

Software manual Advant Controller 31

 AC31GRAF
Programming Software

1SBC006099R1001 C - 03/07

Information in this document is subject to change without notice and does not represent a
commitment on the part of ABB France. The software, which includes information
contained in any databases, described in this document is furnished under a license agreement
or nondisclosure agreement and may be used or copied only in accordance with the terms of
that agreement. It is against the law to copy the software except as specifically allowed in the
license or nondisclosure agreement. No part of this manual may be reproduced in any form or
by any means, electronic or mechanical, including photocopying and recording, for any
purpose without the express written permission of ABB France.

© 1997-2007 ICS Triplex ISaGRAF Inc. All rights reserved.

MS-DOS is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
Windows NT is a registered trademark of Microsoft Corporation.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

General table of contents

ABB France Page i 1SBC006099R1001 C - 03/07

General table of contents

A USER’S GUIDE

1 Getting started ..A-3
2 Using the project manager...A-4
3 Making a modular project ...A-11
4 Using editors..A-15
5 Editor common tools...A-48
6 Control panel...A-62
7 User’s library ..A-75

B LANGUAGE REFERENCE
1 Project architecture .. B-3
2 Variables .. B-6
3 FBD language .. B-7
4 LD and Quick LD languages ... B-10
5 SFC language .. B-20
6 IL language.. B-32

C FUNCTION BLOCK DESCRIPTION
1 Libraries ..C-2
2 Basic operators/functions...C-8
3 Program control functions ...C-68
4 CS31 functions ..C-84
5 Communication functions ..C-116
6 Regulation functions...C-154
7 Format conversion functions ...C-174
8 Standard double word functions ...C-200
9 High order functions...C-216
10 Memory access functions ...C-291
11 Special Functions ..C-317
12 Historical values..C-323
13 Runtimes..C-325

Lexicon

ABB France Page ii 1SBC006099R1001 C - 03/07

LEXICON

Action List of statements or assignments executed when a step of an

SFC program is active.

Activity of
a step

Attribute of a step which is marked by an SFC token. The actions
attached to the step are executed according to its activity.

Analog Type of variables. These are continuous integer.

Beginning
step

First step of the body of a macro step. A beginning step is not
linked to any preceding transition.

Boolean Type of variables. Such variables con only take true or false
values.

Boolean
action

SFC action: a boolean variable is assigned with the activity signal
of a step.

Cell Elementary area of the graphic matrix for graphic languages
such as SFC, FBD or LD.

Clearing a
transition

Run time operation: all the tokens existing in the preceding steps
are removed. A token is created into each of the following steps.

Coil Graphic component of an LD program, used to represent the
assignment of an output variable.

Comment

Text included in a program, having no impact on the execution of
the program.

Comment
(SFC)

Text attached to an SFC step or transition, having no impact on
the execution of the program.

Common Range of defined words. Such objects can be used in any
program of any project.

Condition
(for a
transition)

Boolean expression attached to an SFC transition. The transition
cannot be cleared when its condition is false.

Contact Graphic component of an LD program. It represents the status of
an input variable.

Lexicon

ABB France Page iii 1SBC006099R1001 C - 03/07

Cross
references

Information calculated by the AC31GRAF about the dictionary of
variables, and where those variables are used in a project.

Current
result (IL)

Result of an instruction in an IL program. The current result can
be modified by an instruction, or used to set a variable.

Cycle
timing

Duration of the central unit execution cycle.

Diary Text file which contains all the notes about the changes made to
one program. Each note is completed with its editing date.

Dictionary Set of internal, input or output variables, and defined words, used
in the programs of one project.

Edge Change of a boolean variable. A rising edge means a change
from false to true. A falling edge means a change from true to
false.

Ending
step

Last step of the body of an SFC macro step. An ending step is
not linked to any following transition.

FBD Functional Block Diagram language.

Function
block

Graphic component of the FBD language, which represents a
standard elementary function from the AC31GRAF libraries.

Functional
Block
Diagram

Graphic language: the equations are built with standard
elementary blocks from the AC31GRAF library, linked together in
the diagram.

Global Range of variables or defined words. Such objects can be used
in any program of one project.

Identifier Unique word used to represent a variable or a constant
expression in the programming.

IL Instruction List language.

Initial
situation

Set of the initial steps of an SFC program, which represents the
context of the program when it is started.

Initial step Special step of an SFC program, which is activated when the
program starts.

Lexicon

ABB France Page iv 1SBC006099R1001 C - 03/07

Input Variables linked to an input device.

Instruction Elementary operation of an IL program, entered on one line of
text.

Instruction
List

Low level literal language, entered as a sequential list of
elementary operations.

Integer Class of analog variables, stored in a signed integer 16 bit
format.

Internal Variable not linked to an input or output device.

Jump to a
step

SFC graphic component, which represents a link, from a
transition to a step. The graphic symbol of a jump is an arrow,
numbered with the reference of the destination step.

Keyword Reserved word of the language.

Label (IL) Identifier put at the beginning of an IL instruction line, which
identifies the instruction, and can be used as an operand for the
JMP operations.

Ladder
Diagram

Graphic language mixing contacts and coils, for the design of
boolean equations.

LD Ladder Diagram language.

Level 1 of
the SFC

Main description of an SFC program. Level 1 groups the chart
(steps and transitions), and the attached comments.

Level 2 of
the SFC

Detailed description of an SFC program. It is the description of
the actions within the steps, and the boolean conditions attached
to the transitions.

Library Set of hardware or software resources, which can be directly
inserted in any application.

Local Range of variables or defined words. Such objects can be used
in only one program of one project.

Macro step SFC graphic component. A macro step is a unique group of
steps and transitions, represented as a unique symbol in the
main chart, and described separately.

Message Character strings used for ASCII communication.

