Английская Википедия:Aliquot sum

Материал из Онлайн справочника
Версия от 22:50, 28 января 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Sum of all proper divisors of a natural number}} In number theory, the '''aliquot sum''' {{math|''s''(''n'')}} of a positive integer {{mvar|n}} is the sum of all proper divisors of {{mvar|n}}, that is, all divisors of {{mvar|n}} other than {{mvar|n}} itself. That is, <math display=block>s(n)=\sum_{{d|n,} \atop {d\ne n}} d \, .</math> It can be used to...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

In number theory, the aliquot sum Шаблон:Math of a positive integer Шаблон:Mvar is the sum of all proper divisors of Шаблон:Mvar, that is, all divisors of Шаблон:Mvar other than Шаблон:Mvar itself. That is, <math display=block>s(n)=\sum_Шаблон:D d \, .</math>

It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

Examples

For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are Шаблон:Nowrap, and 6, so the aliquot sum of 12 is 16 i.e. (Шаблон:Nowrap).

The values of Шаблон:Math for Шаблон:Nowrap are:

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, ... Шаблон:OEIS

Characterization of classes of numbers

The aliquot sum function can be used to characterize several notable classes of numbers:

The mathematicians Шаблон:Harvtxt noted that one of Erdős' "favorite subjects of investigation" was the aliquot sum function.

Iteration

Шаблон:Main Iterating the aliquot sum function produces the aliquot sequence Шаблон:Math of a nonnegative integer Шаблон:Mvar (in this sequence, we define Шаблон:Math).

Sociable numbers are numbers whose aliquot sequence is a periodic sequence. Amicable numbers are sociable numbers whose aliquot sequence has period 2.

It remains unknown whether these sequences always end with a prime number, a perfect number, or a periodic sequence of sociable numbers.[1]

See also

References

Шаблон:Reflist

External links