Английская Википедия:Borchers algebra

Материал из Онлайн справочника
Версия от 23:17, 10 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Tensor algebra arising in functional analysis}} In mathematics, a '''Borchers algebra''' or '''Borchers–Uhlmann algebra''' or '''BU-algebra''' is the tensor algebra of a vector space, often a space of smooth test functions. They were studied by {{harvs |txt |authorlink=H.-J. Borchers |first=H. J. |last=Borchers |year=1962}}, who showed that the ...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, a Borchers algebra or Borchers–Uhlmann algebra or BU-algebra is the tensor algebra of a vector space, often a space of smooth test functions. They were studied by Шаблон:Harvs, who showed that the Wightman distributions of a quantum field could be interpreted as a state, called a Wightman functional, on a Borchers algebra. A Borchers algebra with a state can often be used to construct an O*-algebra.

The Borchers algebra of a quantum field theory has an ideal called the locality ideal, generated by elements of the form abba for a and b having spacelike-separated support. The Wightman functional of a quantum field theory vanishes on the locality ideal, which is equivalent to the locality axiom for quantum field theory.

References

External links

Шаблон:Mathanalysis-stub