
SCADAPack E Target 5
Modbus Communication
Interfaces

SCADAPack E Target 5 Modbus Communication Interfaces2

Table of Contents

Part I SCADAPack E Target 5 Modbus
Communication Interfaces 4

... 41 Technical Support

... 52 Safety Information

... 83 Overview

... 94 Modbus Master/Client Operation

.. 9I/O Device Types and Modbus Addressing Terminology 4.1
.. 10Serial Modbus I/O Devices 4.2
... 11Modbus Input Devices4.2.1
... 12Modbus Output Devices4.2.2
.. 13Modbus TCP I/O Device Interface 4.3
... 14Modbus/TCP Input Devices4.3.1
... 15Modbus/TCP Output Devices4.3.2
... 16Open Modbus/TCP Conformance Classes4.3.3
.. 18Modbus RTU in TCP I/O Device Interface 4.4
... 18Modbus RTU in TCP Input Devices4.4.1
... 19Modbus RTU in TCP Output Devices4.4.2
.. 20Modbus PLC Data Types 4.5
.. 22Communication Interfaces 4.6
... 22Serial Modbus Communications4.6.1
... 23Modbus/TCP Client Communications4.6.2
... 24Modbus/TCP Server Communications4.6.3
... 24Modbus RTU in TCP Client Communications4.6.4
... 25BOOTP Server Configuration4.6.5

... 26Configuring BOOTP w ith SCADAPack E Configurator4.6.5.1

... 27Configuring BOOTP from the Command Line4.6.5.2
.. 28System Points 4.7
... 30Modbus Status Values4.7.1
... 31Data Cache Time4.7.2
... 31PLC Output Device Default Background Update Rate4.7.3
.. 32Replacing a Modbus/TCP or Modbus RTU in TCP Device that uses BOOTP 4.8

... 32

Change a Modbus/TCP or Modbus RTU in TCP Device Using SCADAPack E

Configurator
4.8.1

... 33

Change a Modbus/TCP or Modbus RTU in TCP Device Using COMMAND

LINE
4.8.2

... 345 Modbus Slave/Server Operation

.. 34Setting up Modbus Slave / Server 5.1

.. 35Modbus Slave and Modbus /TCP Server Implementation Conditions 5.2
... 35Conformance Classes & Supported Function Codes5.2.1
... 36Modbus Address Mapping to RTU Point Address Space5.2.2

... 38Binary Addresses5.2.2.1

... 39Analog Addresses5.2.2.2
... 40Reading Analog Registers5.2.2.2.1
... 42Writing Analog Registers5.2.2.2.2

... 43Modbus Register / 32-bit Analog Point Mapping Configuration5.2.2.3

... 45Supported Data Types5.2.2.4

3Contents

3

... 47Exception Codes5.2.3
... 47Read & Write Multiple Coils / Register Exceptions5.2.3.1
... 48Exceptions Writing to RTU Points5.2.3.2

.. 48System Points 5.3
... 49Modbus/TCP Server Unit Identif ier5.3.1
... 49Modbus Slave Address5.3.2
.. 50Diagnostics 5.4

... 516 Modbus/TCP Operation

... 527 Modbus RTU in TCP Operation

... 538 Modbus Protocol Technical Information

.. 53Modbus Serial Communication Format 8.1

.. 54CRC16 Calculation Method 8.2

.. 55Open Modbus/TCP Communication Format 8.3

.. 56Modbus RTU in TCP Communication Format 8.4

SCADAPack E Target 5 Modbus Communication Interfaces4

I SCADAPack E Target 5 Modbus Communication
Interfaces

©2013 Control Microsystems Inc.
All rights reserved.
Printed in Canada.

Version: 8.05.4

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is
not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to
perform the appropriate and complete risk analysis, evaluation and testing of the products
with respect to the relevant specific application or use thereof. Neither Schneider Electric nor
any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information
contained herein. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Schneider
Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented
system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant
instructions must be followed. Failure to use Schneider Electric software or approved
software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

1 Technical Support

Support related to any part of this documentation can be directed to one of the following
support centers.

SCADAPack E Target 5 Modbus Communication Interfaces 5

Technical Support: The Americas

Available Monday to Friday 8:00am – 6:30pm Eastern Time

Toll free within North America 1-888-226-6876

Direct Worldwide +1-613-591-1943

Email TechnicalSupport@controlmicrosystems.com

Technical Support: Europe

Available Monday to Friday 8:30am – 5:30pm Central European Time

Direct Worldwide +31 (71) 597-1655

Email euro-support@controlmicrosystems.com

Technical Support: Asia

Available Monday to Friday 8:00am – 6:30pm Eastern Time (North America)

Direct Worldwide +1-613-591-1943

Email TechnicalSupport@controlmicrosystems.com

Technical Support: Australia

Inside Australia 1300 369 233

Email au.help@schneider-electric.com

2 Safety Information

Read these instructions carefully, and look at the equipment to become familiar with the
device before trying to install, operate, or maintain it. The following special messages may
appear throughout this documentation or on the equipment to warn of potential hazards or to
call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label
indicates that an electrical hazard exists, which will result in personal
injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential
personal injury hazards. Obey all safety messages that follow this
symbol to avoid possible injury or death.

mailto:TechnicalSupport@controlmicrosystems.com
mailto:euro-support@controlmicrosystems.com
mailto:TechnicalSupport@controlmicrosystems.com
mailto:au.help@schneider-electric.com

SCADAPack E Target 5 Modbus Communication Interfaces6

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will
result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can
result in death or serious injury.

CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can
result in minor or moderate injury.

CAUTION

CAUTION used without the safety alert symbol, indicates a potentially hazardous
situation which, if not avoided, can result in equipment damage..

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising
out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and
operation of electrical equipment and the installation, and has received safety training to
recognize and avoid the hazards involved.

BEFORE YOU BEGIN

SCADAPack Workbench and SCADAPack E Smart RTU are not suitable for controlling
safety-critical systems. SCADAPack Workbench and SCADAPack E Smart RTU are not
tested for, nor have approval for use in, the control of safety-critical systems. Safety-critical
systems should be controlled by an approved safety-critical platform that is independent of
SCADAPack Workbench and SCADAPack E Smart RTU.

WARNING

UNINTENDED EQUIPMENT OPERATION

Do not control safety-critical systems with SCADAPack Workbench and
SCADAPack E Smart RTU.

SCADAPack E Target 5 Modbus Communication Interfaces 7

Failure to follow these instructions can result in death, serious injury or
equipment damage.

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of
effective point-of-operation guarding on a machine can result in serious injury to the operator
of that machine.

CAUTION

EQUIPMENT OPERATION HAZARD

Verify that all installation and set up procedures have been completed.

Before operational tests are performed, remove all blocks or other temporary
holding means used for shipment from all component devices.

Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in injury or equipment
damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment
documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and grounds, except those
grounds installed according to local regulations (according to the National Electrical Code in
the U.S.A, for instance). If high-potential voltage testing is necessary, follow
recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

Remove tools, meters, and debris from equipment.

Close the equipment enclosure door.

Remove ground from incoming power lines.

Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English
version prevails):

Regardless of the care exercised in the design and manufacture of equipment or in the
selection and ratings of components, there are hazards that can be encountered if such
equipment is improperly operated.

It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or
unsafe operation. Always use the manufacturer’s instructions as a guide for functional

SCADAPack E Target 5 Modbus Communication Interfaces8

adjustments. Personnel who have access to these adjustments should be familiar with the
equipment manufacturer’s instructions and the machinery used with the electrical
equipment.

Only those operational adjustments actually required by the operator should be accessible
to the operator. Access to other controls should be restricted to prevent unauthorized
changes in operating characteristics.

3 Overview

This document describes communication with other Modbus devices using Modbus RTU,
Modbus/TCP, or Modbus RTU in TCP protocols.

Master/Slave and Client/Server Terminology

A Modbus Master or Modbus Client sends commands to another device. The Modbus Slave
or Modbus Server device responds to the commands.

The Modbus RTU and Modbus RTU protocols call the device sending the commands a
Modbus Master. The device responding to the commands is called a Modbus Slave.

The Modbus/TCP protocol calls the device sending the commands a Modbus Client. The
device responding to the commands is called a Modbus Server.

The SCADAPack E Smart RTU can operate as a Modbus Master or Modbus Client; and as a
Modbus Slave or Modbus/TCP Server. It supports simultaneous communication using
supported protocols. It does not support Modbus ASCII protocol.

Assumed Knowledge

Familiarity with Modbus RTU, Modbus/TCP, or Modbus RTU in TCP protocols.

Target Audience

Systems Engineers

Commissioning Engineers

Maintenance Technicians

References

SCADAPack E Target 5 I/O Device Reference Manual

SCADAPack E Configurator User Manual

SCADAPack E Technical Reference Manuals.

SCADAPack E Target 5 Modbus Communication Interfaces 9

Workbench Help

Protocol documentation for various Modbus PLC devices

Open Modbus/TCP Specification Revision 1.0, March 1999

4 Modbus Master/Client Operation

A Modbus Master or Modbus Client sends commands to another device.

The Modbus RTU and Modbus RTU protocols call the device sending the commands a
Modbus Master.

The Modbus/TCP protocol calls the device sending the commands a Modbus Client.

These sections describe operation as a Master/Client.

I/O device Types & Modbus Addressing Terminology

Serial Modbus I/O device Interfaces

Modbus TCP I/O device Interface

Modbus RTU in TCP I/O device Interface

Communications Interface

Replacing a Modbus/TCP or Modbus RTU in TCP Device that uses BOOTP

4.1 I/O Device Types and Modbus Addressing Terminology

The SCADAPack E Smart RTU controller provides three groups of Modbus I/O Devices. See
the SCADAPack E Target 5 I/O Device Manual for details.

A maximum of 200 PLC Device I/O Devices (total of every PLC type) may be configured in
total per Resource.

Modbus RTU Protocol

I/O Devices beginning with MBUS... communicate using the Modbus RTU protocol.

Modbus RTU operates on serial ports. One or more serial ports must be configured as a PLC
Device. The RTU communication port data rate and parity format are used. RS232, RS422
and RS485 communications are supported.

9

10

13

18

22

32

SCADAPack E Target 5 Modbus Communication Interfaces10

Modbus/TCP Protocol

I/O Devices beginning with MTCP... communicate using the Modbus/TCP protocol.

Modbus/TCP operates on TCP/IP networks. The Modbus/IP (Client) service must be
enabled. The protocol connects TCP sockets between the Modbus client and server. TCP/IP
over Ethernet and PPP communications are supported.

Modbus RTU in TCP Protocol

I/O Devices beginning with MRTUTCP... communicate using the Modbus RTU in TCP
protocol.

Modbus RTU in TCP operates on TCP/IP networks. The Modbus/IP (Client) service must be
enabled. The protocol connects TCP sockets between the Modbus client and server. TCP/IP
over Ethernet and PPP communications are supported.

Modbus Addressing Terminology

The SCADAPack E Smart RTU uses 5-digit Modbus address numbering, where the leading
digit generally represents the register data type. In addition, the numbering within each
register data type adheres to the classical Modicon PLC numbering convention, commencing
at register 1. For example: A register read by the SCADAPack E Smart RTU specifying
Modbus register 40010 is represented by Modbus protocol function code 3, protocol register
address 0x0009.

