(DINT) operation Status :

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Adding a request :

The number of request per master is limited to 16.

there are 3 types of Modbus requests:
- Periodic request : the request is constant emission period,
- Trigger request : the request is issued by event (booleans triggers)
- OneShot request : the request is issued only once

NB: the choice is made depending on whether the values entered for the fields « Trigger »
and « Period » of the structure (see table below):

 Page 31

The structure of a modbus master request is as follows: a structure that brings together all
information relating to a Modbus request.

Data structure “ModbusRequest”

Period (UINT)

Sending period in milliseconds :

• 0: request One Shot

• 65535: Request on trigger

• other: period of the periodic request

Trigger (BOOL)
Case of a trigger request : trigger. The request is issued
when the value change from FALSE to TRUE.

SlaveNumber
(USINT)

slave number (address): used in RTU (0 to 255), 1 in TCP

FunctionCode
(USINT)

Function Modbus Code:

• 1 ou 2: read n bits

• 3 ou 4: read n words

• 6: write 1 words

• 15: write n bits

• 16: write n words

• 23 : write n words, read m words

ReadSlaveAddress
(WORD)

Read Offset address in the modbus slave table.

ReadMasterOffset
(WORD)

Read Offset address in the local LT200 table for the data read
in the slave.

ReadLength
(WORD)

Number of elements to read :

• limited to 2000 for bit (codes 1 and 2)

• limited to 125 for words (codes 3, 4 and 17)

WriteSlaveAddress
(WORD)

Wrinting Offset address in Modbus slave table.

WriteMasterOffset
(WORD)

Offset address in the local LT200 table for the data that have
to be write in the slave

WriteLength
(WORD)

Number of elements to write :

• limited to 800 for write bits (code 15)

• limited to 100 for write words (code 16 and 17)

Status (DINT) Request status : see table ci dessous
NbFrameOK (UDINT) Number of successful frames

NbError (UDINT) Number of failed frames

Example

 (* SQ1 : read 6 words at address 10 in the slave ; 1
request / 500ms*)
 requ[0].Period := 500;
 requ[0].Trigger := FALSE;
 requ[0].SlaveNumber := 1;
 requ[0].FunctionCode := 3;
 requ[0].ReadSlaveAddress := 10;
 requ[0].ReadMasterOffset := 20;
 requ[0].ReadLength := 6;

offsets units are in :
- bits for read and write bits functions
- words for read and write words functions

Adding a request :

Function Modbus_AddRequest

Action Store a request for a modbus master request.

Parameters • MasterNumber (USINT): master number (0 to 50).

• Request (ModbusRequest): modbus request to add

Returned
Value

 (DINT) operation status:

• 1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Modbus RTU and TCP communication

Page 32

Example (* adding modbus master request *)
if Status_o_comA_master = 1 AND Status_o_m_req0 = 0 then
Status_o_m_req0 := Modbus_AddRequest(ANY_TO_USINT (1)
 ,requ[0]);
end_if;

 (* getting the modbus master request status for requ[0]*)
ReqStat1 := requ[0].Status;
ReqNbFrameOK1 := requ[0].NbFrameOK;
ReqNbError1 := requ[0].NbError;

modbus request status

The status of modbus request is encoded on 32 bits (type DINT) :

• the error code is coded on 16 bits of high part,

• the error code is coded on 16 bits of low part.

Error value Meaning
0 No error

64 (0x40) internal error
65 (0x41) internal error
66 (0x42) opening port error
67 (0x43) Serial Port already open
68 (0x44) TCP connection error
69 (0x45) Connection closed by slave
70 (0x46) internal error
71 (0x47) internal error
72 (0x48) internal error
73 (0x49) internal error
74 (0x4A) Access to port impossible
75 (0x4B) Port TCP not available
128 (0x80) internal error
129 (0x81) Checksum error
130 (0x82) Frame error
131 (0x83) invalid response
132 (0x84) Response Time out
133 (0x85) Sending Time out
161 (0xA1) Exception Illegal Function Response
162 (0xA2) Exception Illegal Address Response
163 (0xA3) Exception Illegal Data Value Response
164 (0xA4) Exception Slave Device Failure Response

communication shutdown :

Function Modbus_CloseMaster

Action Close a master and delete the associated requests.