Lexicon

ABB France Page v 1SBC006099R1001 C - 03/07

Modbus Master-Slave protocol. The CS31 central unit can be a Modbus
slave for the link with an external system (such as supervisory
systems) in a complete architecture.

Modifier
(IL)

Single character put at the end of an IL operation keyword, which
modifies the meaning of the operation.

Non-
stored
action

SFC action: it is a list of statements, executed at each central
unit cycle, when the corresponding step is active.

Operand
(IL)

Variable or constant expression processed by an elementary IL
instruction.

Operation
(IL)

Basic instruction of the IL language. An operation is generally
associated to an operand in an instruction.

Output Variables linked to an output device.

Power rail Main left and right vertical rails at the extremities of an ladder
diagram.

Program Basic programming unit in a project. A program is described with
one language, and is placed in the hierarchy architecture of the
project in case of modular project.

Project Programming area, which groups all the information (programs,
variables, ...).

Pulse
action

SFC action: it is a list of statements executed only once when the
corresponding step is activated.

Reference
number
(SFC)

Decimal number (from 1 to 65535) which identifies an SFC step
or transition in an SFC program.

Register
(IL)

Current result of an IL sequence.

Separator Special character (or group of characters) used to separate the
identifiers in a literal language. A separator may represent an
operation.

Sequential
Function

Graphic language: the process is described as a set of steps,
linked by transitions. Actions are attached to the steps.

Lexicon

ABB France Page vi 1SBC006099R1001 C - 03/07

Chart Transitions are detailed as boolean conditions.

Sequential
section

Group of the programs of a project. The execution of those
programs follows the dynamic rules of the SFC language.

SFC Sequential Function Chart language.

Step Basic graphic component of the SFC language. A step
represents a steady situation of the process, and is drawn as a
square. A step is referenced by a number. The activity of a step
is used to control the execution of the corresponding actions.

Sub-
program

Program written with any language excepted SFC, and called by
another program, called its owner program.

Token
(SFC)

Graphical marker used to show the active steps of an SFC
program.

Toolbox Small child window of an graphic editing tool window, which
groups the main buttons for the selection of the graphic
components.

Transition Basic graphic SFC component. A transition represents the
condition between different SFC steps. A transition is referenced
by a number. A boolean condition is attached to each transition.

Validity of
a
transition

Attribute of a transition. A transition is validated when all the
preceding steps are actives.

Variable Unique representation of elementary data which is processed in
the programs of project.

User's guide

ABB France 1SBC006099R1001 C - 03/07

A User’s guide

User's guide

ABB France Page A-1 1SBC006099R1001 C - 03/07

A USER’S GUIDE
1 Getting started...A-3
2 Using the project manager ...A-4

2.1 Project manager description ..A-4
2.2 Printing a project document...A-7

3 Making a modular project ...A-11
4 Using editors ..A-15

4.1 Using the FBD/LD editor ..A-15
4.1.1 Basics of the FBD/LD languages.. A-15
4.1.2 Entering a FBD diagram ... A-18
4.1.3 Working on an existing diagram... A-19
4.1.4 Displaying options .. A-21
4.1.5 Other AC31GRAF tools.. A-22
4.1.6 Style and modification tracking .. A-23

4.2 Using the SFC editor ...A-26
4.2.1 SFC language main topics... A-26
4.2.2 Entering SFC chart.. A-29
4.2.3 Working on an existing SFC chart.. A-30
4.2.4 Entering the level 2 programming .. A-31
4.2.5 Selecting a variable from list .. A-35
4.2.6 Commands of the "Tools" menu ... A-36
4.2.7 Using the SFC gallery ... A-36

4.3 Using the Quick LD editor ..A-37
4.3.1 Basics of the LD language .. A-37
4.3.2 Entering a LD diagram.. A-39
4.3.3 Working on an existing diagram... A-42
4.3.4 Display options ... A-43
4.3.5 Calling other AC31GRAF tools.. A-43
4.3.6 Selecting a variable from variable list .. A-44

4.4 Using the IL editor...A-45
4.4.1 File commands .. A-45
4.4.2 Editing commands... A-46
4.4.3 Options .. A-47
4.4.4 Selecting a variable from list .. A-47

5 Editor common tools...A-48
5.1 Declaring variables ..A-48

5.1.1 Using the variable list in declaration mode... A-48
5.1.2 Using the variable list in selection mode .. A-49

5.2 Cross References ...A-53
5.3 Build the application..A-55
5.4 Creating graphics ...A-56

5.4.1 Drawing chart.. A-56
5.4.2 Object description ... A-58
5.4.3 Commands of the "File" menu.. A-60
5.4.4 Options .. A-60

6 Control panel...A-62
6.1 Using the control panel..A-62
6.2 Time diagrams ...A-66
6.3 On line list..A-68

User's guide

ABB France Page A-2 1SBC006099R1001 C - 03/07

6.4 Status / Diagnosis ..A-71
6.5 Configuration...A-72

7 User’s library...A-75
7.1 User’s function...A-75
7.2 Variables for a user’s function...A-76
7.3 Compiling a user’s function...A-77
7.4 User library access and rights control..A-77

User's guide

ABB France Page A-3 1SBC006099R1001 C - 03/07

1 Getting started

This chapter covers the installation of the AC31GRAF workbench. It also includes a
short example of an AC31GRAF application, giving the user a brief outline of its main
features and enabling the immediate use of AC31GRAF.

Installing AC31GRAF

This chapter covers the installation of the AC31GRAF Workbench and how to set up
the computer for application development.