Some Modbus systems use 6-digit addressing, as opposed to the 5-digit Modbus register
addressing described above. 6-digit addressing is designed to enable access to additional
registers in each register range. A 6 digit address is made up of a single digit numeric prefix
and a 5-digit Modbus register number. For example: Registers 300001 – 309999 are
equivalent to 5-digit Modbus register addresses 30001 – 39999. However, input registers
310000 – 365536 in a remote PLC device are not addressable with the SCADAPack E
Smart RTU 5-digit register address.

In the 5-digit addressing regime, HOLDING REGISTERS are extended beyond register
49999. RTU Modbus register addresses 50000 – 65535 can be addressed in a remote PLC
device, and are the equivalent to 6-digit holding register numbers 450000 – 465535. So the
SCADAPack E RTU can access remote PLC device holding registers equivalent to the (6-
digit) range 400001-409999 & 450000-465535.

4.2 Serial Modbus I/O Devices

I/O Devices beginning with MBUS... communicate using the Modbus RTU protocol using
serial ports configured as PLC Device.

Each I/O device can access different PLC register data within the same PLC device, or in
different PLCs. For example, multi-drop RS485 permits many uniquely addressed Modbus

SCADAPack E Target 5 Modbus Communication Interfaces 11

PLCs to be connected to a serial port. In addition, multiple I/O Devices may be configured to
use different RTU serial ports configured as a PLC Device.

Each I/O device uses a separate Modbus request to read or write its data. Improved
communication efficiency can be achieved by grouping Modbus registers together and using
fewer I/O Devices with a larger number of channels, rather than more I/O Devices with a
smaller number of channels.

A maximum of 200 PLC Device I/O Devices (total of every PLC type) may be configured in
total per IEC 61131-3 Resource.

Communication status is available on the first 60 I/O Devices for IEC 61131-3 Resource 1,
and 14 I/O Devices for IEC 61131-3 Resource 2. See Section System Points for more
information.

Modbus Input devices

Modbus Output devices

4.2.1 Modbus Input Devices

Modbus input device variables are updated at the start of the IEC 61131-3 Resource scan.
The value presented to the IEC 61131-3 variables is the value returned by the PLC to the
previous read request. This read may have occurred during previous resource scans.

The data update rate parameter on the I/O device sets the scan rate of the PLC data. The
PLC communication status is updated if there is a status code returned from the PLC, or no
response from the PLC after a data request by the RTU (see Section Modbus Status Values

). The status is cleared upon successful communications. To catch transient status
codes, you can use IEC 61131-3 logic to store non-zero values.

Input Device Parameters

first_register: specifies the Modbus data registers to access when reading PLC data into
IEC 61131-3 variables. The PLC data type accessed is specific to the PLC Device I/O device
type and device address.

register_format: specifies the Modbus PLC data register type. Various PLC data types are
supported. See Modbus PLC Data Types .

data_update_rate: specifies the rate in milliseconds (ms) at which the data for the input
device is extracted from the PLC. Individual I/O Devices may have different data update rates
allowing prioritization of data extracted from a PLC. The SCADAPack E Smart RTU may not
be able to read requested PLC data within the time set by the data update rate depending on
the quantity of data to be read, rate of write requests and PLC communication speed. In this
case the update rates will be slower.

plc_device_addr: specifies the PLC device address. Modbus PLC devices on the same
communication channel need to have unique device addresses. Logic may access data from
multiple PLCs via the same communication interface. In this case a separate I/O device will

48

11

12

30

20

SCADAPack E Target 5 Modbus Communication Interfaces12

be required for each PLC device. Values for this parameter are usually in the range 1-254.

timeout: specifies the communications timeout on an individual I/O device. The timeout
applies to communications associated with that device. Where this value is “0”, the PLC
device driver will use the default timeout (1200ms). Units for this field are the millisecond
(ms).

port: specifies which serial port will be used to communicate with the PLC. The port must be
configured as a PLC Device. If only one PLC Device port is configured, this field is ignored.

Controlling PLC Device Communications

Communication using these I/O Devices can be controlled by the function block mbusctrl
using the En_RD parameter. See SCADAPack E Target 5 Function Block Reference for
details.

4.2.2 Modbus Output Devices

Modbus output device variables are updated at the end of the IEC 61131-3 Resource scan.

Output variables are written to the PLC:

When the value of a variable attached to the output device changes. They are sent to the
PLC after this occurs, but the scan continues executing while the PLC communications are
in progress. In order words, communications to the PLC is occurs asynchronously to the
program scan.

When the IEC 61131-3 Resource starts.

When the PLC does not respond to a command, it is re-sent until the PLC responds.

When the data update rate configured for the output device is reached.

Output Device Parameters

first_register: specifies the Modbus data registers to access when reading PLC data into
IEC 61131-3 variables. The PLC data type accessed is specific to the PLC Device I/O device
type and device address.

register_format: specifies the Modbus PLC data register type. Various PLC data types are
supported. See Modbus PLC Data Types .

data_update_rate: specifies the rate in milliseconds (ms) at which the data for the output
device is written to the PLC. Between data_update_rate periods, data is written to the PLC
only when the output variable values change. Individual I/O Devices may have different data
update rates allowing prioritization of data sent to a PLC Device. Setting this parameter to 0
disables the time-based writing of output data. Data is written at IEC 61131-3 Resource
startup and thereafter only when individual output variables change. See PLC Output device
Default Background Update Rate .

20

31

SCADAPack E Target 5 Modbus Communication Interfaces 13

plc_device_addr: specifies the PLC device address. Modbus PLC devices on the same
communication channel need to have unique device addresses. Logic may access data from
multiple PLCs via the same communication interface. In this case a separate I/O device will
be required for each PLC device. Values for this parameter are usually in the range 1-254.

timeout: specifies the communications timeout on an individual I/O device. The timeout
applies to communications associated with that device. Where this value is “0”, the PLC
device driver will use the default timeout (1200ms). Units for this field are the millisecond
(ms).

port: specifies which serial port will be used to communicate with the PLC. The port must be
configured as a PLC Device. If only one PLC Device port is configured, this field is ignored.

Controlling PLC Device Communications

Communication using these I/O Devices can be controlled by the function block mbusctrl
using the En_WR parameter. See SCADAPack E Target 5 Function Block Reference for
details.

Remote Device Requirements

The device to which Modbus Output commands are sent needs to provide Modbus register
addresses for each of the channels on the output device, regardless of whether variables are
attached to the channels, or not. For example, for a 16-channel device, 16 contiguous
Modbus registers need to be present in the remote device.

4.3 Modbus TCP I/O Device Interface

I/O Devices beginning with MTCP... communicate using the Modbus/TCP protocol.

Each I/O device uses a separate Modbus/TCP request to read or write its data. Improved
communication efficiency can be achieved by grouping Modbus registers together and using
fewer I/O Devices with a larger number of channels, rather than more I/O Devices with a
smaller number of channels.

A maximum of 200 PLC Device I/O Devices (total of every PLC type) may be configured in
total per IEC 61131-3 Resource.

A corresponding pair of system points relates to each PLC Slave I/O device as described in
Section System Points .

Communication using these I/O Devices can be controlled by an function block: mtcpctrl.

Modbus/TCP Input devices

Modbus/TCP Output devices

Open Modbus/TCP Conformance Classes

48

14

15

16

SCADAPack E Target 5 Modbus Communication Interfaces14

4.3.1 Modbus/TCP Input Devices

Modbus/TCP input device variables are updated at the start of the IEC 61131-3 Resource
scan. The value presented to the IEC 61131-3 variables is the value returned by the PLC to
the previous read request. This read may have occurred during previous resource scans.

The data update rate parameter on the I/O device sets the scan rate of the PLC data. The
PLC communication status is updated if there is a status code returned from the PLC, or no
response from the PLC after a data request by the RTU (see Section Modbus Status Values

). The status is cleared upon successful communications. To catch transient status
codes, you can use IEC 61131-3 logic to store non-zero values.

Input Device Parameters

first_register: specifies the Modbus data registers to access when reading PLC data into
IEC 61131-3 variables. The PLC data type accessed is specific to the PLC Device I/O device
type and device address.

register_format: specifies the Modbus PLC data register type. Various PLC data types are
supported. See Modbus PLC Data Types .

data_update_rate: specifies the rate in milliseconds (ms) at which the data for the input
device is extracted from the PLC. Individual I/O Devices may have different data update rates
allowing prioritization of data extracted from a PLC. The SCADAPack E Smart RTU may not
be able to read requested PLC data within the time set by the data update rate depending on
the quantity of data to be read, rate of write requests and PLC communication speed. In this
case the update rates will be slower.

plc_device_addr: specifies the PLC device address. Modbus PLC devices on the same
communication channel need to have unique device addresses. Logic may access data from
multiple PLCs via the same communication interface. In this case a separate I/O device will
be required for each PLC device. Values for this parameter are usually in the range 1-254.

timeout: specifies the communications timeout on an individual I/O device. The timeout
applies to communications associated with that device. Where this value is “0”, the PLC
device driver will use the default timeout (1200ms). Units for this field are the millisecond
(ms).

TCP_port: This parameter specifies the port number of the Modbus/TCP server. Default is
502.

IP_address: This parameter specifies the IP network address that the SCADAPack E Smart
RTU connects to for communication with the PLC for this I/O device. Enter the IP address of
the Modbus/TCP PLC, or Modbus bridge if applicable.

Controlling PLC Device Communications

Communication using these I/O Devices can be controlled by the function block mtcpctrl
using the En_RD parameter. See SCADAPack E Target 5 Function Block Reference for

30

20

SCADAPack E Target 5 Modbus Communication Interfaces 15

details.

4.3.2 Modbus/TCP Output Devices

Modbus/TCP output device variables are updated at the end of the IEC 61131-3 Resource
scan.

Output variables are written to the PLC:

When the value of a variable attached to the output device changes.

When the IEC 61131-3 Resource starts.

When the PLC does not respond to a command, it is re-sent until the PLC responds.

When the data update rate configured for the output device is reached.

Output Device Parameters

first_register: specifies the Modbus data registers to access when reading PLC data into
IEC 61131-3 variables. The PLC data type accessed is specific to the PLC Device I/O device
type and device address.

register_format: specifies the Modbus PLC data register type. Various PLC data types are
supported. See Modbus PLC Data Types .

data_update_rate: specifies the rate in milliseconds (ms) at which the data for the output
device is written to the PLC. Between data_update_rate periods, data is written to the PLC
only when the output variable values change. Individual I/O Devices may have different data
update rates allowing prioritization of data sent to a PLC Device. Setting this parameter to 0
disables the time-based writing of output data. Data is written at IEC 61131-3 Resource
startup and thereafter only when individual output variables change. See PLC Output device
Default Background Update Rate .

plc_device_addr: specifies the PLC device address. Modbus PLC devices accessed at the
same IP address (e.g. via a Modbus bridge) need to have a unique unit address in order to be
identified. Logic may access data from different units on the same IP address or at different
IP addresses. In these cases a separate I/O device will be required for each device.

timeout: specifies the communications timeout on an individual I/O device. The timeout
applies to communications associated with that device. Where this value is “0”, the PLC
device driver will use the default timeout (1200ms). Units for this field are the millisecond
(ms).

TCP_port: This parameter specifies the port number of the Modbus/TCP server. Default is
502.

IP_address: This parameter specifies the IP network address that the SCADAPack E Smart
RTU connects to for communication with the PLC for this I/O device. Enter the IP address of
the Modbus/TCP PLC, or Modbus bridge if applicable.

20

31

SCADAPack E Target 5 Modbus Communication Interfaces16

Controlling PLC Device Communications

Communication using these I/O Devices can be controlled by the function block mbusctrl
using the En_WR parameter. See SCADAPack E Target 5 Function Block Reference for
details.