Parameters MasterNumber (USINT): number of master (0 to 50).

Returned Value (DINT) operation status:

• 1 : operation successful,

• other : operation failed, check the error code at the end of this
chapter.

 Page 33

modbus error codes

Error codes Meaning
100 com number incorrect
101 Opening com impossible
102 Speed incorrect
103 Parity incorrect
104 Number of stop bits incorrect
105 Number of data bits incorrect
106 COM configuration impossible
107 Configuration RS232/485/422 impossible
108 Port initialization impossible
109 port specified doesn’t exist
110 Wrong mode
111 port specified closed
112 offset error or size of elements incorrect
113 No element or access port error
114 This port is already token for the console link
200 Service already initialized
200 service initialization impossible
201 Master number incorrect.
202 Modbus service not initialized.

²201 Master numberalready open.
204 Master opening error.
205 Adding request Impossible.
206 Master number not open.
207 Master closing impossible.
208 Slave number incorrect
214 Slave opening impossible
216 Slave not open
217 Slave can’t be closed
218 Impossible to add the segment
219 offset error or size
220 maximal number of request exceeded for this master
221 mode incorrect
222 maximal number of instances exceeded
223 Impossible to add this filter
224 Impossible to add the supervision
225 Number of supervision exceeded for this slave
226 invalid function code

Ethernet TCP and UDP functions

Page 34

Ethernet TCP and UDP functions

Overview

This package allows to send and receive bytes on TCP and UDP

Types of variables

A new structure, named « Socket », in ISaGRAF dictionary :

Socket

ID (USINT) Number of sockets : between 1 and 10 (TCP and UDP together)
Protocol (WORD) 0 : UDP ; 1 : TCP

ClientOrServer (WORD) 0 : Client ; 1 : Server
Port (WORD) Port number

Address
(STRING(20))

If TCP client, Address of remote server
Not used otherwise.

MulticastGroup
(STRING(20))

If UDP server, Multicast group to receive

Status (WORD)
If TCP client, Socket status updated automatically : 1: server
connected; 0 server disconnected

Opening a socket

Function Socket_Open()

Action Opening a socket

Parameters (socket) Socket : structure description of the socket to open

Returned
value

(DINT) Function status:

• >=1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Closing a socket

Function Socket_Close()

Action Closing a socket

Parameters (USINT) Id : ID of the socket to close

Returned
value

(DINT) Function status:

• =1 : operation successful,

• other : operation failed, check the error code at the end of this chapter.

Chapter

7

 Page 35

Data waiting to read

Function Socket_Number()

Action Whether data is waiting for reading

Parameters ID (USINT) : socket ID

Returned
value

Function status (DINT) :

• 1 : elements pending to read,

• 0 : any elements in reception.

Reading bytes

Function Socket_ReadByte()

Action Reading data in the reception queue

Parameters • in (USINT) ID : Socket ID

• out (ByteTab) Tab : Reception table to store received bytes

• in (WORD) ByteNumber : Number of bytes to read

• in (WORD) Offset : Reception address in the reception table = Initial
address + offset.

• out (STRING(20)) Source : If UDP server, IP address of data
transmitter.

Returned
value

Function status (DINT):

• =1 : operation successful

• <1 : operation failed, check the error code at the end of this chapter

NB : the words « in » and « out » in bold to indicate the settings if they are inputs or outputs
of the function Words.

Writing bytes

Function Socket_ByteWrite()

Action Send bytes data

Parameters • in (USINT) Id : Socket ID

• in (ByteTab) Tab : Bytes table containing the data to send

• in (WORD) ByteNumber : bytes number to send

• in (WORD) Offset : Offset from which data will be issued from the table
Tab.

• out (STRING(20)) Dest : IP Address of remote device.

Returned
value

Function status (DINT):

• =1 : operation successful

• <1 : operation failed, check the error code at the end of this chapter

Ethernet TCP and UDP functions

Page 36

Ethernet functions error codes

Error Code Meaning

700 ID of socket already open

701 Bad socket number

702 Socket ID already closed

703 Connection error

704 Offset error –or wrong number of elements

705 Bad protocol

706 Port Number already used

707 TCP address server not informed

708 ID already used

 Page 37

LT200 monitoring and diagnosis

LT200 ISaGRAF LEDs : Power Supply, CPU and I/O boards

Power supply Led

If the power supply is present and correct, the corresponding green LED lights up without flashing.