 Hardware and software requirements

The AC31GRAF Workbench can be installed on any computer meeting the minimum
qualifications for Windows Version 3.1. However, the following hardware is
recommended for application development:

• A personal computer using an 80486 or higher microprocessor
• 8 megabytes of conventional and extended memory
• One 3.5-inch (1.44 megabyte) disk drive
• One hard disk with at least 20 megabytes of available space
• A graphic VGA or SVGA adapter and compatible monitor
• A mouse (required for graphic development tools)
• A parallel LPT1 port

Before installing the AC31GRAF workbench, one of the following software should
already be included on the system:

• Windows Version 3.1 running in 386 enhanced mode
• Windows 95
• Windows NT Version 3.51 or 4.00

 Using the installation program

The AC31GRAF Workbench is installed by using SETUP. This program copies the
AC31GRAF software from the AC31GRAF disks onto the user's hard disk.

SETUP is a Windows program.
To install AC31GRAF, the following steps must be performed:

• Insert Disk 1 into the appropriate drive
• From Program Manager, select the "SETUP.EXE" to start the installation.

User's guide

ABB France Page A-4 1SBC006099R1001 C - 03/07

2 Using the project manager

2.1 Project manager description

To create a new project, push the "New" button. Following this, a dialog box appears
allowing the user to give a name to the project, to select the CPU type (serie 40,
series 50, Controller, series 90 ,serie 94 or series 30), and finally to select the
language (SFC, FBD/LD, Quick LD , IL or modularize).

User's guide

ABB France Page A-5 1SBC006099R1001 C - 03/07

The new project name must conform to the following rules :

- the name cannot exceed 8 characters
- the first character must be a letter
- the following characters can be letters or digits.

It is possible to take the modularize choice instead of a specific language in order to
build a modular project. If the project is not modular, the editor of the selected
language is opened and the program has the name «main» by default.
On the other hand, if the project is created as modularize, the Program management
window is opened in order to create programs.

 Editing the project descriptor

The ”File / Project descriptor” command is used to edit the project text descriptor.
This document fully identifies the project from the others on the project list. The
project descriptor can also be used to record any remarks during the project lifetime.

 The History of modifications

AC31GRAF stores any information relative to a component of a project in a history
file. Each modification is identified in the history by a title, a date and a time. There is
one history file for each project.
The “File / History” command allows the user to view or print the history of
modifications for the selected project. The user can select one or more items in the
main list, and press the following buttons:

OK...................................... closes the window.
Print sends the contents of the list to the printer.
Selected removes the selected items from the list.
Erase /All........................... clears the complete list.
Search/Find....................... find a pattern in the list.

 Make a project document

The “File / Print” command allows the user to build and print a complete document
about the selected project. This document can group any component (program,
variable, parameters...) of the selected project.
See description at the chapter «Printing a project document»

 Using the library management

The “File / Library” command launches the user library manager.

User's guide

ABB France Page A-6 1SBC006099R1001 C - 03/07

 Renaming a project

The “File / Rename” command allows the user to change the name of a selected
project.

 Copying a project

The “File / Copy” command allows the user to copy all the contents of the selected
project in the same CPU or to another one. When the user enters the name of the
copy, according to the rules of above, he is able to choose the CPU.

 Deleting a project

The “File / Delete” command deletes the entire contents of the selected project.

 Modularizing a project

The “File / Modularize” command allows the user to edit the Program management
window in order to create other programs, subroutines or interruptions.

 Closing an application

The “File / Exit” command closes the application.

 Uploading an application

The “Options / Upload application” command allows the user to upload the code of
a CPU. First, the user creates a new project and next, he has to select the time out
value and the COM port he wants to use, then the Control panel window is editing
and displays a default choice of the program start and a program end of the upload
address that the user can change.

Finally, the code is uploaded and the original project edited.
The uploaded project consists of a main program and, if any, of subroutines and
interruption programs. The IL editor is necessary to read the code of these different
programs.
All the variables used in the uploaded project are recorded in the global variables file.

 Changing the Central Unit

The “Options / Change the Central Unit” command allows the user to change the
current CPU of the selected project.
According to the new CPU, the behavior of the project will be affected (possibility of
subroutines, interruptions, area addresses for the variables, new list of blocks)

User's guide

ABB France Page A-7 1SBC006099R1001 C - 03/07

2.2 Printing a project document

The AC31GRAF Document Generator allows the user to build and print a complete
document for the selected project. Unlike the "Print" commands from the other
windows of the AC31GRAF Workbench, the Document Generator can be used to
print more than one component of the project in the same document, with global
format and page numbering.

The Document Generator is selected from the Project manager with :

 File / Print

 The "File / Print" command of the Document Generator generates the document
and send it to the printer, according to the specified table of contents. The "Print" job
may take few minutes to build and format the document. It is highly recommended to
wait until "Printing Job" is done in the AC31GRAF Document Generator window,
before running other commands of the AC31GRAF Workbench. Building the whole
document may require a large space on the hard disk. An error message will be
displayed if the disk is full. In such a case, the user will have to either free up disk
space by removing files, or reduce the size of the print job. When the "File / Print"
command is run, a dialog box appears. It allows the user to enter a note describing
the actual print command. Those notes are stored in a history file, and will be printed
on the first page of any future document (including the present one).

User's guide

ABB France Page A-8 1SBC006099R1001 C - 03/07

The commands of the "Edit" menu are used to define the elements of the project that
must be inserted in the document. A choice of commands allow the user to use a
default table (with all the components of the project), build a specific table (with only
some components) or move items in the table and modify it. Any information about
the project may be inserted in the project document. No information from another
project or from AC31GRAF libraries may appear in this document.

 Inserting a new item

When the "Edit / Insert" command is run, the "Add item" dialog box appears. It
allows the user to insert items (components of the project) into the table of contents.

For an item relative to a program, use the "Program" combo box to select a program
name. Press the "Add" button to insert the selected item to the table of contents. The
same item can appear only once in the table.

 Clearing table

The "Edit / Clear" command resets the table of contents, so that it can be totally
rebuilt using single item insertion.