Remote Device Requirements

The device to which Modbus Output commands are sent needs to provide Modbus register
addresses for each of the channels on the output device, regardless of whether variables are
attached to the channels, or not. For example, for a 16-channel device, 16 contiguous
Modbus registers need to be present in the remote device.

4.3.3 Open Modbus/TCP Conformance Classes

The Open Modbus/TCP standard defines conformance classes for Master & Slave (Client &
Server) devices.

When using the PLC I/O Devices in the following way, the SCADAPack E RTU conforms to
the requirements for Open Modbus/TCP Conformance CLASS 0 devices:

MTCP_BOOL_
READ

– device address: 40001-65535

plc data type: IEC DISCRETE

uses Modbus function code 3 – read multiple registers

MTCP_BOOL_
WRITE

– device address: 40001-65535

plc data type: IEC DISCRETE

uses Modbus function code 16 – write multiple registers

MTCP_INT_RE
AD

MTCP_DINT_R
EAD

MTCP_UINT_R
EAD

MTCP_REAL_
READ

– device address: 40001-65535

plc data type: IEC INT, IEC UINT, IEC DINT, IEC REAL

uses Modbus function code 3 – read multiple registers

MTCP_INT_W
RITE

MTCP_DINT_
WRITE

– device address: 40001-65535

plc data type: IEC INT, IEC UINT, IEC DINT, IEC REAL

uses Modbus function code 16 – write multiple registers

SCADAPack E Target 5 Modbus Communication Interfaces 17

MTCP_UINT_
WRITE

MTCP_REAL_
WRITE

Use of the PLC I/O Devices in the following ways requires the PLC slave device (Open
Modbus/TCP server) to be at least an Open Modbus/TCP Conformance CLASS 1 device:

MTCP_BOOL_
READ

– device address: 1-9999

plc data type: IEC DISCRETE

uses Modbus function code 1 – read coils

MTCP_BOOL_
WRITE

– device address: 10001-19999

plc data type: IEC DISCRETE

uses Modbus function code 2 – read input discrete (status)

MTCP_INT_RE
AD

MTCP_DINT_R
EAD

MTCP_UINT_R
EAD

MTCP_REAL_
READ

– device address: 30001-39999

plc data type: IEC INT, IEC UINT, IEC DINT, IEC REAL

uses Modbus function code 4 – read input registers

MTCP_INT_W
RITE

MTCP_DINT_
WRITE

MTCP_UINT_
WRITE

MTCP_REAL_
WRITE

– device address: 1-9999

plc data type: IEC INT, IEC UINT, IEC DINT, IEC REAL

uses Modbus function code 5 – write coil

PLC data type options additional to those listed here are available. The above types are a
selection of those defined in the Open Modbus/TCP Conformance Classes. Refer to Modbus
PLC Data Types for a complete listing of supported data types.20

SCADAPack E Target 5 Modbus Communication Interfaces18

4.4 Modbus RTU in TCP I/O Device Interface

I/O Devices beginning with MRTUTCP... communicate using the Modbus RTU in TCP
protocol.

Each I/O device uses a separate Modbus RTU in TCP request to read or write its data.
Improved communication efficiency can be achieved by grouping Modbus registers together
and using fewer I/O Devices with a larger number of channels, rather than more I/O Devices
with a smaller number of channels.

A maximum of 200 PLC Device I/O Devices (total of every PLC type) may be configured in
total per IEC 61131-3 Resource.

A corresponding pair of system points relates to each PLC Slave I/O device as described in
Section System Points .

Communication using these I/O Devices can be controlled by the function block: mtcpctrl.

4.4.1 Modbus RTU in TCP Input Devices

Modbus RTU in TCP input device variables are updated at the start of the IEC 61131-3
Resource scan. The value presented to the IEC 61131-3 variables is the value returned by
the PLC to the previous read request. This read may have occurred during previous
resource scans.

The data update rate parameter on the I/O device sets the scan rate of the PLC data. The
PLC communication status is updated if there is a status code returned from the PLC, or no
response from the PLC after a data request by the RTU (see Section Modbus Status Values

). The status is cleared upon successful communications. To catch transient status
codes, you can use IEC 61131-3 logic to store non-zero values.

Input Device Parameters

first_register: specifies the Modbus data registers to access when reading PLC data into
IEC 61131-3 variables. The PLC data type accessed is specific to the PLC Device I/O device
type and device address.

register_format: specifies the Modbus PLC data register type. Various PLC data types are
supported. See Modbus PLC Data Types .

data_update_rate: specifies the rate in milliseconds (ms) at which the data for the input
device is extracted from the PLC. Individual I/O Devices may have different data update rates
allowing prioritization of data extracted from a PLC. The SCADAPack E Smart RTU may not
be able to read requested PLC data within the time set by the data update rate depending on
the quantity of data to be read, rate of write requests and PLC communication speed. In this
case the update rates will be slower.

plc_device_addr: specifies the PLC device address. Modbus PLC devices on the same
communication channel need to have unique device addresses. Logic may access data from
multiple PLCs via the same communication interface. In this case a separate I/O device will
be required for each PLC device. Values for this parameter are usually in the range 1-254.

48

30

20

SCADAPack E Target 5 Modbus Communication Interfaces 19

timeout: specifies the communications timeout on an individual I/O device. The timeout
applies to communications associated with that device. Where this value is “0”, the PLC
device driver will use the default timeout (1200ms). Units for this field are the millisecond
(ms).

TCP_port: This parameter specifies the port number of the Modbus RTU in TCP server.

IP_address: This parameter specifies the IP network address that the SCADAPack E Smart
RTU connects to for communication with the PLC for this I/O device. Enter the IP address of
the Modbus/TCP PLC, or Modbus bridge if applicable.

Controlling PLC Device Communications

Communication using these I/O Devices can be controlled by the function block mtcpctrl
using the En_RD parameter. See SCADAPack E Target 5 Function Block Reference for
details.

4.4.2 Modbus RTU in TCP Output Devices

Modbus RTU in TCP output device variables are updated at the end of the IEC 61131-3
Resource scan.

Output variables are written to the PLC:

When the value of a variable attached to the output device changes.

When the IEC 61131-3 Resource starts.

When the PLC does not respond to a command, it is re-sent until the PLC responds.

When the data update rate configured for the output device is reached.

Output Device Parameters

first_register: specifies the Modbus data registers to access when reading PLC data into
IEC 61131-3 variables. The PLC data type accessed is specific to the PLC Device I/O device
type and device address.

register_format: specifies the Modbus PLC data register type. Various PLC data types are
supported. See Modbus PLC Data Types .

data_update_rate: specifies the rate in milliseconds (ms) at which the data for the output
device is written to the PLC. Between data_update_rate periods, data is written to the PLC
only when the output variable values change. Individual I/O Devices may have different data
update rates allowing prioritization of data sent to a PLC Device. Setting this parameter to 0
disables the time-based writing of output data. Data is written at IEC 61131-3 Resource
startup and thereafter only when individual output variables change. See PLC Output device
Default Background Update Rate .

plc_device_addr: specifies the PLC device address. Modbus PLC devices accessed at the

20

31

SCADAPack E Target 5 Modbus Communication Interfaces20

same IP address (e.g. via a Modbus bridge) need to have a unique unit address in order to be
identified. Logic may access data from different units on the same IP address or at different
IP addresses. In these cases a separate I/O device will be required for each device.

timeout: specifies the communications timeout on an individual I/O device. The timeout
applies to communications associated with that device. Where this value is “0”, the PLC
device driver will use the default timeout (1200ms). Units for this field are the millisecond
(ms).

TCP_port: This parameter specifies the port number of the Modbus RTU in TCP server.

IP_address: This parameter specifies the IP network address that the SCADAPack E Smart
RTU connects to for communication with the PLC for this I/O device. Enter the IP address of
the Modbus/TCP PLC, or Modbus bridge if applicable.

Controlling PLC Device Communications

Communication using these I/O Devices can be controlled by the function block mbusctrl
using the En_WR parameter. See SCADAPack E Target 5 Function Block Reference for
details.

Remote Device Requirements

The device to which Modbus Output commands are sent needs to provide Modbus register
addresses for each of the channels on the output device, regardless of whether variables are
attached to the channels, or not. For example, for a 16-channel device, 16 contiguous
Modbus registers need to be present in the remote device.

4.5 Modbus PLC Data Types

The following data types are supported.

IEC DISCRETE

Binary (discrete) data packed into an 8-bit value where the least significant bit of the value
represents the low discrete bit number. For a protocol message that contains 16 discrete
coils at addresses 11-26 for example, coil 11 is represented by the least significant bit of the
first byte in the protocol, and coil 26 is represented by the most significant bit of the second
byte in the protocol. This data type can be used to access PLC inputs, coils or holding
register bits.

984 DISCRETE

Binary (discrete) data usually packed into a 16-bit value where the least significant bits of the
16-bit value represent the high discrete bit numbers. For a protocol message that contains
16 discrete coils at addresses 30-45 for instance, coil 30 is represented by the most

SCADAPack E Target 5 Modbus Communication Interfaces 21

significant bit of the 16-bit value, and coil 45 is represented by the least significant bit of the
16-bit value. This data type can be used to access PLC inputs, coils or holding register bits.

IEC UINT

Unsigned 16-bit integer value. Valid values are 0 ~ 65535. This is the default data type used
by the RTU for Modbus PLC register data. This data type can be used to access PLC input
registers or holding registers.

IEC INT

Signed 16-bit integer value. Valid values are –32768 ~ 32767. This data type can be used to
access PLC input registers or holding registers.

IEC DINT

Signed 32-bit double integer value, organized as two words in the protocol in Little Endian
format (least significant word first). Valid values are –2 3̂1 ~ 2 3̂1-1. I/O Devices utilizing this
data type will automatically select between IEC DINT data format for integer analog variables,
and IEC REAL data format for real analog variables on the I/O device. This data type
generally accesses a consecutive pair of 16-bit holding registers.

IEC REAL

IEEE-754 format 32-bit floating point real value, organized as two words in the protocol in
Little Endian register format (least significant word in first register). This data type generally
accesses a consecutive pair of 16-bit holding registers.

SWAP REAL

IEEC-754 format 32-bit floating point real value, organized as two words in the protocol in
swapped (Big Endian) register format (most significant word in first register). This data type
generally accesses a consecutive pair of 16-bit holding registers.

IEC UDINT

Unsigned 32-bit double integer value, organized as two words in the protocol in Little Endian
format (least significant word first). Valid values are 0 ~ 2 3̂2-1. This data type is not
supported in I/O Devices. This data type is supported by Modbus Slave and Modbus/TCP
Server interfaces. See Modbus Slave / Server Analog Addresses . This data type generally
accesses a consecutive pair of 16-bit holding registers.

39

SCADAPack E Target 5 Modbus Communication Interfaces22

4.6 Communication Interfaces

These communication interfaces are provided by the SCADAPack E Smart RTU.

Serial Modbus Communications

Modbus/TCP Client Communications

Modbus/TCP Server Communications

BOOTP Server Configuration

4.6.1 Serial Modbus Communications

When using serial Modbus master communications, the SCADAPack E Smart RTU
communicates with the PLC or peripheral devices using serial ports configured as PLC
Device.

Each port needs to be configured to communicate at the same rate and in the same format
as the peripheral devices. For example 9600 bps, 8 data bits, 1 stop bit, and no parity.