CPU leds

LED
name

Color Meaning

RUN Green • Flashing slowly (2s) if TIC application (ISaGRAF) is running.

• Flashing quickly (5/10s) if TIC application (ISaGRAF) is in STOP

• Ligth on : prm mode or step to step

• Flashing alternately led the PRM: LT200 in starting

FAIL Orange • Light on if TIC application (ISaGRAF) is corrupted.

• OFF if operation is correct

I/O Green Ligth on if operation is correct

• flashing if an I/O board is not correctly inserted or if at least one I/O
board status is incorrect while the program is running.

• Flashing alternately with the Run led : LT200 starting phase

PRM Green lights up without flashing if the equipment is in PRM mode when the LT
is booted.

WDG red • Light ON while WDG isn’t n’t

• OFF if TIC ISaGRAF is in RUN mode ; the hardware watchdog is
refreshed by processor.

CP green Ligth ON if the I/O coprocessor is runing (program downloaded).

F1 green Not used

F2 green Not used

communication leds : serial and Ethernet

LED
name

Color Meaning

Lk orange Ethernet link : Light ON if the Ethernet link is wired up to another
Ethernet device

Rx green Light ON if byte reception on the corresponding serial port

Tx green Light ON if byte sending on the corresponding serial port

SM green Not used

Te green Not used

Chapter

8

LT200 monitoring and diagnosis

Page 38

Input/Output boards leds

Input/output LEDs are automatically refreshed by the kernel. Their management is as following :

Board
type

Led on front I/O
board face

LED
State

Meaning

All FLT : red color On 3 possible cases :

• general WDG

• internal board power supply in fault

• no monitoring from CPU

DI310
DI410

DIO210

1 green LED per
digital input

channel

On If input is in TRUE state

DO310
DIO210

1 orange LED per
digital output

channel

On If output is in TRUE state

AI110
AI210

AIO320

1 green LED per
analog input

channel

On If the CPU is monitoring correctly the
channel

AO121
AIO320

1 green LED per
analog output

channel

On If the CPU is monitoring correctly the
channel

console link troubleshooting : PRM mode

For an LT ISaGRAF, switching to Parameter Setting Mode means running only the ISaGRAF kernel
with no TIC (Target Independent Code) application downloaded.
This mode, called PRM, is symbolized by a LED of the same name on the CPU.
This mode is used in order to restore the console link between the PC and the LT200 ISaGRAF.

To switch to PRM mode :

- switch off the LT,
- Shunt the pins 7 and 8 of COM0
- switch on the LT,
- some seconds after startup, led PRM lights up, then the shunt can be removed,
- ISaGRAF start in safe mode and wait for a connection with the workbench on the Ethernet or

USB console link.

 Page 39

LT200 log file:

In case of problems, the LED FAIL will be ON : diagnosis informations are available in a log file
« isasys.txt », uploadable from the LT200 ftp server using an anonymous connection.
LT200 ISaGRAF has too a telnet server: you can connect to it with a telnet client, and read the event
file « isasys.txt »: this file is present in the following repertory : « home/anonymous » ; once the
telnet connection established, enter the command:

• « cd home/anonymous »

• « cat isasys.txt »

At the end of this file, a warning counter indicates a potential problem : move up in the list
of messages in order to watch the problem ; the list of messages is limited to 1000, when
exceeded, the file is reset.

Some information is in text, other form of warning code:

warning code Meaning

a : 0 Normal startup of ISaGRAF kernel

b : 0 Normal stop of ISaGRAF kernel

6 : x Corruption of retain variables. Normal in the case of first
started.

7 : x Error recovery of retain variables: check the size « Backup
total size is xxx bytes » given earlier in the file. Normal in the
case of first started.

10 : x
11 : x

A user function (or function block) used in the project isn’t
embedded in the LT200.

1C :x Error when opening IO boards drivers

