Английская Википедия:Hooley's delta function

Материал из Онлайн справочника
Версия от 19:20, 22 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Infobox integer sequence|name=Hooley's delta function|named_after=Christopher Hooley|publication_year=1979|author=Paul Erdős|OEIS=A226898|first_terms=1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1}}{{Short description|Mathematical function}} In mathematics, '''Hooley's delta function (<math> \Delta(n) </math>)''', also called '''Erdős--Hooley delta-function''', defin...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Infobox integer sequenceШаблон:Short description In mathematics, Hooley's delta function (<math> \Delta(n) </math>), also called Erdős--Hooley delta-function, defines the maximum number of divisors of <math> n </math> in <math> [u, eu] </math> for all <math> u </math>, where <math> e </math> is the Euler's number. The first few terms of this sequence are

<math>1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4 </math> Шаблон:OEIS.

History

The sequence was first introduced by Paul Erdős in 1974,[1] then studied by Christopher Hooley in 1979.[2]

In 2023, Dimitris Koukoulopoulos and Terence Tao proved that the sum of the first <math> n </math> terms, <math> \textstyle \sum_{k=1}^n \Delta(k) \ll n (\log \log n)^{11/4} </math>, for <math>n \ge 100</math>.[3] In particular, the average order of <math> \Delta(n) </math> to <math> k </math> is <math> O((\log n)^k) </math> for any <math> k > 0 </math>.[4]

Later in 2023 Kevin Ford, Koukoulopoulos, and Tao proved the lower bound <math> \textstyle \sum_{k=1}^n \Delta(k) \gg n (\log \log n)^{1+\eta-\epsilon} </math>, where <math>\eta=0.3533227\ldots</math>, fixed <math>\epsilon</math>, and <math>n \ge 100</math>.[5]

Usage

This function measures the tendency of divisors of a number to cluster.

The growth of this sequence is limited by <math>\Delta(mn) \leq \Delta(n) d(m)</math> where <math>d(n)</math> is the number of divisors of <math>n</math>.[6]

See also

References

Шаблон:Reflist Шаблон:Classes of natural numbers