The SCADAPack E Smart RTU will not assert any hardware handshaking lines when
communicating using RS232, RS422 or 4-wire RS485 with its Modbus PLC device driver. If
the Modbus PLC requires hardware handshaking (e.g. CTS asserted), it needs to be provided
in the cabling to the PLC (as shown above).

When 2-wire RS485 communications is used, the SCADAPack E Smart RTU provides
RS485 transmitter/receiver control internally.

A sample cable configuration for connecting a PLC to a SCADAPack ES RTU RS232 port is
shown below.

22

23

24

25

SCADAPack E Target 5 Modbus Communication Interfaces 23

4.6.2 Modbus/TCP Client Communications

When using Modbus/TCP communications, the SCADAPack E Smart RTU communicates
with the PLC or peripheral devices using a TCP/IP interface. This may be an Ethernet
interface configured as “TCP/IP Enable” or "TCP/IP + RemIO" (depending on the RTU
model), or a serial port configured as ‘PPP-TCP/IP’.

In addition, the “IP Services” configuration needs to have “Modbus/TCP Client” service
enabled for operation of Modbus/TCP protocol. This configuration can be made on the
SCADAPack E Configurator “TCP/IP” page. For more information see the SCADAPack E
TCP/IP Technical Reference manual.

Enabling Modbus/IP Client service requires the SCADAPack E Smart RTU to be restarted in
order to start the PLC Cache task.

The SCADAPack E Smart RTU may connect to any Open Modbus/TCP protocol device
including PLCs, I/O modules and Modbus Bridges.

Each Modbus/TCP I/O device specifies an “IP_address” parameter that needs to be
configured with the address of the Modbus/TCP device that the RTU is communicating with
(for that I/O device). It is assumed that the SCADAPack E Smart RTU and the Modbus/TCP
device(s) have fixed IP address which are unique on the IP network to which they are
connected.

The SCADAPack E Smart RTU Modbus/TCP client attaches to TCP port number 502 in each
target Modbus/TCP server device. This can be changed by advanced users if required.

Some Modbus/TCP devices expect to obtain their IP addresses from another device on their
network rather than being configured with their address, locally. For this purpose, the

SCADAPack E Target 5 Modbus Communication Interfaces24

SCADAPack E Smart RTU supports BOOTP Server capability. BOOTP Server needs to
also be enabled in the “IP Services” configuration to support this capability. See Section
BOOTP Server Configuration for more information.

For further information on connecting to the SCADAPack E Smart RTU to TCP/IP networks,
refer to the SCADAPack E TCP/IP Reference manual.

4.6.3 Modbus/TCP Server Communications

When using Modbus/TCP Server communications, the SCADAPack E Smart RTU
communicates with Modbus/TCP clients using one of its TCP/IP interfaces. This may be the
Ethernet interface configured as “TCP/IP Enabled” or "TCP/IP + RemIO" (depending on the
RTU model), or a serial port configured as ‘PPP-TCP/IP’.

In addition, the “IP Services” configuration needs to have “Modbus/TCP Server” service
enabled for operation of Modbus/TCP protocol. This configuration can be made on
SCADAPack E Configurator’s “TCP/IP” or "Slave / Modbus" page. For more information see
the SCADAPack E TCP/IP Technical Reference manual.

Enabling Modbus/TCP Server service requires the SCADAPack E Smart RTU to be restarted
in order to start the Modbus/TCP Server listening task.

The Modbus/TCP Server ‘listens’ on TCP port number “502” for any Modbus/TCP client
devices attempting to connect.

The Modbus/TCP server supports a maximum of concurrent clients depending on the
controller type.

For the SCADAPack ER and SCADAPack ES controllers the Open Modbus/TCP server
supports a maximum of 20 concurrent client connections.

For the SCADAPack 300E controllers the Open Modbus/TCP server supports a maximum
of 5 concurrent client connections.

An open socket will be closed if there is no activity detected for 120 seconds (see Section
TCP / Operating System Issues for more information regarding the inactivity disconnect
timeout).

For further information on connecting the SCADAPack E Smart RTU to TCP/IP networks,
refer to the SCADAPack E TCP/IP Reference manual.

4.6.4 Modbus RTU in TCP Client Communications

When using Modbus RTU in TCP communications, the SCADAPack E Smart RTU
communicates with the PLC or peripheral devices using a TCP/IP interface. This may be the
Ethernet interface configured as “TCP/IP Enable” or "TCP/IP + RemIO" (depending on the
RTU model).

In addition, the “IP Services” configuration needs to have “Modbus/IP (Client)” service enabled
for operation of Modbus RTU in TCP protocol. This configuration can be made on the

25

51

SCADAPack E Target 5 Modbus Communication Interfaces 25

SCADAPack E Configurator “TCP/IP” page. For more information see the SCADAPack E
TCP/IP Technical Reference manual.

Enabling Modbus/IP (Client) service requires the SCADAPack E Smart RTU to be restarted in
order to start the PLC Cache task.

The SCADAPack E Smart RTU may connect to any Modbus RTU in TCP protocol device
including PLCs, I/O modules and Modbus Bridges.

Each Modbus RTU in TCP I/O device specifies an “IP_address” parameter that needs to be
configured with the address of the Modbus RTU in TCP device that the RTU is
communicating with (for that I/O device). It is assumed that the SCADAPack E Smart RTU
and the Modbus RTU in TCP device(s) have fixed IP address which are unique on the IP
network to which they are connected.

The Modbus RTU in TCP client attaches to TCP port number “49152" in each target Modbus
RTU in TCP server device. (Can be changed by advanced users if required).

Some Modbus RTU in TCP devices expect to obtain their IP addresses from another device
on their network rather than being configured with their address, locally. For this purpose, the
SCADAPack E RTU supports BOOTP Server capability. BOOTP Server needs to also be
enabled in the RTU’s “IP Services” configuration to support this capability. See Section
BOOTP Server Configuration for more information.

For further information on connecting to the the SCADAPack E Smart RTU to TCP/IP
networks, refer to the SCADAPack E TCP/IP Reference manual.

4.6.5 BOOTP Server Configuration

BOOTP is a TCP/IP application protocol that utilizes UDP socket communications.

The SCADAPack E Smart RTU may be configured to start a BOOTP server by selecting it
from the SCADAPack E Configurator “TCP/IP Services” configuration.

The BOOTP server (SCADAPack E Smart RTU) listens for requests from a BOOTP client
(typically an IP device on a LAN).

Typically, the BOOTP client uses its Ethernet MAC address to identify itself, and via
broadcast IP messages, requests a BOOTP server to configure its parameters.

The SCADAPack E Smart RTU is capable of configuring a BOOTP client’s “your-ip” address.
 However, the SCADAPack E Smart RTU will not configure any of the other BOOTP standard
or extended fields. (see RFC 951 and later).

SCADAPack E Configurator provides a configuration interface for the BOOTP server. The
user enters an Ethernet-MAC / IP address pair for each node requiring BOOTP configuration
of its IP address.

The SCADAPack E Smart RTU will not answer a BOOTP request from a client node unless
there is a corresponding entry in the Ethernet-MAC / IP address table.

25

SCADAPack E Target 5 Modbus Communication Interfaces26

Devices refer to their Ethernet-MAC address in different ways, such as “IEEE Global
Address”. In each case, the Ethernet-MAC address will contain a 12 digit hexadecimal
number.

Ethernet-MAC address entry in the SCADAPack E Smart RTU, for BOOTP, may be in any of
the following formats (12 hexadecimal digits, case insensitive):

00:1A:2B:3C:4D:5E

00-1A-2B-3C-4D-5E

001A2B3C4D5E

IP address entry needs to be in the following format (leading zeroes not required):
192.168.1.97

Configuring BOOTP with SCADAPack E Configurator

Configuring BOOTP from the Command Line

4.6.5.1 Configuring BOOTP with SCADAPack E Configurator

The following figure shows the configuration of the BOOTP table. This is found on the
“Advance TCP/IP” page of SCADAPack E Configurator.

Enter the BOOTP client details in the table, in the same format as described above.

The “Hardware Address” field is the Ethernet-MAC address in one of the three formats
described.

The configured “IP Address” is dowloaded to the peripheral device that has the matching

26

27

SCADAPack E Target 5 Modbus Communication Interfaces 27

hardware address.

Changes to the BOOTP Table in SCADAPack E Configurator should be followed by “Write
RTU Configuration”.

BOOTP Table changes become active in the SCADAPack E RTU immediately (i.e. no need
to restart the RTU).

4.6.5.2 Configuring BOOTP from the Command Line

In addition to configuring the BOOTP table via SCADAPack E Configurator, the SCADAPack
E Smart RTU command line provides a management command to manipulate the BOOTP
server configuration table.

C:\> bootp /?
BOOTP protocol loads IP address to remote Ethernet devices
BOOTP command manipulates configuration table
(changes ARE permanent)
Usage:
BOOTP PRINT
BOOTP ADD remote-MAC remote-IP
BOOTP DELETE [remote-MAC]

[remote-IP]

For example, the following command prints the BOOTP configuration table:

C:\> bootp print

BOOTP entries:

Ethernet MAC Addr IP Addr Loaded Load Count

00-01-02-03-04-05 192.168.0.242 1

01-02-03-04-05-06 158.234.186.168 2

This indicates the configured BOOTP server entries (what IP Address will be loaded to which
Ethernet MAC address), and indicates how many times the BOOTP server has sent BOOTP
response commands to the appropriate BOOTP client.

The following command ADDS or REPLACES an entry in the BOOTP configuration table:

C:\> bootp add 01-02-03-04-AA-BB 158.234.186.168

An existing entry with a matching Ethernet MAC address OR matching IP address will be
replaced by the new entry. This is typically used if an existing Modbus/TCP or Modbus RTU

SCADAPack E Target 5 Modbus Communication Interfaces28

in TCP device is replaced by another device with a different Ethernet MAC Addr, for example.

The following command REMOVES an entry in the BOOTP configuration table:

C:\> bootp del 01-02-03-04-AA-BB

Either the Ethernet-MAC address or IP address may be used to specify which BOOTP entry
to remove, but the string used in the “del” command needs to exactly match the string in the
BOOTP entry in order for the entry to be removed successfully.

Changes made to the BOOTP configuration table via SCADAPack E Configurator or
command line are retained in NON-VOLATILE MEMORY not requiring the SCADAPack E
Smart RTU to be restarted in order to take effect. However, remember to make a record of
the configuration after they are modified.

When BOOTP diagnostics are enabled (via TCPDIAG command), the SCADAPack E Smart
RTU diagnostic stream indicates when a remote device is configured via BOOTP by the
RTU. E.g.

BOOTP>>loaded IP: 158.234.186.168 to MAC: 01-02-03-04-AA-BB

4.7 System Points

System points are provided to indicate the status of some I/O Devices that are used for Slave
I/O communications with peripheral devices such as PLCs.

Where multiple Slave I/O Devices are present in an IEC 61131-3 Resource , consecutive,
sequential system point pairs are used for the next Slave I/O device, regardless of what PLC
port the devices are connected to. Each Resource is allocated a separate set of system
points for Slave I/O Devices.

The status for the Slave I/O Devices reported (according to the above rules) has two system
points associated with it. The communications status, and the data cache time.

The communication status indicates the status of the communication with the PLC for the
data on the I/O device. For more information see Section Modbus Status Values .

The age of the cached data for a slave Input devices is stored in the cache time system point
for that device. For more information see Section Data Cache Time .

A separate RTU system point is provided to set the background update rate of PLC Output
devices. For more information see Section PLC Output device Default Background Update
Rate .

