Английская Википедия:Fixed-point space

Материал из Онлайн справочника
Версия от 02:57, 8 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Topological space such that every endomorphism has a fixed point}} {{no footnotes|date=July 2018}} In mathematics, a Hausdorff space ''X'' is called a '''fixed-point space''' if every continuous function <math>f:X\rightarrow X</math> has a fixed point. For example, any closed interval [a,b] in <math>\mathbb R</math> is a f...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:No footnotes In mathematics, a Hausdorff space X is called a fixed-point space if every continuous function <math>f:X\rightarrow X</math> has a fixed point.

For example, any closed interval [a,b] in <math>\mathbb R</math> is a fixed point space, and it can be proved from the intermediate value property of real continuous function. The open interval (ab), however, is not a fixed point space. To see it, consider the function <math>f(x) = a + \frac{1}{b-a}\cdot(x-a)^2</math>, for example.

Any linearly ordered space that is connected and has a top and a bottom element is a fixed point space.

Note that, in the definition, we could easily have disposed of the condition that the space is Hausdorff.

References


Шаблон:Mathanalysis-stub