 Default table

The "Edit / Default list" command defines a standard table of contents for the
document, which includes all the components of the project. The standard table
consists of:

• Project descriptor
• Global variables
• MAIN: Local variables
• MAIN: Source code
• Condensed cross references
• Detailed cross references
• History of modifications

 Cut and paste

The "Edit / Cut" and "Edit / Paste" commands move items in the list, in order to
customize the order of the table. The Document Generator allows multiple selection
so that a group of items may be cut and pasted.

The commands of the "Options" menu are used to define and customize the format
of the generated document.

User's guide

ABB France Page A-9 1SBC006099R1001 C - 03/07

 Page format

The "Options / Page format" command is used to define the main parameters
operated by the Document Generator when formatting a page. The following
parameters can be specified:

• Left margin: (1 or 2 centimeters, or no margin)
• Page border: When this option is selected, a border is drawn around any printed
page.

 Page title

The “Options / Page Title" command is used to define the contents of the title box
printed at the bottom of any page. The standard layout of this box is as follows :

AC31GRAF - Project
'PrName'

date

page

Text1
Text2
Text3

ABB

The first line of the main title (with the name of the AC31GRAF project), the current
date and the page number are automatically generated by the Document Manager,
and cannot be changed.

The three lines of text on the left side of the box (text1, text2, text3) and the second
line of the main title are user defined. The user also can change the logo printed in
the box on the left. To use another logo, the user has to specify the pathname of a
bitmap image file (.BMP). The image can have any dimension. It will be stretched or
shrunk, according to the exact dimensions of the printed page. Clicking on the logo
area, in the dialog box, shows the new specified image. The image file must be on
the disk (at the specified directory and with the specified filename) when the "File /
Print" command is run.

 Selecting character fonts

The "Options / Text font" and "Options / Title font" commands are used to define
the fonts of characters used when printing text, and titles for any item of the
document. The size and style of characters may also be selected for text and titles.
The selection of a font is made with the standard dialog box defined by Windows. Any
text (literal programs, names within diagrams...) will be printed with the selected size,
style and font of characters. Only titles will be printed with the font selected for titles.

If the fonts of characters are not defined, the standard font of the printer will be used
for any text, with the following styles:

• "Normal" style for texts and names within diagrams
• "Bold" style for titles

User's guide

ABB France Page A-10 1SBC006099R1001 C - 03/07

 Separate SFC levels

The "Options / Separate SFC levels" option directs the system to print, for each
SFC program, first the level 1 of the SFC (chart and comments), and then the level 2
programming. When this option is not checked, levels 1 and 2 appear together on the
same printout.

User's guide

ABB France Page A-11 1SBC006099R1001 C - 03/07

3 Making a modular project

You can create modular projects using one of two methods:
-when creating a project, select modularize in the dialog box
-when in a non-modular project, select the Modularize menu item

The program management window is edited and you are able to create programs.

 Creating a new program

The “File / New” command enables you to create a new program, subroutine, or
interruption for the project.
For a subroutine and an interruption, the SFC editor cannot be used.

The user has to enter the name of the program, the language and the type of the
program.

If a program is created, a blue icon appears in the window program management, for
a subroutine, the icon is green and for an interruption the icon is red. The name of the
program is set at the right of the icon.

 Icon for IL language :

 Icon for FBD/LD language :

User's guide

ABB France Page A-12 1SBC006099R1001 C - 03/07

 Icon for SFC language :

 Icon for Quick LD language:

A project can contains only three interruption programs : two hard interruptions and a
soft one.
For a interruption program, the name contains the type of the interruption (#1 or #2
for a hard interruption, and the cycle time for the soft interruption).

Some CPU do not support subroutine and interruption program, they are : serie 30 ,
serie 90 and serie 94.

The Subroutines and interruption tasks are called in the main program (Il or FBD
language) with directly their name as a function block or a format parameter.

 Editing a program

The “File / Edit” command displays the editor of the selected program. It has the
same result as the button open.

 Editing the variables list

The “File / Variable list” command allows to edit the list of variable window.
The global variables and the local variables of the current program are shown.

 Editing a diary file

The “File / Program descriptor” command allows the user to start editing the diary
file of the current edited project program. This is a text file which contains all the
notes about the modifications made to the program during its time life.

 Setting an interruption program

The “File / Parameters” command allows the user to change the cycle time of the
soft interruption of the project.

 Renaming a program

The “File / Rename” command allows the user to change the name of the selected
program.
The new program name must conform to the following rules :

- the name cannot exceed 8 characters
- the first character must be a letter
- the following characters can be letters or digits.

User's guide

ABB France Page A-13 1SBC006099R1001 C - 03/07

 Deleting a program

The “File / Delete” command deletes the selected program/subroutine/interruption
from the current application.

 Copying a program

The “File / Copy” command allows the user to copy the selected program to the
same project, so the user has to give a name for the copy and then nothing happens
for the variables.
Furthermore, the user can copy the selected program to an other project. First, there
is a detection of conflict name, and then the program is added to those of the target
project. There is a detection on variables conflict.
Each variable not used in the target project will be added to the global variables file of
this project.

 Closing the program manager

The “File / Exit” command closes the program management window.

 Making a graphic

The “Make / Graphics” command runs the graphic editor. This tool allows the user to
define graphic images that will be refreshed during debug, based on the state of the
application variables. The images are built with standard windows bitmap (.BMP) and
icon (.ICO) files. This requires additional graphic editing tools, such as PaintBrush,
to create bitmaps and icon files.

 Building the application code

The “Make / Code generation” command starts the project code generation.
Before generating the code, any program that is still not verified is checked to detect
the syntax errors.

 Verifying a program

The “Make / Verify” command allows the user to verify the syntax of the program
currently selected. When a program is verified, with no error detected, it is not re-
verified during the code generation.