The RTU Slave I/O device status system points for a user application loaded for Resource 1
are as follows:

System Point Description
Point
Number

Point Type

30

49

31

SCADAPack E Target 5 Modbus Communication Interfaces 29

Resource 1 Slave I/O device 1 communication
status

53300
16-bit unsigned
integer (read-only)

Resource 1 Slave I/O device 1 data cache time 53301
16-bit unsigned
integer (read-only)

Resource 1 Slave I/O device 2 communication
status

53302
16-bit unsigned
integer (read-only)

Resource 1 Slave I/O device 2 data cache time 53303
16-bit unsigned
integer (read-only)

…

Resource 1 Slave I/O device 60 communication
status

53418
16-bit unsigned
integer (read-only)

Resource 1 Slave I/O device 60 data cache time 53419
16-bit unsigned
integer (read-only)

The RTU Slave I/O device status system points for a user application loaded for Resource 2
are as follows:

System Point Description
Point
Number

Point Type

Resource 2 Slave I/O device 1 communication
status

53422
16-bit unsigned
integer (read-only)

Resource 2 Slave I/O device 1 data cache time 53423
16-bit unsigned
integer (read-only)

Resource 2 Slave I/O device 2 communication
status

53424
16-bit unsigned
integer (read-only)

Resource 2 Slave I/O device 2 data cache time 53425
16-bit unsigned
integer (read-only)

…

Resource 2 Slave I/O device 14 communication
status

53448
16-bit unsigned
integer (read-only)

Resource 2 Slave I/O device 14 data cache time 53449
16-bit unsigned
integer (read-only)

SCADAPack E Target 5 Modbus Communication Interfaces30

4.7.1 Modbus Status Values

The Modbus I/O device communication status system point values are updated by the
Modbus PLC driver as follows. See System Points for the system points updated with this
status.

Modbus
Exception
Code

Status Comment RTU

Status

- Success Normal 0

0x01 Illegal
Function

Slave device does not support requested
Modbus function code

103

0x02 Illegal Data
Address

Reading or Writing an invalid register address
was attempted. This may be returned by
RTU’s device driver, or by Modbus device

103

0x03 Data Value
out of Range

Reported by the Modbus device if register value
was outside supported value range and could
not be written

108

0x04 Illegal
Response
Length

A request was rejected by the Modbus device
as it would have resulted in a response exceed
the maximum allowed size (256 bytes)

102

0x0B Gateway
Target No
Response

Gateway reported Modbus device did not
respond

104

- Timeout The Modbus device did not respond 104

- Socket
connect
Unsuccessful

Could not connect the TCP socket to a server
at the configured IP address

104

- Invalid
Message

The message from the Modbus device was not
understood by the RTU

106

other Generic
Status Code

A generic response was received 101

48

SCADAPack E Target 5 Modbus Communication Interfaces 31

4.7.2 Data Cache Time

The age of the data in the RTU cache for Modbus PLC and Modbus/TCP Input device data is
presented in data ‘Cache Time’ system points. The cache time is initialized to zero when the
IEC 61131-3 Resource starts and increases until a successful read occurs, after which time
the value is reset to zero.

The system point corresponding to a PLC Device input device may be used by the Resource
to determine the suitability of using the input data from the input device. (I.e. if the value is too
high, then the data is stale and the Resource may choose not to use it).

Each Input device has its own data cache time system point. The data cache time system
points for Output devices will indicate zero.

4.7.3 PLC Output Device Default Background Update Rate

The following system point controls the default background update rate of PLC Device Output
devices on the RTU. Where an I/O device’s “data update rate” parameter is zero, or if the
older style PLC I/O Devices (that don’t have a data update rate) are in use, the SCADAPack
E Smart RTU writes PLC output device variables to the appropriate PLC at this rate. This
occurs regardless of whether changes are occurring on the output variable, or not. The
purpose of the “data update” is so RTU output variable values are updated in the PLC.

For example, if the PLC is initialized or replaced, then the output values are re-written by the
RTU. Similarly, a Modbus/TCP device may clear its outputs upon no communications unless
a periodic write is made to its outputs.

The default value of the background update rate is 60 seconds. It may be adjusted by the
user or specified in an RTU configuration, and is a non-volatile RTU system point that is
retained by the RTU.

Changes in the background update rate take effect when an IEC 61131-3 Resource is
loaded and started, or re-started.

System Point Description Point Number Point Type

PLC Output device Background Update Rate
(seconds)

53420 32-bit unsigned
integer

The background updates are disabled by setting the system point value to 0 (zero). This may
be used to optimize the PLC Device communications bandwidth where background writes
are not appropriate or necessary.

SCADAPack E Target 5 Modbus Communication Interfaces32

4.8 Replacing a Modbus/TCP or Modbus RTU in TCP Device that uses BOOTP

Modbus/TCP devices using BOOTP may require SCADAPack E Smart RTU re-configuration
if they are replaced. This will be necessary if the Modbus/TCP device has a different
Ethernet hardware address.

See Sections:

Change a Modbus/TCP Device Using SCADAPack E Configurator

Change a Modbus/TCP Device Using COMMAND LINE .

If the device does not use BOOTP to configure its own IP address, it needs to be
reconfigured with the correct IP address by following the procedure detailed in the device’s
user manual.

WARNING

Having two or more devices with the same IP address can cause
unpredictable operation of your network. Before removing any adapter
from service, or adding any adapter, check that there is no possibility of a
duplicate address appearing on your network. Failure to observe this
precaution can result in injury or equipment damage.

REMEMBER: After changing the configuration of an RTU, make a permanent record
of the RTU’s new configuration

4.8.1 Change a Modbus/TCP or Modbus RTU in TCP Device Using SCADAPack E Configurator

Establish communication with the RTU using SCADAPack E Configurator either locally, or
remotely.

To replace an existing device:

Find the BOOTP table in SCADAPack E Configurator's Advanced TCP/IP page.

Identify the relevant BOOTP entry in the SCADAPack E Configurator’s BOOTP
Configuration Table.

Change the entry’s Ethernet-MAC address to that of the new device. Use one of the
following formats:

000054A12104 or 00-00-54-A1-21-04 or 00:00:54:A1:21:04

32

33

SCADAPack E Target 5 Modbus Communication Interfaces 33

Write the configuration to the RTU. The BOOTP entry is now active.

Connect the new device to the network & power it up.

To add a new device:

Choose the first free BOOTP entry in the SCADAPack E Configurator’s BOOTP
Configuration Table.

Add the new device’s Ethernet-MAC address to the table. Use one of the following formats:

000054A12104 or 00-00-54-A1-21-04 or 00:00:54:A1:21:04

Add the desired IP address for the entry.

Write the configuration to the RTU. The BOOTP entry is now active.

Connect the new device to the network & power it up.

4.8.2 Change a Modbus/TCP or Modbus RTU in TCP Device Using COMMAND LINE

Change a Modbus/TCP Device Using COMMAND LINE

The SCADAPack E Smart RTU command line is available:

Using Telnet, when enabled on the RTU

Using a terminal program plugged into an RTU (e.g. the DIAG port)

Using a terminal program plugged into an RTU’s port, and by pressing
<Enter><Enter><Enter>

The command line can be use to replace an existing Modbus/TCP device BOOTP entry, or
add a new Modbus/TCP device BOOTP entry. This is only applicable for devices that use
BOOTP as a means of configuring their IP addresses.

If you are replacing an existing device you will need to know the IP address being used by the
old device. You will also need to know the new device’s Ethernet-MAC address (12-digit
hexadecimal number).

If you are adding a new BOOTP entry, you will need to know the desired IP address for the
new device as well as its Ethernet-MAC address.

You can check configured BOOTP entries by using the command:

bootp print

From the SCADAPack E RTU command line, enter the following command to add or change
a BOOTP entry:

SCADAPack E Target 5 Modbus Communication Interfaces34

bootp add Ethernet-MAC-addr IP-address

For example: bootp add 01020304AABB 158.234.186.168

You can re-check the changed BOOTP entries by using:

bootp print

Check BOOTP Diagnostics

You can check BOOTP operation with a new device by performing the following procedures:

Enable BOOTP diagnostics & enter diagnostic mode with the commands:

tcpdiag enable BOOTP <enter>
diag

Connect the new device to the network & power it up. When the new device sends a BOOTP request for an IP address, the SCADAPack E Smart RTU should display something similar to:

BOOTP>>loaded IP: 158.234.186.168 to MAC: 01020304AABB

Communication may also be verified by issuing a PING command. For example:

ping 158.234.186.168

5 Modbus Slave/Server Operation

The following sections detail SCADAPack E Smart RTU communication where the RTU is a
Modbus Slave and Modbus/TCP Server.

Setting up Modbus Slave / Server

Modbus Slave and Modbus /TCP Server Implementation Conditions

System Points

Diagnostics

5.1 Setting up Modbus Slave / Server

The following sections document the conditions specific to the native Modbus Slave / Server
driver.

Conditions common to the Modbus/TCP Server and the Modbus serial Slave such as
conformance classes, mapping of Modbus addresses to the RTU point address space, and
the circumstances under which specific response exception codes are generated, are
detailed in Section Modbus/TCP Server and Modbus Slave Implementation Conditions .

The SCADAPack E Smart RTU supports a native Modbus Slave driver which responds to

34

35

48

50

35

SCADAPack E Target 5 Modbus Communication Interfaces 35

Modbus requests by accessing RTU point data directly.

The Modbus Slave driver is only operational if at least one serial port function is set to
Modbus Slave or if Modbus/TCP (Server) is enabled as part of the RTU TCP/IP Services
selection. The RTU needs to be restarted to activate a port mode or TCP Services change.

Modbus Slave communications can be independently enabled on multiple serial ports, though
the single Slave Address is applied to each instance of the Modbus Slave driver (see Section
Modbus Slave Address for details regarding Modbus Slave configuration system points).

Multiple Modbus/TCP server communications sessions are supported (up to 5), though the
single Modbus Unit Identifier is applied to each Modbus/TCP connection. Also see section
Modbus/TCP Server Unit Identifier .

5.2 Modbus Slave and Modbus /TCP Server Implementation Conditions

This following sections detail implementation conditions that are common to both the
Modbus/TCP Server and the native Modbus Slave:

Conformance Classes and Function Codes 7 & 8

Modbus Address Mapping to RTU Point Address Space

Exception Codes

Open Modbus/TCP Server

The SCADAPack E Smart RTU Modbus/TCP server is only operational if the “IP Services”
configuration has the “Modbus/TCP Server” service enabled.

This configuration can be made from the SCADAPack E Configurator “TCP/IP” page or
"Slave / Modbus" page.

5.2.1 Conformance Classes & Supported Function Codes

Conformance Classes

The following Modbus conformance classes (and function codes) are supported by the
Modbus/TCP Server and the native Modbus Slave.

Class 0 (function codes 3 and 16)

Class 1 (function codes 1, 2, 4, 5, 6, and 7)

Class 2 (function code 15 only).

49

49

35

36

47

SCADAPack E Target 5 Modbus Communication Interfaces36

Function Code 7

This function code allows a client to request the Modbus server/slave to return an exception
status that is stored in a pre-determined range of 8 coils. RTU binary system (scratchpad)
points 50000 to 50007 are allocated for this purpose.

RTU binary point 50000 will map to the least significant bit of the response byte.

RTU binary point 50007 will map to the most significant bit of the response byte.

