Английская Википедия:DNase-Seq
DNase-seq (DNase I hypersensitive sites sequencing) is a method in molecular biology used to identify the location of regulatory regions, based on the genome-wide sequencing of regions sensitive to cleavage by DNase I.[1][2][3] FAIRE-Seq is a successor of DNase-seq for the genome-wide identification of accessible DNA regions in the genome. Both the protocols for identifying open chromatin regions have biases depending on underlying nucleosome structure. For example, FAIRE-seq provides higher tag counts at non-promoter regions.[4] On the other hand, DNase-seq signal is higher at promoter regions, and DNase-seq has been shown to have better sensitivity than FAIRE-seq even at non-promoter regions.[4]
DNase-seq Footprinting
DNase-seq requires some downstream bioinformatics analyses in order to provide genome-wide DNA footprints. The computational tools proposed can be categorized in two classes: segmentation-based and site-centric approaches. Segmentation-based methods are based on the application of Hidden Markov models or sliding window methods to segment the genome into open/closed chromatin region. Examples of such methods are: HINT,[5] Boyle method[6] and Neph method.[7] Site-centric methods, on the other hand, find footprints given the open chromatin profile around motif-predicted binding sites, i.e., regulatory regions predicted using DNA-protein sequence information (encoded in structures such as Position weight matrix). Examples of these methods are CENTIPEDE[8] and Cuellar-Partida method.[9]
References
External links
- DNase I footprinting analysis of DNase-seq data in R/Bioconductor
- HINT : Tutorial for detection of DNAse footprints with HINT.
- CENTIPEDE Website