 Running the cross reference editor

The “Make / Cross references” command allows the user to calculate, view or print
the cross references of the project. The cross references show the user all the
occurrences of each variable in the source code of the programs, in the entire
project. This function is very useful to detect an access to a variable or any global
source, or to the list all the occurrences of a global variable in the source code.

User's guide

ABB France Page A-14 1SBC006099R1001 C - 03/07

 Running the communication

The “Communication / Run communication” command opens the communication
main window, and closes the program management.
This open is then re-opened in debug mode as soon as the communication is
established between the debugger and the target application.

 Setting the communication parameters

The “Communication / Communication parameters” edits the dialog box enables
the user to define the parameters of the link for communication between the
debugger on the host PC and the target system.

The communication parameters are the following:

- communication port
- time-out (ms)
- an option for fast download. This option allows the communication to

transfer a program in the PLC approximately seven times faster.
WARNING: Occasionally, when using a modem, an RS485,..
communication malfunctions. In these cases, do not select this option.

- port number to use for TCP-IP communication (for use with the Ethernet
communication port only)

- Internet address to use for TCP-IP communication (for use with the
Ethernet communication port only)

User's guide

ABB France Page A-15 1SBC006099R1001 C - 03/07

4 Using editors

4.1 Using the FBD/LD editor

The AC31GRAF FBD/LD graphic editor allows the user to enter complete FBD
programs, which may includes parts in LD. It combines graphic and text editing
capabilities, so both diagrams and corresponding inputs and outputs can be entered.
As the editor is more dedicated to FBD language, pure LD diagrams should rather be
entered using AC31GRAF Quick LD editor.

4.1.1 Basics of the FBD/LD languages
The FBD language is a graphic representation of many different types of equations.
Operators are represented by rectangular function boxes. Function inputs are
connected to the left side of the box. Function outputs are connected to the right side.
Diagram inputs and outputs (variables) are connected to the function boxes with
logical links. An output of a function box may be connected to the input of another
box.

The LD language enables graphic representation of boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology.
Boolean input variables are attached to graphic contacts. Boolean output variables
are attached to graphic coils. Contacts and coils are connected together and to left
and right power rails by horizontal lines. Each line segment has a boolean state of
FALSE or TRUE. The boolean state is the same for all the segments directly linked
together. Any horizontal line connected to the left vertical power rail has the TRUE
state.

User's guide

ABB France Page A-16 1SBC006099R1001 C - 03/07

LD and FBD diagrams are always interpreted from the left to the right, and from the
top to the bottom. Refer to the AC31GRAF Manual Part B for more details about LD
and FBD languages. These are the basic graphic components of the LD and FBD
languages, such as supported by the FBD/LD editor:

 Left power rail

Rungs must be connected on the left to a left power rail, which represents the initial
"TRUE" state. AC31GRAF FBD editor also allows to connect any boolean symbol to
a left power rail.

 Right power rail

Coils may be connected on the right to a right power rail. This is an optional feature
when using the AC31GRAF FBD/LD editor. If a coil is not connected on the right, it
includes a right power rail in its own drawing.

 LD vertical "OR" connection

LD vertical connection accepts several connections on the left and several
connections on the right. Each connection on the right is equal to the OR combination
of the connections on the left.

 Contacts

A contact modifies the boolean data flow, according to the state of a boolean
variable. The name of the variable is displayed upon the contact symbol. The
following types of contacts are supported by AC31GRAF FBD/LD editor:

...................................... direct contact

...................................... negated contact

...................................... contact with positive (rising) edge detection

...................................... contact with negative (falling) edge detection

 Coils

A coil represents an action. It must be connected on the left to a boolean symbol
such as a contact. The name of the variable is displayed upon the coil symbol. The
following types of coils are supported by AC31GRAF FBD/LD editor:

...................................... direct coil

...................................... negated coil

...................................... "set" action coil

...................................... "reset" action coil

User's guide

ABB France Page A-17 1SBC006099R1001 C - 03/07

 Function blocks

A block in an FBD diagram can represent a function, a function block, a sub-program
or an operator. Inputs and outputs must be connected to variables, contacts or coils,
or other block inputs or outputs. Formal parameter names are displayed inside of the
block rectangle.

 Labels

Labels can be placed everywhere in the diagram. Labels are used as targets for jump
instructions, to change the execution order in the diagram. Labels are not connected
to other elements. It is highly recommended to place labels on the left of the diagram,
in order to increase the diagram readability.

 Jumps

A jump symbol always refers to a label, placed elsewhere in the diagram. Its left
connection must be linked to a boolean point. When the left connection is TRUE, the
execution of the diagram directly jumps to this target label. Note that backward jumps
are dangerous as they may lead to a blocking of the PLC loop in some cases.

 Variables

Variables in the diagram are represented inside small rectangles, connected on the
left or on the right to other elements of the diagram.

 Connection links

Connection links are drawn between elements put in a diagram. Links are always
drawn from an output to an input point (in the direction of the data flow).

 Connection links with boolean negation

Some boolean links are represented with a small circle on their right extremity. This
represents a boolean negation of the information transported by the link.

 User defined corners

User defined points may be defined on links. They allow the user to manually control
the routing of a link. If no corner is placed, the AC31GRAF FBD/LD editor uses a
default routing algorithm.

User's guide

ABB France Page A-18 1SBC006099R1001 C - 03/07

4.1.2 Entering a FBD diagram
To enter a diagram, you have to place elements (blocks, variables, contacts, coils...)
in the graphic area, and draw links between them.

 Inserting objects

To insert an object in a diagram, select the corresponding button in the toolbar and
click in the graphic area, where you want to insert it.