Function Code 8

This function code allows a client to request the Modbus slave to return a response to a
"Return Query Data" request. The following functionality is provided:

Function Code 8 is supported on Modbus Slave serial connections only

A Function Code 8 request on a Modbus/TCP connection returns Exception response with
exception code 1 (Illegal function)

Sub function 00 00 is the only sub function supported for a Modbus function code 8 request

A response will only be generated to a FC8 Sub-function 00 00 request when the data field
size is 2

The Response to a FC8 Sub-function 00 00 (data field size 2) request is an echo of the
request

A request for Sub functions other than 00 00 returns an Exception response with exception
code 3 (Illegal Data Value)

There will be no response to a FC8 Sub-function 00 00 request if the data field size is not 2

5.2.2 Modbus Address Mapping to RTU Point Address Space

This section identifies how the binary and analog Modbus addresses are mapped to the RTU
point address space.

The “Modbus address” referenced in this section refers to the Modicon PLC equivalent
register address i.e. "protocol address" + 1. The "protocol address" is also referred to as the
"reference address".

Modbus Slave / Server register addresses are mapped directly to the SCADAPack E Smart
RTU database point number in a one to one relationship

Modbus input register types map to RTU Physical Input point types and RTU Derived point
types

Modbus output register types map to RTU Physical Output point types and RTU Derived

SCADAPack E Target 5 Modbus Communication Interfaces 37

point types

The points used by the DATA CONCENTRATOR are converted to Physical point types
automatically, according to their protocol data type (e.g. DNP3 Static Object
Type). Modbus register types map to Data Concentrator points using the same rules as
RTU Physical point types. Take care to use the appropriate Modbus request to access the
appropriate physical point type.

For more information see Binary Addresses and Analog Addresses sections

The data format presented to Modbus is dependent on the DNP3 Static Object Type
attribute of the RTU point configuration

For analog multiple read/writes, this mapping is relevant for the start address only. The
mapping of subsequent registers to RTU points is dependent on the RTU configuration point
DNP static object types (e.g 16-bit, 32-bit and floating point object types).

As a result of these mapping rules, it is possible to reference a different 32-bit analog point in
the RTU with the same Modbus register, based on different reference numbers and word
counts of separate Modbus requests.

Section Modbus Register / 32-bit Analog Point Mapping Configuration discusses the
required configurations for consistent and deterministic mapping of Modbus registers to 32-bit
analog points.

See Sections Reading Analog Registers and Writing Analog Registers for more
information on function codes that reference analog points.

This standard mapping is illustrated in the following example using 5 digit addressing

For clients using 5 digit addressing, the addressable range of both the client register address
and the RTU point numbers are from 1 to 9999, and this corresponds to a protocol address
(reference number) range from 0 – 9998.

For clients using 6 digit addressing, the addressable range of both the client register address
and the RTU point numbers are from 1 to 65535, and this corresponds to a protocol address
(reference number) range from 0 – 65534.

The following sections describe how each function code is affected by point mapping.

38 39

43

40 42

SCADAPack E Target 5 Modbus Communication Interfaces38

See Section Exception Codes for information on how multiple read / write requests are
handled when some of the requested addresses are invalid.

Binary Addresses

Analog Addresses

5.2.2.1 Binary Addresses

RTU database binary point data is provided to the Modbus serial Slave and Modbus/TCP
server in IEC_DISCRETE format. For more information refer to Modbus PLC Data Types .

The following information is applicable to the next sections for Function Code 1 and 2 reads
and Function Code 5 and 15 writes:

when "x" is referenced it means Modbus Address = x

NONE of the requested points exist if for every modbus address x referenced in the
request, no RTU configuration point x exists.

Function Code 1: Read Discrete Coils

FC 1 will invoke point reads for every Modbus address x referenced in the request, described
as follows …

if NONE of the requested points exist then return ILLEGAL FUNCTION (01)

if x exists as a Physical Out binary point or a Derived binary point then the current value of
point x will be read

The Data Concentrator converts Derived binary points that present as DNP3 binary output
objects into Physical Out binary points

if at least one of the points in the Modbus request does exist, and point x does NOT exist,
then a zero value will be returned in the response for Modbus register x

Function Code 2: Read Discrete Inputs

FC 2 will invoke point reads for every modbus address x referenced in the request, described
as follows …

if NONE of the requested points exist then this returns ILLEGAL FUNCTION (01)

if x exists as a Physical In binary point or a Derived binary point then the current value of
point x will be read

The Data Concentrator converts Derived binary points that present as DNP3 binary input
objects into Physical In binary points

if at least one of the points in the Modbus request does exist, and point x does NOT exist,

47

38

39

20

SCADAPack E Target 5 Modbus Communication Interfaces 39

then a zero value will be returned in the response for Modbus register x

Function Code 5: Preset Discrete Coil

FC 5 will invoke point writes, described as follows …

if x exists as a Physical Out binary point or a Derived binary point then point x will be
controlled

The Data Concentrator converts Derived binary points that present as DNP3 binary output
objects into Physical Out binary points

if point x does NOT exist then this returns ILLEGAL FUNCTION (01)

Function Code 15: Write Multiple Coils

FC 15 will invoke point writes for every modbus address x referenced in the request,
described as follows …

if x exists as a Physical Out binary point or a Derived binary point then point x will be
controlled

The Data Concentrator converts Derived binary points that present as DNP3 binary output
objects into Physical Out binary points

if x does NOT exist as a binary output point then stop processing request and return
ILLEGAL FUNCTION (01)

5.2.2.2 Analog Addresses

This section details the specific mapping for function codes that reference analog
addresses.

As noted earlier, it is possible for mixed 16-bit and 32-bit Modbus data value's register
mapping to be inconsistent where Modbus registers map to RTU points configured in 32-bit
value format. Section Modbus Register / 32-bit Analog Point Mapping Configuration
demonstrates the configurations required for consistent mapping of Modbus registers to 32-
bit analog points.

The data types returned in Modbus responses are influenced by the configuration of the DNP
Static Object Type in each database analog point configuration.

Analog Point Configuration:

DNP3 Static Object Type

Modbus Response:

Number of Registers Modbus data type

g30 v1 32-bit Analog In

g30 v3 32-bit Analog In No
Flags

2

IEC DINT

(signed 32-bit
integer)

43

SCADAPack E Target 5 Modbus Communication Interfaces40

g20 v1 32-bit Counter

g20 v5 32-bit Counter No
Flags

2

IEC UDINT

(unsigned 32-bit
integer)

g30 v5 Short Floating Point

(Engineering value) 2

IEC REAL

(32-bit floating point)

g30 v2 16-bit Analog In

g30 v4 16-bit Analog In No
Flags

1

IEC INT

(signed 16-bit
integer)

g20 v2 16-bit Counter

g20 v6 16-bit Counter No
Flags

1

IEC UINT

(unsigned 16-bit
integer)

For more information refer to Modbus PLC Data Types .

The following information is applicable to the next sections for Function Code 3 and 4 reads
and Function Code 6 and 16 writes:

when "x" is referenced it means modbus address = x

corresponding analog database point = y (depends on DNP static object type of point. If
points referenced are “16 bit analogs” then y = x)

"NONE of the requested points exist" means that for every modbus address x referenced in
the request, no RTU configuration point y exists.

See the following sections for descriptions of individual Modbus function codes and how
Modbus register requests map to point types:

Reading Analog Registers

Writing Analog Registers

5.2.2.2.1 Reading Analog Registers

Function Code 3: Read Holding Registers

FC 3 will invoke point reads for every modbus address x referenced in the request, described
as follows …

if NONE of the requested points exist then return ILLEGAL FUNCTION (01)

if y exists as a Physical Out analog point or a Derived analog point then the current value of

20

40

42

SCADAPack E Target 5 Modbus Communication Interfaces 41

point y will be read

The Data Concentrator converts Derived analogs points that present as DNP3 analog
output objects into Physical Out analog points

if at least one of the points in the Modbus request does exist, and point y does NOT exist,
then a zero value will be returned in the response for Modbus register x

Function Code 4: Read Input Registers

FC 4 will invoke point reads for every modbus address x referenced in the request, described
as follows …

if NONE of the requested points exist then return ILLEGAL FUNCTION (01)

if y exists as a Physical In analog point or a Derived analog point then the current value of
point y will be read

The Data Concentrator converts Derived analogs points that present as DNP3 analog input
objects into Physical In analog points

if at least one of the points in the Modbus request does exist, and point y does NOT exist,
then a zero value will be returned in the response for Modbus register x

Reading Multiple Registers

The register address to RTU database point mapping described in this section relates
primarily to the start register address specified in the Modbus request.

The word count included in the request, in conjunction with the DNP static object type of the
mapped points, will affect the number of RTU database points included in the response.

The following example illustrates this mapping for function code 3:

Consider the Modbus request as follows (starting from the function code)

 … 03 03 e8 00 03

which translates to …”read 3 holding registers at protocol reference number 1000” (41001 in
Modicon style register addressing).

The protocol reference number 1000 would therefore map to RTU point number 1001.

Consider the following RTU points configurations:

RTU Analog Point 1001 : DNP static object type 16 bit analog

SCADAPack E Target 5 Modbus Communication Interfaces42

RTU Analog Point 1002 : DNP static object type 32 bit analog

RTU Analog Point 1003 : DNP static object type 16 bit analog …

This would map RTU analog points to Modbus client holding register addresses as follows

RTU Analog point 1001 maps to client holding register address 1001

RTU Analog point 1002 maps to client holding register addresses 1002 and 1003.

RTU Analog point 1003 would not be included in the response as it exceeds the register
length requested.

The same functionality applies for function code 3 and 4.

See Modbus Register / 32-bit Analog Point Mapping Configuration for more information on
handling more complex combinations of 16 and 32 bit registers.

5.2.2.2.2 Writing Analog Registers

Function Code 6: Write Single Register

FC 6 and FC 16 will invoke point writes for every modbus address x referenced in the
request, described as follows …

if y exists in the SCADAPack E RTU as a Physical Out analog point or a Derived analog
point then point y will be controlled

if point y does NOT exist as a Physical Out analog point or a Derived analog point then
processing is stopped ILLEGAL FUNCTION (01) is returned

Function Code 16: Write Multiple Registers

if y exists in the SCADAPack E RTU as a Physical Out analog point or a Derived analog
point then point y will be controlled

if point y does NOT exist as a Physical Out analog point or a Derived analog point then
processing is stopped ILLEGAL FUNCTION (01) is returned

Writing Multiple Registers

The register address point mapping described above for function code 16, relates primarily
to the start register address specified in the modbus request. The word count included in the
request, in conjunction with the DNP static object type of the mapped points, will affect the

43

SCADAPack E Target 5 Modbus Communication Interfaces 43

number of RTU points controlled by the request. The following example illustrates this
mapping.

 Consider the modbus request as follows (starting from the function code)

 … 10 03 e8 00 03 06 00 08 00 04 00 00

which translates to …”write 3 holding registers at protocol reference number 1000” (41001 in
Modicon style register addressing).

The protocol reference number 1000 would therefore map to RTU point number 1001.
Consider the following RTU points configurations:

RTU Analog point 1001 : DNP static object type 16 bit analog

RTU Analog point 1002 : DNP static object type 32 bit analog

RTU Analog point 1003 : DNP static object type 16 bit analog …

The Modbus request would result in the following controls :

RTU Analog point 1001 is assigned the integer value 8

RTU Analog point 1002 is assigned the integer value 4.

RTU Analog point 1003 is not controlled as the point is outside the register range of the
Modbus write request.

See Modbus Register / 32-bit Analog Point Mapping Configuration for more information on
handling more complex combinations of 16 and 32 bit registers.

