Английская Википедия:Integer lattice

Материал из Онлайн справочника
Версия от 08:10, 26 марта 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Lattice group in Euclidean space whose points are integer n-tuples}} {{refimprove|date=August 2013}} thumb|Approximations of regular [[pentagrams with vertices on a square lattice with coordinates indicated]] File:Diophantine_approximation_graph.svg|thumb|[[Diophantine approximation|Rational ap...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Refimprove

Файл:Regular pentagon approximation integer vertex coordinates.svg
Approximations of regular pentagrams with vertices on a square lattice with coordinates indicated
Файл:Diophantine approximation graph.svg
Rational approximants of irrational values can be mapped to points lying close to lines having gradients corresponding to the values

In mathematics, the Шаблон:Mvar-dimensional integer lattice (or cubic lattice), denoted Шаблон:Tmath, is the lattice in the Euclidean space Шаблон:Tmath whose lattice points are [[tuple|Шаблон:Mvar-tuple]]s of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. Шаблон:Tmath is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice.

Automorphism group

The automorphism group (or group of congruences) of the integer lattice consists of all permutations and sign changes of the coordinates, and is of order 2nn!. As a matrix group it is given by the set of all n × n signed permutation matrices. This group is isomorphic to the semidirect product

<math>(\mathbb Z_2)^n \rtimes S_n</math>

where the symmetric group Sn acts on (Z2)n by permutation (this is a classic example of a wreath product).

For the square lattice, this is the group of the square, or the dihedral group of order 8; for the three-dimensional cubic lattice, we get the group of the cube, or octahedral group, of order 48.

Diophantine geometry

In the study of Diophantine geometry, the square lattice of points with integer coordinates is often referred to as the Diophantine plane. In mathematical terms, the Diophantine plane is the Cartesian product <math>\scriptstyle\mathbb{Z}\times\mathbb{Z}</math> of the ring of all integers <math>\scriptstyle\mathbb{Z}</math>. The study of Diophantine figures focuses on the selection of nodes in the Diophantine plane such that all pairwise distances are integers.

Coarse geometry

In coarse geometry, the integer lattice is coarsely equivalent to Euclidean space.

Pick's theorem

Файл:Pick theorem simple.svg
Шаблон:Math, Шаблон:Math, Шаблон:Math

Шаблон:Main Pick's theorem, first described by Georg Alexander Pick in 1899, provides a formula for the area of a simple polygon with all vertices lying on the 2-dimensional integer lattice, in terms of the number of integer points within it and on its boundary.[1]

Let <math>i</math> be the number of integer points interior to the polygon, and let <math>b</math> be the number of integer points on its boundary (including both vertices and points along the sides). Then the area <math>A</math> of this polygon is:[2] <math display=block>A = i + \frac{b}{2} - 1.</math> The example shown has <math>i=7</math> interior points and <math>b=8</math> boundary points, so its area is <math>A=7+\tfrac{8}{2}-1=10</math> square units.

See also

References

Шаблон:Reflist

Further reading