 Selecting objects

Selecting graphic objects is needed for most of the editing commands. The
AC31GRAF LD/FBD graphic editor enables the selection of one or more existing
objects in the diagram area. To select objects, the "select" (button with an arrow)
choice must be checked in the editor toolbar. To select one object, the user only has
to click on its symbol. To select a list of objects, drag the mouse in the diagram and
select a rectangle area. All the graphic objects that intersect the selection rectangle
are marked as "selected". A selected object is drawn with little black squares around
its graphic symbol. By making a new selection, all previously selected objects are
unselected. To remove the existing selection, simply click with the mouse on an
empty area, outside of the rectangle which borders the selected objects.

 Inserting comments

Comments may be inserted anywhere in the diagram. Comments have no influence
on the program execution. They allow a higher readability of the diagram. To insert a
comment block, select this button in the toolbar, and drag the mouse to select the
rectangle area where comment must be drawn. Then enter the text of the comment.
No special leading or trailing characters such as "(*" and "*)" are needed when
entering the text of a comment block. A comment block may be resized by dragging
the corners of its border when it is selected.

 Moving objects

To move objects in the diagram, you have to select them, and drag the mouse to
move the selected area in the diagram. To move connected objects, the user simply
has to move the graphic symbols put on the diagram. The AC31GRAF LD/FBD editor
will automatically redraw the connection lines between the objects that were moved,
based on their new location.

 Drawing links

Select one of these buttons in the toolbar to draw a link between connection points of
existing elements. If you draw a link from a connection point to an empty location in
the diagram, it is automatically terminated by a user defined corner, so that you can
continue drawing another segment.

User's guide

ABB France Page A-19 1SBC006099R1001 C - 03/07

 Changing link drawing

The "Tools / Move line" command is used when a link is selected in the diagram to
change its automatic routing. This command has no effect when the link is connected
to a user defined corner. When a link is drawn as three segments, this command
changes the position of the second segment. Below are examples:

 Changing the type of a link

You can easily change the type of link (with or without boolean negation) by double
clicking with the mouse on its right extremity.

 Drawing LD rungs

To draw a new LD rung, first insert the left power rail. Then place a coil: it will be
automatically linked to the power rail. Other contacts and vertical OR connections
may be directly inserted on the rung line, without drawing any new connection link.
When a new LD contact or coil is inserted in an empty space of the editing area, the
new horizontal rung line is automatically drawn from the new inserted element to the
existing power rails on the left and on the right. This line is not automatically drawn if
the new contact or coil is not placed between power rails. The new inserted contact
or coil can then be freely moved on the drawn rung. The horizontal lines created by
the editor while inserting a LD contact or coil symbol can be selected and deleted.
You can insert a new LD contact or coil symbol on the horizontal line of an existing
rung. The editor automatically cuts the rungs and connects it to the left and right
connection points of the new inserted contact or coil.

 Multiple connections

A multiple connection can be created on the right of any output point. It means that
the information is broadcasted to several other points in the diagram. The same
state is propagated on each extremity on the right. The number of lines drawn at the
right of an output connection point is not limited. Two connection lines cannot have
their right extremity connected on the same input point, except for the following LD
symbols:

.. right power rail

.. multiple connection on the left (OR) operator

These LD symbols can have an unlimited number of inputs.

4.1.3 Working on an existing diagram
The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

User's guide

ABB France Page A-20 1SBC006099R1001 C - 03/07

 Correcting a diagram

The DEL key can be used to remove the selected elements. Pending links are
deleted with selected elements. Use "Edit / Undo" command to restore elements
after a DEL command. The DEL command can also be applied to a group of
elements selected in the diagram. The "Cut", "Copy", "Paste" commands of the
"Edit" menu are used to move or copy selected elements.

 Find and replace

The "Edit / Find" and "Edit / Replace" menu commands are used to find and replace
texts in the diagram. Only complete names can be found. Research acts on contacts,
coils, block names, variables and labels. It cannot be used to find a string in a
comment text. The Replace command cannot be used to change the name of a
block. The research can be made upward or downward, starting at the current
selection position. It "loops" when the limits of the diagram are reached.

 Displaying the execution order

When an FBD diagram includes backward loops, the execution order cannot follow
the single left to right / top to bottom method. In order to avoid confusion, use the
"Tools / Show execution order" command or press Control + F1 keys to display
the execution order that will be used at compiling time. Tags numbered from 1 to N
are displayed close to symbols that lead to an action (coils, set variables and function
blocks).

 Entering symbols and texts

Double click with the mouse on an element to enter the associated symbol or text.
This applies to variables, contacts and coils, comment texts and labels. When used
on a contact or coil, this also allows to change its type (direct, negated...).
If the "Auto input" mode is checked in the "Options" menu, the variable symbol
must be entered immediately each time a new contact or coil is inserted.
The symbol must always be entered immediately when a variable or label is inserted.

If the “Manual keyboard input” mode is selected in the “Options” menu, the variable
name is directly catch in a field. Enter the new text and hit Enter to validate, or Esc to
give up. The field used for this mode can not be closed with the mouse.
When you enter the variable name and you hit Enter, if the variable does not already
exists, the variable list is opened to complete the variable definition.
When you click on the button to call the variable list, if the variable already exists, the
variable list will be opened on this variable.

Variable name Button to call the
variable list

User's guide

ABB France Page A-21 1SBC006099R1001 C - 03/07

 Selecting function block type

Double click with the mouse on a block is used to change its type. The block type is
selected from the list of available operators, functions and function blocks. This
command also allows to change the number of input points in the case of a
commutative operator (e.g. AND, OR, ADD, MUL...).

 Getting free space

When you press the right button of the mouse in the FBD drawing area, a popup
menu is displayed. It contains the following commands that can be used to insert or
remove free space at the location of the mouse cursor:

Insert rows This command inserts horizontal free space, made
of 4 rows according to the grid step, starting at the
position of the mouse cursor where popup menu is
open.