5.2.2.3 Modbus Register / 32-bit Analog Point Mapping Configuration

As noted earlier, it is possible to reference a different 32-bit analog point in the RTU with the
same modbus register, based on different reference numbers and word counts of separate
modbus requests.

For a consistent and deterministic mapping for 32-bit values point values to Modbus registers
for the Modbus/TCP Server and the native Modbus Slave, use the Modbus Register / 32-bit
Analog Point Map table on the SCADAPack E Configurator Slave | Modbus page.

 TIP: Add RTU points to this table when you want to access them as 32-bit Modbus
registers. (e.g. Long Integers, Short Floating Point values, etc.)

It is strongly recommended that points are allocated consecutively so that the register
mapping is grouped together in a single entry in the table. The Point Quantity field indicates
how many consecutive points will be read or written as 32-bit Modbus registers.

Points accessed as 16-bit Modbus registers should NOT be added to this table.

43

SCADAPack E Target 5 Modbus Communication Interfaces44

The following image displays the SCADAPack E Configurator interface, which show an
example for RTU analog points 1001-1004 as writeable 32-bit Modbus holding registers.

This configuration would result in the consistent register / point mapping as shown in the
following diagram, irrespective of the protocol reference number (register address) and the
word count specified in a Modbus request.

SCADAPack E Target 5 Modbus Communication Interfaces 45

Example: a Modbus request to write to the holding register pair 41005/41006 would result in
controlling RTU analog point 1003. Without the additional mapping configuration shown
above, this control would have otherwise mapped to analog point 1005.

An attempt to control single holding register 41006 would result in an exception response, as
this register maps to the high word of analog point 1003. In general, multiple register requests
whose start reference number is the high word of a designated 32-bit analog register pair will
be considered invalid and return an exception response.

This configuration can also be directly manipulated in a configuration file using the MR table
format. Consult the SCADAPack E Configuration File Format document for more information
regarding the MR table format.

5.2.2.4 Supported Data Types

The SCADAPack E Smart RTU Modbus/TCP Server and the native Modbus Slave shall
support the IEC61131 data types as described in the Open Modbus/TCP specification.

The following table lists the IEC61131 data type interpreted for function codes 3, 4 and 16.

The interpreted data type is dependant on the DNP static object type of the RTU configuration
point (configurable on a per point basis).

Refer to the SCADAPack E RTU Configuration Technical Reference manual for more
information.

SCADAPack E Target 5 Modbus Communication Interfaces46

Mapped Point's DNP Static Object Type IEC61131 Data Type

(returned in Modbus response)

DNP object Group 1 Var 1 (binary input no
status)

DNP object Group 1 Var 2 (binary input with
status)

DNP object Group 10 Var 2 (binary output
status)

DISCRETE

Binary (discrete) data packed into 8-bit values
where least significant bit represents low
discrete bit numbers.

DNP object Group 30 Var 1 (32-bit analog
with status)

DNP object Group 30 Var 3 (32-bit analog no
status)

DNP object Group 40 Var 1 (32-bit analog
output status)

DINT (signed 32-bit integer value)

Bits 15 - 0 of 1st register = bits 15 - 0 of DINT

Bits 15 – 0 of 2nd register = bits 31 - 16 of
DINT

DNP object Group 30 Var 2 (16-bit analog
with status)

DNP object Group 30 Var 4 (16-bit analog no
status)

DNP object Group 40 Var 2 (16-bit analog
output status)

INT (signed 16-bit integer value)

Bits 15 – 0 of register = bits 15 - 0 of INT

DNP object Group 30 Var 5 (short float point
with status)

DNP object Group 40 Var 3 (short float point
output status)

REAL (32-bit Intel single precision real)

Bits 15 – 0 of first register = bits 15 – 0 of
REAL (bits 15 - 0 of significance)

Bits 15 – 0 of second register = bits 31 - 16 of
REAL (exponent + bits 23-16 of significance)

DNP object Group 20 Var 1 (32-bit counter
with status)

DNP object Group 20 Var 5 (32-bit counter
no status)

UDINT (unsigned 32-bit integer value)

Bits 15 – 0 of first register = bits 15 - 0 of
UDINT

Bits 15 – 0 of second register = bits 31-16 of
UDINT

DNP object Group 20 Var 2 (16-bit counter
with status)

DNP object Group 20 Var 6 (16-bit counter

UINT (unsigned 16-bit integer value)

Bits 15 - 0 of register = bits 15 - 0 of INT

SCADAPack E Target 5 Modbus Communication Interfaces 47

no status)

5.2.3 Exception Codes

This section lists some specific circumstances under which response exception codes may
be generated. Refer to the Open Modbus/TCP Specification for the full list of exception codes
and their descriptions:

Read & Write Multiple Coils/Register Exceptions

Writes to RTU Point under Control & Invalid Addresses

Useful Exception Codes are listed in the following table:

Exception
Code

Code Description Comment

0x01 Illegal Function slave doesn’t support function in request

0x02 Illegal Data Address slave doesn’t have register specified in request

0x03 Illegal Data Value value in request out of range for register in
slave

0x04 Illegal Response Length request would cause response to exceed 256
bytes

0x0A No Response From
Gateway Target Device

returned by Gateway when no response from
remote device

5.2.3.1 Read & Write Multiple Coils / Register Exceptions

Read Multiple Coils/Register Exceptions

Requests to read multiple coils/registers will generate a successful response, if at least one
of the requested addresses is valid, and the invalid data addresses shall be returned with a
zero value. If requested addresses are invalid, the response exception code shall be set to
ILLEGAL FUNCTION (01).

47

48

SCADAPack E Target 5 Modbus Communication Interfaces48

Write Multiple Coils/Register Exceptions

Requests to write to multiple coils/registers may generate a successful response only if the
requested addresses are valid and controls succeed. If at least one of the requested
addresses is invalid or a control does not succeed then the remaining controls in the request
are ignored and an exception response is returned with exception code ILLEGAL FUNCTION
(01).

5.2.3.2 Exceptions Writing to RTU Points

Writes to RTU Points under Control

Any requests to write to coils / registers that may be under the exclusive control of the RTU
sequencer (ISaGRAF), will generate the response exception code ILLEGAL FUNCTION (01)
even if previous controls in the same multiple write request have been successful. Read
requests to points under control will be successful.

Invalid Addresses

Any requests that reference RTU point numbers outside of the range 0-65535 will generate
the response exception code ILLEGAL DATA ADDRESS (02). See Section Modbus Address
Mapping to RTU Point Address Space for details on how Modbus addresses map to RTU
point numbers.

Bad Point Quality

Any requests that write to an RTU point that has bad quality (e.g. Point Operation
Unsuccessful quality) will update the point in the RTU database, but generate an exception
response with exception code ILLEGAL FUNCTION (01).

5.3 System Points

RTU system points are provided for configuration of Modbus communication parameters.

Modbus/TCP Server Unit Identifier

Modbus Slave Address

36

49

49

SCADAPack E Target 5 Modbus Communication Interfaces 49

5.3.1 Modbus/TCP Server Unit Identifier

Data Cache Time

The age of the data in the RTU cache for Modbus PLC and Modbus/TCP Input device data is
presented in data ‘Cache Time’ system points. The cache time is initialized to zero when the
IEC 61131-3 Resource starts and increases until a successful read occurs, after which time
the value is reset to zero.

The system point corresponding to a PLC Device input device may be used by the IEC
61131-3 Resource to determine the suitability of using the input data from the input device. (I.
e. if the value is too high, then the data is stale and the IEC 61131-3 Resource may choose
not to use it).

Each Input device has its own data cache time system point. The data cache time system
points for Output devices indicate zero.

Modbus/TCP Server Unit Identifier

The following SCADAPack E Smart RTU system point determines the configuration value of
the Modbus/TCP Server Unit Identifier. Responses are sent to Open Modbus/TCP requests
that include a unit identifier that matches this configuration value. If the unit identifier included
in the request differs from the configuration value, the request is therefore determined to
invalid for this RTU, and the socket is closed.

The default value of the Unit Identifier is 1. It may be adjusted by the user or specified in an
RTU configuration, and is a non-volatile RTU system point that is retained by the RTU.
Changes in the Unit Identifier take effect when the RTU is restarted.

System Point Description Point Number Point Type

Open Modbus/TCP Server Unit Identifier 54038 32-bit unsigned integer

5.3.2 Modbus Slave Address

The following SCADAPack E Smart RTU system point determines the configuration value of
the Modbus Slave Address. This applies only to the native Modbus Slave driver. The slave
address of the Modbus Slave is detailed in the SCADAPack E Target 5 Technical Reference.

System Point Description Point Number Point Type

Modbus Slave Address 52014 16-bit unsigned
integer

The rules that determine how the Modbus Slave driver responds to requests according to the

SCADAPack E Target 5 Modbus Communication Interfaces50

specified slave address are detailed as follows:

Responses are sent to serial Modbus requests that include a slave address that matches
the Modbus Slave Address configured value in the RTU.

If the slave address included in the request is zero, i.e. broadcast address, the Modbus
Slave will respond irrespective of the configuration value of the Modbus Slave Address.

If the specified slave address is non-zero AND differs from the configuration value, no
response is sent for the request.

The default value of the Slave Address is 1. It may be adjusted by the user or specified in an
RTU configuration, and is a non-volatile RTU system point that is retained by the RTU.
Changes in the Slave Address take effect when the RTU is restarted. Valid Slave Address
configuration values are in the range of 1 – 247.

5.4 Diagnostics

The SCADAPack E Smart RTU indicates configuration or communication diagnostics via
Diagnostic Display mode from a Command line session.

Configuration diagnostics are indicated via I/O device messages if PLC I/O Devices are not
opened. These are displayed when in Diagnostic Display mode (use DIAG command at
command prompt).

Communication diagnostics for the Modbus serial and Modbus/TCP drivers are controlled by
the PLCDIAG command at the RTU command prompt. The syntax is as follows:

PLCDIAG DISABLE filter-name [filter-name…]
PLCDIAG ENABLE filter-name [filter-name…]

Where filter name is one, or more of the following combinations:

* all Modbus diagnostic messages

TX transmit packet bytes display for Modbus Master / Client

Indicating transmitted
data by

<--Modbus Master-

Or <--Modbus/TCP Client -

RX receive packet bytes display

Indicating received
data by

– Modbus Master-->

Or – Modbus/TCP Client-->

COMMS_ERROR communication diagnostics

Including timeout and TCP socket connection information

PLC_ERROR diagnostic messages returned by the PLC

SCADAPack E Target 5 Modbus Communication Interfaces 51

ISAGRAF rx/tx packet diagnostics for RTU “ISaGRAF” serial port – not
applicable to PLC Cache operation (see the SCADAPack
WorkbenchTechnical Reference)

Modbus (ISaGRAF) rx/tx packet diagnostics for RTU “Modbus” serial port – not applicable
to PLC Cache operation (see the SCADAPack WorkbenchTechnical
Reference)

MODTCP_SRV rx/tx packet diagnostics for RTU Open Modbus/TCP Server

MOD_SLAVE rx/tx packet diagnostics for RTU native Modbus Slave

Multiple filters may be specified at the same time with the PLCDIAG command. Use the
command line DIAG command to enter the Diagnostic Display mode after the filters are set.
For example:

PLCDIAG DISABLE TX RX
PLCDIAG ENABLE COMMS_ERROR PLC_ERROR
DIAG

6 Modbus/TCP Operation

Modbus / TCP Operating Constraints

The SCADAPack E Modbus/TCP server listens on port 502 for any incoming connections.
On detecting an incoming connection a new task is created to handle the client connection. A
new socket will be opened with an inactivity timeout of 120 seconds (2 minutes). The
inactivity timer is re-triggered each time a Modbus/TCP request is received.

