Английская Википедия:Grouped Dirichlet distribution

Материал из Онлайн справочника
Версия от 06:19, 17 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In statistics, the '''grouped Dirichlet distribution''' (GDD) is a multivariate generalization of the Dirichlet distribution It was first described by Ng et al. 2008.<ref name="ng2008">{{cite journal| last=Ng| first=Kai Wang| title=Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis| journal=Journal of Multivariate Analysis| year=2008| volume=...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In statistics, the grouped Dirichlet distribution (GDD) is a multivariate generalization of the Dirichlet distribution It was first described by Ng et al. 2008.[1] The Grouped Dirichlet distribution arises in the analysis of categorical data where some observations could fall into any of a set of other 'crisp' category. For example, one may have a data set consisting of cases and controls under two different conditions. With complete data, the cross-classification of disease status forms a 2(case/control)-x-(condition/no-condition) table with cell probabilities

Treatment No Treatment
Controls θ1 θ2
Cases θ3 θ4

If, however, the data includes, say, non-respondents which are known to be controls or cases, then the cross-classification of disease status forms a 2-x-3 table. The probability of the last column is the sum of the probabilities of the first two columns in each row, e.g.

Treatment No Treatment Missing
Controls θ1 θ2 θ12
Cases θ3 θ4 θ34

The GDD allows the full estimation of the cell probabilities under such aggregation conditions.[1]

Probability Distribution

Consider the closed simplex set <math>\mathcal{T}_n=\left\{\left(x_1,\ldots x_n\right)\left|x_i\geq 0, i=1,\cdots,n, \sum_{i=1}^n x_n =1\right.\right\}</math> and <math>\mathbf{x}\in\mathcal{T}_n</math>. Writing <math>\mathbf{x}_{-n}=\left(x_1,\ldots,x_{n-1}\right)</math> for the first <math>n-1</math> elements of a member of <math>\mathcal{T}_n</math>, the distribution of <math>\mathbf{x}</math> for two partitions has a density function given by

<math>

\operatorname{GD}_{n,2,s}\left(\left.\mathbf{x}_{-n}\right|\mathbf{a},\mathbf{b}\right)= \frac{

 \left(\prod_{i=1}  ^n x_i^{a_i-1}\right)\cdot
 \left(\sum_{i=1}   ^s x_i        \right)^{b_1}\cdot
 \left(\sum_{i=s+1} ^n x_i        \right)^{b_2}

}{

 \operatorname{\Beta}\left(a_1,\ldots,a_s\right)\cdot
 \operatorname{\Beta}\left(a_{s+1},\ldots,a_n\right)\cdot
 \operatorname{\Beta}\left(b_1+\sum_{i=1}^sa_i,b_2+\sum_{i=s+1}^n a_i\right)

} </math> where <math>\operatorname{\Beta}\left(\mathbf{a}\right)</math> is the Multivariate beta function.

Ng et al.[1] went on to define an m partition grouped Dirichlet distribution with density of <math>\mathbf{x}_{-n}</math> given by

<math>

\operatorname{GD}_{n,m,\mathbf{s}}\left(\left.\mathbf{x}_{-n}\right|\mathbf{a},\mathbf{b}\right) = c_m^{-1}\cdot \left(\prod_{i=1}^n x_i^{a_i-1}\right)\cdot \prod_{j=1}^m\left(\sum_{k=s_{j-1}+1}^{s_j}x_k\right)^{b_j} </math> where <math>\mathbf{s} = \left(s_1,\ldots,s_m\right)</math> is a vector of integers with <math>0=s_0<s_1\leqslant\cdots\leqslant s_m=n</math>. The normalizing constant given by

<math>

c_m=\left\{\prod_{j=1}^m\operatorname{\Beta}\left(a_{s_{j-1}+1},\ldots,a_{s_j}\right)\right\}\cdot \operatorname{\Beta}\left(b_1+\sum_{k=1}^{s_1}a_k,\ldots,b_m+\sum_{k=s_{m-1}+1}^{s_m}a_k\right) </math>

The authors went on to use these distributions in the context of three different applications in medical science.

References

Шаблон:Reflist