Английская Википедия:Crystal Ball function

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:CrystalBallFunction.svg
Examples of the Crystal Ball function.

The Crystal Ball function, named after the Crystal Ball Collaboration (hence the capitalized initial letters), is a probability density function commonly used to model various lossy processes in high-energy physics. It consists of a Gaussian core portion and a power-law low-end tail, below a certain threshold. The function itself and its first derivative are both continuous.

The Crystal Ball function is given by:

<math>f(x;\alpha,n,\bar x,\sigma) = N \cdot \begin{cases} \exp(- \frac{(x - \bar x)^2}{2 \sigma^2}), & \mbox{for }\frac{x - \bar x}{\sigma} > -\alpha \\
A \cdot (B - \frac{x - \bar x}{\sigma})^{-n}, & \mbox{for }\frac{x - \bar x}{\sigma} \leqslant -\alpha \end{cases}</math>

where

<math>A = \left(\frac{n}{\left| \alpha \right|}\right)^n \cdot \exp\left(- \frac {\left| \alpha \right|^2}{2}\right)</math>,
<math>B = \frac{n}{\left| \alpha \right|} - \left| \alpha \right|</math>,
<math>N = \frac{1}{\sigma (C + D)}</math>,
<math>C = \frac{n}{\left| \alpha \right|} \cdot \frac{1}{n-1} \cdot \exp\left(- \frac {\left| \alpha \right|^2}{2}\right)</math>,
<math>D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{\left| \alpha \right|}{\sqrt 2}\right)\right)</math>.

<math>N</math> (Skwarnicki 1986) is a normalization factor and <math>\alpha</math>, <math>n</math>, <math>\bar x</math> and <math>\sigma</math> are parameters which are fitted with the data. erf is the error function.

External links

Шаблон:ProbDistributions