Delete rows This command removes unused horizontal space

(rows) starting at the position of the mouse cursor
where popup menu is open. This command cannot
be used to remove FBD elements.

When popup menu is open, a gray line in the FBD drawing area indicates where
empty space will be inserted or removed.

4.1.4 Displaying options
The commands of the "Options" menu are used to customize the drawing of the FBD
diagram on the screen.

 Layout customization

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
graphic diagram. Use the check boxes in the "Workspace" groupbox to display or
hide editor toolbars and status bar. Options of the "Document" groupbox allows you
to show or hide points of the editing grid, and to enable/disable the use of colors for
the drawing.

 Switching name and address

The “Options / Name/address” command switches the symbol of a variable by his
address and vice versa.

User's guide

ABB France Page A-22 1SBC006099R1001 C - 03/07

 Selecting LD toolbar

The “Options / LD toolbar” command selects the LD toolbar.

 Selecting FBD toolbar

The “Options / FBD toolbar” command selects the FBD toolbar.

 Auto input variable list manager

The “Options / Auto input” command edit the variable list manager when a variable
is put.

 Manual keyboard input

The “Options / Manual keyboard input” command allows the user to enter directly
the symbol of the variable.

 Setting the communication parameters

The “Options / Link configuration” command allows the user to modify the
communication parameters.

 Zoom

Options of the "Zoom" groupbox allows you to select a main zoom ratio. You can also
use the "zoom" button in the editor toolbar to swap between default zoom ratios.

4.1.5 Other AC31GRAF tools

 Verifying (compiling) the program

The "File / Verify" command runs the AC31GRAF code generator to verify the
programming syntax of the currently edited program. In case of SFC language, both
level 1 and 2 are checked.

 Running debugger

The "File / PLC communication” command runs the AC31GRAF graphic debugger
real connected mode, and re-opens the edited FBD/LD program in debug mode.
Used in debug mode, no modification can be entered in the program.

 Editing the variable list

The "File / Variable list" command is used to edit the list of variables for the current
application and the current program.

User's guide

ABB France Page A-23 1SBC006099R1001 C - 03/07

 Making a Graphic

The “File / Graphics” command runs the graphic editor. This tool allows the user to
define graphic images that will be refreshed during debug, based on the state of the
application variables. The images are built with standard windows bitmap (.BMP) and
icon (.ICO) files. This requires additional graphic editing tools, such as PaintBrush,
to create bitmaps and icon files.

 Printing the program

The "File / Print" command outputs the edited program on a printer. This command
produces a draft listing of the program. More detailed information is given when the
project document generator is used.

 Selecting a variable from the variables list

 When editing a text program the "Edit / Insert variable" allows the selection of a
declared variable name to be inserted at the current position of the caret. When
editing LD or FBD programs, variable selection is required for the description of
contacts coils, block I/O parameters or FBD variable boxes. In both cases, the
"Select" dialog box is open to select a declared variable.

To select a variable, click on its name in the list. Its name and comment are then
displayed on the top of the list. Then press the "OK" button to confirm its selection. It
is also possible to directly enter a variable name in the edit control without using the
list.

For the graphicals programs (SFC, FBD and Quick LD) the "Edition / Copy drawing
(metafile)" copy an image of a program in metafile form into the Window clipboard.
So, it can be copied in others applications. For the SFC programs, only the
information of the level 1 are copied into the image (graph, references and
comments).

4.1.6 Style and modification tracking

The AC31GRAF LD/FBD editor enables you to assign a graphic style to any
component of a LD/FBD diagram. A style is mainly defined as a special diagram
colouring. But AC31GRAF also used styles to enable modification tracking in diagram
for version control purpose.

Note that styles are not visible during simulation or on-line debug, as colours (red and
blue) are used in that mode to highlight TRUE / FALSE states of spied variables.

User's guide

ABB France Page A-24 1SBC006099R1001 C - 03/07

 Predefined style

The following styles are pre-defined:

Normal............................... Default drawing (black). For modification tracking,
"normal" style indicates that elements having that
style are part of the original diagram. "Normal"
style elements are normally scanned during
execution.

Modified Elements marked as "modified" are painted in

pink. For modification tracking, the "modified" style
is used to highlight elements that have been
added or changed after the original release of the
diagram. "Modified" style elements are normally
scanned during execution.

Deleted Elements marked as "deleted" are painted in gray,

with dashed lines. Such elements are not taken
into account for the execution of the diagram. This
style is used to keep a track of elements removed
after the original release when version control is
required.

Custom.............................. In addition to predefined style, AC31GRAF

LD/FBD editor allows you to select any color to be
applied to a part of the diagram. Such elements
are considered as having a "Custom" style. The
use of "Custom" style has no effect on the diagram
execution at run time.

Use the commands of "Style" sub-menu in "Edit" menu to manually apply a style to
selected elements.

 Modification tracking

The use of styles, and the availability of the "Deleted" style allows automatic
modification tracking in an existing diagram. Use the "Mark modifications"
command in "Edit/Style" menu to enable or disable modification tracking.

When the "Mark modifications" option is set, all elements changed in or added to
the diagram are automatically set with "Modified" style. When an element is deleted,
using "Delete" or "Cut" commands, they are not visually removed from the diagram,
but simply marked with "Deleted" style. This enables the user to automatically keep a
trace of all modifications entered in the diagram.

Use the "Edit/Style/Remove all deleted items" to actually remove all elements
marked with "Deleted" style from the LD/FBD diagram. This command does not take
care of the current selection, and always applies to the entire diagram.

User's guide

ABB France Page A-25 1SBC006099R1001 C - 03/07

To "restore" one element marked with the "Deleted" style, select the desired element
and apply to it the "Normal" style, the "Modified" style or any "Custom" style. Such
operation may lead to invalid connections (more than one link connected to the same
input point) that will be detected during next program verification.

