Английская Википедия:Fréchet distribution

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Probability distribution</math>|

 cdf        =<math>e^{-(\frac{x-m}{s})^{-\alpha}}</math>  |
 mean       =<math>\begin{cases}
                 \ m+s\Gamma\left(1-\frac{1}{\alpha}\right)  & \text{for } \alpha>1  \\
                 \ \infty              & \text{otherwise}
               \end{cases}</math> |
 median     =<math>m+\frac{s}{\sqrt[\alpha]{\log_e(2)}}</math>  |
 mode       =<math>m+s\left(\frac{\alpha}{1+\alpha}\right)^{1/\alpha}</math>|
 variance   = <math>\begin{cases}
                 \ s^2\left(\Gamma\left(1-\frac{2}{\alpha}\right)- \left(\Gamma\left(1-\frac{1}{\alpha}\right)\right)^2\right)  & \text{for } \alpha>2  \\
                 \ \infty              & \text{otherwise}
               \end{cases}</math> |
 skewness   = <math>\begin{cases}
                 \ \frac{\Gamma\left(1-\frac {3}{\alpha}\right)-3\Gamma\left(1-\frac {2}{\alpha}\right)\Gamma\left(1-\frac {1}{\alpha}\right)+2\Gamma^3\left(1-\frac {1}{\alpha} \right)}{\sqrt{ \left( \Gamma\left(1-\frac{2}{\alpha}\right)-\Gamma^2\left(1-\frac{1}{\alpha}\right) \right)^3 }}  & \text{for } \alpha>3  \\
                 \ \infty              & \text{otherwise}
               \end{cases}</math> |
 g_k        =|
 kurtosis   = <math>\begin{cases}
                 \ -6+ \frac{\Gamma \left(1-\frac{4}{\alpha}\right) -4\Gamma\left(1-\frac{3}{\alpha}\right) \Gamma\left(1-\frac{1}{\alpha}\right)+3 \Gamma^2\left(1-\frac{2}{\alpha} \right)} {\left[\Gamma \left(1-\frac{2}{\alpha}\right) - \Gamma^2 \left(1-\frac{1}{\alpha}\right) \right]^2}  & \text{for } \alpha>4  \\
                 \ \infty              & \text{otherwise}
               \end{cases}</math> |
 entropy    =<math> 1 + \frac{\gamma}{\alpha} + \gamma +\ln \left( \frac{s}{\alpha} \right) </math>, where <math>\gamma</math> is the Euler–Mascheroni constant.|
 mgf        = [1] Note: Moment <math>k</math> exists if <math>\alpha>k</math>  |
 char       = [1] |

}}

The Fréchet distribution, also known as inverse Weibull distribution,[2][3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function

<math>\Pr(X \le x)=e^{-x^{-\alpha}} \text{ if } x>0. </math>

where α > 0 is a shape parameter. It can be generalised to include a location parameter m (the minimum) and a scale parameter s > 0 with the cumulative distribution function

<math>\Pr(X \le x)=e^{-\left(\frac{x-m}{s}\right)^{-\alpha}} \text{ if } x>m. </math>

Named for Maurice Fréchet who wrote a related paper in 1927,[4] further work was done by Fisher and Tippett in 1928 and by Gumbel in 1958.[5][6]

Characteristics

The single parameter Fréchet with parameter <math>\alpha</math> has standardized moment

<math>\mu_k=\int_0^\infty x^k f(x)dx=\int_0^\infty t^{-\frac{k}{\alpha}}e^{-t} \, dt,</math>

(with <math>t=x^{-\alpha}</math>) defined only for <math>k<\alpha</math>:

<math>\mu_k=\Gamma\left(1-\frac{k}{\alpha}\right)</math>

where <math>\Gamma\left(z\right)</math> is the Gamma function.

In particular:

  • For <math>\alpha>1</math> the expectation is <math>E[X]=\Gamma(1-\tfrac{1}{\alpha})</math>
  • For <math>\alpha>2</math> the variance is <math>\text{Var}(X)=\Gamma(1-\tfrac{2}{\alpha})-\big(\Gamma(1-\tfrac{1}{\alpha})\big)^2.</math>

The quantile <math>q_y</math> of order <math>y</math> can be expressed through the inverse of the distribution,

<math>q_y=F^{-1}(y)=\left(-\log_e y \right)^{-\frac{1}{\alpha}}</math>.