Conventionally, following a successful transaction, it will be the client that closes the
connection, though if the inactivity timer expires with the socket still open, the SERVER in the
SCADAPack E RTU will close the connection. On disconnection, the task created to handle
this transaction will be destroyed.

If the Modbus/TCP Server receives only part of a message, a shorter inactivity timeout of 30
seconds will be applied.

The SCADAPack E Modbus/TCP server supports a maximum of concurrent clients
depending on the controller type.

For the SCADAPack ER and SCADAPack ES controllers the Open Modbus/TCP server
supports a maximum of 20 concurrent client connections.

For the SCADAPack 300E controllers the Open Modbus/TCP server supports a maximum
of 5 concurrent client connections.

For the 386eNet controllers the Open Modbus/TCP server supports a maximum of 5
concurrent client connections.

SCADAPack E Target 5 Modbus Communication Interfaces52

Open Modbus/TCP Socket Communication

Open Modbus/TCP communications are initiated by the client (e.g. SCADAPack E RTU,
SCADA master station, etc.).

The client opens a TCP socket on a Modbus/TCP Server (e.g. PLC, I/O block, Gateway,
Bridge).

The socket is associated with the configured IP address of the server, using assigned TCP
port number “502”.

Open Modbus/TCP protocol packets are exchanged between the client and the server across
the open TCP socket.

Open Modbus/TCP Client Procedures

An unexpected response causes the socket to be disconnected by the client.

Before the client sends a new request, it attempts to open a new socket at the assigned port
number on the server.

Open Modbus/TCP Server Procedures

The Open Modbus/TCP Server may disconnect a connected client (closing the socket) under
the following conditions

error detected - invalid header (i.e. does not conform to Open Modbus/TCP Specification).

error detected - invalid message (e.g. length differs to that specified in header, etc.).

requested Unit Identifier differs from RTU configuration value

inactivity timeout (see Modbus/TCP Operating Constraints for more information
regarding inactivity timeout).

RTU orderly shutdown (e.g. remote RTU restart received) disconnects connected clients
and disconnects from servers.

7 Modbus RTU in TCP Operation

Modbus RTU in TCP Socket Communication

Modbus RTU in TCP communications are initiated by the client (e.g. SCADAPack E RTU).

The client opens a TCP socket on a Modbus RTU in TCP Server (e.g. PLC, I/O block,
Gateway, Bridge).

The socket is associated with the configured IP address of the server, using assigned TCP

51

SCADAPack E Target 5 Modbus Communication Interfaces 53

port number “49152”.

Modbus RTU in TCP protocol packets are exchanged between the client and the server
across the open TCP socket.

Modbus RTU in TCP Client Procedures

An unexpected response causes the socket to be disconnected by the client.

Before the client sends a new request, it attempts to open a new socket at the assigned port
number on the server.

8 Modbus Protocol Technical Information

The following sections detail the framing of the various Modbus data communication
protocols used by the RTU:

Modbus Serial Communication Format

CRC16 Calculation Method

Open Modbus/TCP Communication Format

Modbus application layer protocol is used by both serial Modbus, and Open Modbus/TCP.

Details of the application layer protocol may be found in readily available Modbus or Open
Modbus/TCP documentation.

8.1 Modbus Serial Communication Format

The basic frame structure for Modbus RTU serial protocol is as follows:

Request

Slave ID Function
Code

Function dependent request
data

….

CRC1
6
(msb)

CRC1
6 (lsb)

Maximum request frame size 256 bytes.

Response

Slave ID Function
Code

Function dependent response
data

CRC1
6

CRC1
6 (lsb)

53

54

55

SCADAPack E Target 5 Modbus Communication Interfaces54

…. (msb)

The Slave ID of the request is returned in the Response. The Function Code of the request is
returned in the response if the operation was successful. An exception response has the
most significant bit of the request function code set on (see Exception Response). Maximum
response frame size 256 bytes.

Exception Response

Slave ID Function
Code

Exception
Code

CRC16
(msb)

CRC16
(lsb)

The Slave ID of the request is returned in the Response. The Function Code in an exception
response has the most significant bit of the request function code set on. I.e. Exception
Function Code = Request Function Code + 0x80. Maximum response frame size 256 bytes.

Useful Exception Codes are:

0x01 = Illegal Function (slave doesn’t support function in request)

0x02 = Illegal Data Address (slave doesn’t have register specified in request)

0x03 = Illegal Data Value (value in request out of range for register in slave)

0x04 = Illegal Response Length (request would cause response to exceed 256
bytes)

8.2 CRC16 Calculation Method

CRC checking is only performed for Modbus serial communications. Two CRC check codes
are appended to the end of both Modbus request and reply messages.

The CRC method used is a standard CRC-16 with the following polynomial:

G(x) = x16 + x15 + x2 + x1

Starting Value = FFFFH

Feedback = A001H

The CRC is calculated using the body and header of the message (i.e. whole message
excluding CRC bytes).

SCADAPack E Target 5 Modbus Communication Interfaces 55

8.3 Open Modbus/TCP Communication Format

The basic frame structure for Open Modbus/TCP protocol is as follows. This is the stream
data transported via the TCP socket connection and does not include TCP/IP protocol bytes.

Request

Transaction ID
(msb)

0*

Transaction
ID (lsb)

0*

Protoco
l ID
(msb)

0

Protocol
ID (lsb)

0

Length
(msb)

0

Length
(lsb)

Unit ID Function
Code

Function dependent request data

….

*Transaction ID is echoed by the Modbus/TCP server and may be used by a client. The
SCADAPack E RTU sets these bytes to 0 in requests.

Protocol ID identifies the message protocol following in the data stream. When both these
bytes are 0, it indicates Modbus/TCP protocol.

Length (lsb) indicates the number of bytes following in the rest of the frame. Minimum value
is 3, maximum value is 255.

Unit ID uniquely identifies the Modbus device, and is equivalent to Slave ID of serial Modbus.

CRC checking is not used for Open Modbus/TCP communications. Instead it relies on the
CRC checking included in the TCP/IP stack layers.

Function Code and following data is equivalent to serial Modbus RTU protocol.

Response

Transaction
ID (msb)

Transactio
n ID (lsb)

Protocol
ID (msb)

0

Protocol
ID (lsb)

0

Length
(msb)

0

Length
(lsb)

Unit ID Function
Code

Function dependent response data

….

Transaction ID is echoed by the Modbus/TCP server in the response.

Length (lsb) indicates the number of bytes following in the rest of the frame. Minimum value
is 3, maximum value is 255.

Unit ID is equivalent to Slave ID of serial Modbus.

SCADAPack E Target 5 Modbus Communication Interfaces56

Exception Response

Transaction
ID (msb)

Transaction
ID (lsb)

Protocol ID
(msb)

0

Protocol ID
(lsb)

0

Length
(msb)

0

Length
(lsb)

3

Unit ID Function
Code

Exception
Code

Transaction ID is echoed by the Modbus/TCP server in the response

The Unit ID of the request is returned in the Response.

The Function Code in an exception response has the most significant bit of the request
function code set on, i.e. Exception Function Code = Request Function Code + 0x80

See Exception Codes for a list of useful Exception Codes.

8.4 Modbus RTU in TCP Communication Format

Modbus RTU in TCP message format is exactly same as that of the Modbus RTU protocol.
The main difference is that Modbus RTU in TCP protocol communicates with a device
through the Internet and Modbus RTU protocol through the serial port. The Modbus RTU in
TCP protocol does not include a six-byte header prefix, as with the Modbus\TCP, but does
include the Modbus CRC16 check fields. The Modbus RTU in TCP message format supports
Modbus RTU message format.

The basic frame structure for Modbus RTU serial protocol is as follows:

Request

Slave ID Function
Code

Function dependent request
data

….

CRC1
6
(msb)

CRC1
6 (lsb)

Maximum request frame size 256 bytes.

Response

Slave ID Function
Code

Function dependent response
data

CRC1
6

CRC1
6 (lsb)

47

SCADAPack E Target 5 Modbus Communication Interfaces 57

…. (msb)

The Slave ID of the request is returned in the Response. The Function Code of the request is
returned in the response if the operation was successful. An exception response has the
most significant bit of the request function code set on (see Excpetion Response). Maximum
response frame size 256 bytes.

Exception Response

Slave ID Function
Code

Exception
Code

CRC16
(msb)

CRC16
(lsb)

The Slave ID of the request is returned in the Response. The Function Code in an exception
response has the most significant bit of the request function code set on. I.e. Exception
Function Code = Request Function Code + 0x80. Maximum response frame size 256 bytes.

Useful Exception Codes are:

0x01 = Illegal Function (slave doesn’t support function in request)

0x02 = Illegal Data Address (slave doesn’t have register specified in request)

0x03 = Illegal Data Value (value in request out of range for register in slave)

0x04 = Illegal Response Length (request would cause response to exceed 256
bytes)

Modbus RTU in TCP protocol has some differences from the Modbus/TCP protocol as
follows.

1. Modbus RTU in TCP doesn't include a six-byte header.

2. Modbus RTU in TCP includes a two-byte CRC .

3. The message format supports Modbus RTU message.

	SCADAPack E Target 5 Modbus Communication Interfaces
	Technical Support
	Safety Information
	Overview
	Modbus Master/Client Operation
	I/O Device Types and Modbus Addressing Terminology
	Serial Modbus I/O Devices
	Modbus Input Devices
	Modbus Output Devices

	Modbus TCP I/O Device Interface
	Modbus/TCP Input Devices
	Modbus/TCP Output Devices
	Open Modbus/TCP Conformance Classes

	Modbus RTU in TCP I/O Device Interface
	Modbus RTU in TCP Input Devices
	Modbus RTU in TCP Output Devices

	Modbus PLC Data Types
	Communication Interfaces
	Serial Modbus Communications
	Modbus/TCP Client Communications
	Modbus/TCP Server Communications
	Modbus RTU in TCP Client Communications
	BOOTP Server Configuration
	Configuring BOOTP with SCADAPack E Configurator
	Configuring BOOTP from the Command Line

	System Points
	Modbus Status Values
	Data Cache Time
	PLC Output Device Default Background Update Rate

	Replacing a Modbus/TCP or Modbus RTU in TCP Device that uses BOOTP
	Change a Modbus/TCP or Modbus RTU in TCP Device Using SCADAPack E Configurator
	Change a Modbus/TCP or Modbus RTU in TCP Device Using COMMAND LINE

	Modbus Slave/Server Operation
	Setting up Modbus Slave / Server
	Modbus Slave and Modbus /TCP Server Implementation Conditions
	Conformance Classes & Supported Function Codes
	Modbus Address Mapping to RTU Point Address Space
	Binary Addresses
	Analog Addresses
	Reading Analog Registers
	Writing Analog Registers

	Modbus Register / 32-bit Analog Point Mapping Configuration
	Supported Data Types

	Exception Codes
	Read & Write Multiple Coils / Register Exceptions
	Exceptions Writing to RTU Points

	System Points
	Modbus/TCP Server Unit Identifier
	Modbus Slave Address

	Diagnostics

	Modbus/TCP Operation
	Modbus RTU in TCP Operation
	Modbus Protocol Technical Information
	Modbus Serial Communication Format
	CRC16 Calculation Method
	Open Modbus/TCP Communication Format
	Modbus RTU in TCP Communication Format

