Английская Википедия:Epicyclic frequency

Материал из Онлайн справочника
Версия от 02:08, 4 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Characteristic of accretion discs}} In astrophysics, particularly the study of accretion disks, the '''epicyclic frequency''' is the frequency at which a radially displaced fluid parcel will oscillate. It can be referred to as a "Rayleigh discriminant". When considering an astrophysical disc with differential rotation <ma...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description In astrophysics, particularly the study of accretion disks, the epicyclic frequency is the frequency at which a radially displaced fluid parcel will oscillate. It can be referred to as a "Rayleigh discriminant". When considering an astrophysical disc with differential rotation <math>\Omega</math>, the epicyclic frequency <math>\kappa</math> is given by

<math>\kappa^{2} \equiv \frac{2 \Omega}{R}\frac{d}{dR}(R^2 \Omega)</math>, where R is the radial co-ordinate.[1]

This quantity can be used to examine the 'boundaries' of an accretion disc: when <math>\kappa^{2}</math> becomes negative, then small perturbations to the (assumed circular) orbit of a fluid parcel will become unstable, and the disc will develop an 'edge' at that point. For example, around a Schwarzschild black hole, the innermost stable circular orbit (ISCO) occurs at three times the event horizon, at <math>6GM/c^{2}</math>.

For a Keplerian disk, <math>\kappa = \Omega</math>.

Derivation

An astrophysical disk can be modeled as a fluid with negligible mass compared to the central object (e.g. a star) and with negligible pressure. We can suppose an axial symmetry such that <math> \Phi (r,z) = \Phi (r,-z) </math>. Starting from the equations of movement in cylindrical coordinates : <math display=block>\begin{align} \ddot r - r \dot \theta^2 &= -\partial_r \Phi \\r \ddot \theta + 2 \dot r\dot\theta &= 0 \\ \ddot z &= -\partial_z \Phi \end{align}</math>

The second line implies that the specific angular momentum is conserved. We can then define an effective potential <math> \Phi_{eff} = \Phi + \frac 12 r^2\dot\theta^2 = \Phi + \frac{h^2}{2r^2} </math> and so : <math display=block> \begin{align}\ddot r &= -\partial_r \Phi_{eff}\\ \ddot z &= - \partial_z \Phi_{eff}\end{align} </math>

We can apply a small perturbation <math> \delta\vec r = \delta r \vec e_r + \delta z \vec e_z </math> to the circular orbit : <math display=block> \vec r = r_0 \vec e_r + \delta \vec r </math> So, <math display=block> \ddot{\vec r} + \delta \ddot{\vec r} = -\vec \nabla \Phi_{eff}(\vec r + \delta \vec r)\approx-\vec \nabla \Phi_{eff} (\vec r) - \partial_r^2 \Phi_{eff}(\vec r)\delta r - \partial_z^2 \Phi_{eff}(\vec r)\delta z </math>

And thus : <math display=block>\begin{align} \delta \ddot r &= - \partial_r^2 \Phi_{eff} \delta r = -\Omega_r^2 \delta r\\\delta \ddot z &= - \partial_r^2 \Phi_{eff} \delta z = -\Omega_z^2 \delta z\end{align} </math> We then note <math display=block> \kappa^2 = \Omega_r^2 = \partial_r^2\Phi_{eff} = \partial_r^2\Phi + \frac{3 h^2}{r^4}</math> In a circular orbit <math> h_c^2=r^3 \partial_r \Phi </math>. Thus : <math display=block>\kappa^2 = \partial_r^2\Phi + \frac{3}{r}\partial_r \Phi</math> The frequency of a circular orbit is <math> \Omega_c^2 = \frac 1r \partial_r \Phi </math> which finally yields : <math display=block>\kappa^2=4\Omega_c^2 + 2r\Omega_c \frac{d\Omega_c}{dr}</math>

References

  1. p161, Astrophysical Flows, Pringle and King 2007


Шаблон:Astrophysics-stub Шаблон:Fluiddynamics-stub