In particular the median is:

<math>q_{1/2}=(\log_e 2)^{-\frac{1}{\alpha}}.</math>

The mode of the distribution is <math>\left(\frac{\alpha}{\alpha+1}\right)^\frac{1}{\alpha}.</math>

Especially for the 3-parameter Fréchet, the first quartile is <math>q_1= m+\frac{s}{\sqrt[\alpha]{\log(4)}} </math> and the third quartile <math>q_3= m+\frac{s}{\sqrt[\alpha]{\log(\frac{4}{3})}}. </math>

Also the quantiles for the mean and mode are:

<math>F(mean)=\exp \left( -\Gamma^{-\alpha} \left(1- \frac{1}{\alpha} \right) \right)</math>
<math>F(mode)=\exp \left( -\frac{\alpha+1}{\alpha} \right).</math>

Applications

Файл:FitFrechetDistr.tif
Fitted cumulative Fréchet distribution to extreme one-day rainfalls

However, in most hydrological applications, the distribution fitting is via the generalized extreme value distribution as this avoids imposing the assumption that the distribution does not have a lower bound (as required by the Frechet distribution). Шаблон:Citation needed

Файл:DCA with four RDC.png
Fitted decline curve analysis. Duong model can be thought of as a generalization of the Frechet distribution.
  • In decline curve analysis, a declining pattern the time series data of oil or gas production rate over time for a well can be described by the Fréchet distribution.[8]
  • One test to assess whether a multivariate distribution is asymptotically dependent or independent consists of transforming the data into standard Fréchet margins using the transformation <math>Z_i = -1/\log F_i(X_i)</math> and then mapping from Cartesian to pseudo-polar coordinates <math>(R, W)= (Z_1 + Z_2, Z_1/(Z_1 + Z_2))</math>. Values of <math>R \gg 1</math> correspond to the extreme data for which at least one component is large while <math>W</math> approximately 1 or 0 corresponds to only one component being extreme.
  • In Economics it is used to model the idiosyncratic component of preferences of individuals for different products (Industrial Organization), locations (Urban Economics), or firms (Labor Economics).

Related distributions

  • If <math> X \sim U(0,1) \,</math> (Uniform distribution (continuous)) then <math> m + s(-\log(X))^{-1/\alpha} \sim \textrm{Frechet}(\alpha,s,m)\,</math>
  • If <math> X \sim \textrm{Frechet}(\alpha,s,m)\,</math> then <math> k X + b \sim \textrm{Frechet}(\alpha,k s,k m + b)\,</math>
  • If <math> X_i \sim \textrm{Frechet}(\alpha,s,m) \, </math> and <math> Y=\max\{\,X_1,\ldots,X_n\,\} \, </math> then <math> Y \sim \textrm{Frechet}(\alpha,n^{\tfrac{1}{\alpha}} s,m) \,</math>
  • The cumulative distribution function of the Frechet distribution solves the maximum stability postulate equation
  • If <math> X \sim \textrm{Frechet}(\alpha,s,m=0)\,</math> then its reciprocal is Weibull-distributed: <math>X^{-1} \sim \textrm{Weibull}(k=\alpha, \lambda=s^{-1})\,</math>

Properties

See also

Шаблон:More footnotes needed

References

Шаблон:Reflist

Further reading

External links

Шаблон:Refbegin

Шаблон:Refend

Шаблон:ProbDistributions

  1. 1,0 1,1 Ошибка цитирования Неверный тег <ref>; для сносок R1 не указан текст
  2. Ошибка цитирования Неверный тег <ref>; для сносок Khan не указан текст
  3. Ошибка цитирования Неверный тег <ref>; для сносок Gusmao не указан текст
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite book
  7. Ошибка цитирования Неверный тег <ref>; для сносок Coles1 не указан текст
  8. Шаблон:Cite journal