For graphic programs (SFC, FBD), you can also use the "Edit / Copy drawing"
command to copy in the clipboard the drawing of the chart in metafile format, so that
it can be pasted in other applications such as word processors. For SFC programs,
only the level 1 information (chart, numbering and level 1 comments) appears on the
copied metafile.

User's guide

ABB France Page A-26 1SBC006099R1001 C - 03/07

4.2 Using the SFC editor

The SFC language is used to describe operations of a sequential process. It uses a
simple graphic representation for the different steps of a process, and conditions that
enable the change of active steps. An SFC program is entered by using the
AC31GRAF graphic SFC editor. SFC is the core of the IEC 1131-3 standard. The
other languages usually describe the actions within the steps and the logical
conditions for the transitions. The AC31GRAF graphic SFC editor allows the user to
enter complete SFC programs. It combines graphic and text editing capabilities, thus
allowing the entry of both the SFC chart, and the corresponding actions and
conditions.

4.2.1 SFC language main topics
The SFC language is used to represent sequential processes. It divides the process
cycle into a number of well-defined successive steps (self-contained situations),
separated by transitions. Refer to the AC31GRAF Languages Reference Manual
PART B for more details on the SFC language.

SFC components are joined by oriented lines. The default orientation of a line is up
to down. These are the basic graphic components used to build an SFC chart:

.. Initial step

.. Step

.. Transition

.. Jump to a step

.. Macro step

User's guide

ABB France Page A-27 1SBC006099R1001 C - 03/07

.. Macro beginning step

.. Macro ending step

The SFC programming is usually separated into two different levels: The Level 1
shows the graphic chart, reference numbers of the steps and the transitions, and
comments attached to the steps and the transitions. The Level 2 is the IL
programming of the actions within the steps and IL or Quick LD for the conditions
attached to the transitions. Actions or conditions may refer to sub-programs written
in other languages (FBD, LD, Quick LD or IL). Below is an example of level 1 and
level 2 programming:

10 Start mixing

Mixing done
11

10 Start mixing

Mixing done
11

LD MixLevel
GT V_100;

Action (P):
LD VAL_10
ST MixLevel
End_action;

Level 1: Level 2:

The level 2 programming of a step is entered in a text editor. It can include action
blocks programmed in IL. The level 2 programming of a transition can be entered
either in IL or Quick LD languages.

 Divergences and convergences

Divergences and convergences are used to represent multiple links between steps
and transitions. Simple divergences or convergences represent different inclusive
possibilities between different sub parts of the process.

Single divergence (OR)
Warning: following transitions are not
implicitely exclusive

Single convergence (OR)

Double divergences represent parallel processes.

User's guide

ABB France Page A-28 1SBC006099R1001 C - 03/07

Double divergence (AND)

Double convergence (AND)

These are parallel
processes

 Jump to a step

The SFC editor only allows the user to draw links in the up to down direction. A jump
to a step can be used to represent a link to an upper part of the chart. Following
charts are equivalent:

1

2

3

4

5

1

2

3

4

5

1

66

Jump to a transition is forbidden, and must be explicitly represented as a double
(AND) convergence.

 Macro steps

A macro step is a unique representation of a stand-alone group of steps and
transitions. A macro step begins with a beginning step and terminates with an
ending step.

The detailed representation of a macro step must be described in the same SFC
program. The macro-step symbol must have the same reference number as the
macro beginning step. A macro step description may contain another macro step.

User's guide

ABB France Page A-29 1SBC006099R1001 C - 03/07

4.2.2 Entering SFC chart
To draw an SFC chart, the user simply has to introduce the significant components of
the chart. All the single lines joining two elements (horizontally or vertically) are drawn
automatically by the SFC editor. To place an SFC component on the chart, the user
has to move the selection to appropriate location and select the type of the
component in the editor toolbar. The symbol is inserted at the current position. The
following keyboard sequences can also be used:

.................................... Insert an initial step

.................................... Insert a single step

.................................... Insert a transition

.................................... Insert a jump to a step
 Insert an OR divergence or convergence / Add

branches
 Insert an AND divergence or convergence / Add

branches
.................................... Insert a macro step
 Insert begin or end step for the body of a macro

step

(The " " symbol indicates a combination with SHIFT key)

The editing grid shows matrix cells. An editor option allows the user to show or
hide the grid during chart input. The grid is very useful for initial layout of SFC chart,
or selecting sub-parts of the chart. Use the "Options / Layout" command to display
or hide the grid.

The AC31GRAF SFC editor always shows the current position in the matrix. The
focused cell is marked in gray. The small square on its bottom right corner can be
used to freely resize the cells. The X/Y ratio of the cells can also be changed this
way.

 Creating a divergence or convergence

Divergences and convergences are always drawn from the left to the right. To draw
a divergence or a convergence, its left corner has to be placed on the chart area.
The type of drawing (simple or double) is set by selecting one of these buttons in the
toolbar.

 Insert an OR divergence or convergence / Add
branches

 Insert an AND divergence or convergence / Add
branches

User's guide

ABB France Page A-30 1SBC006099R1001 C - 03/07

 Adding branches to divergences

The start and stop position of each auxiliary branch is placed on the divergence or
convergence line using these buttons in the toolbar. The left corner of the divergence
or convergence must be present before inserting new branches. The right corners
have the same style (simple or double) as the main left corner. Right corners cannot
be placed if the main left corner has not been added.

 Insert an OR divergence or convergence / Add
branches

 Insert an AND divergence or convergence / Add
branches

 Inserting a macro step

This button is used to insert a macro step in the main chart. The body of the macro
step must be entered elsewhere in the same SFC program.

 Body of a macro step

Macro steps must be described in the same SFC program as the main chart. A
macro step must start with a beginning step and stop with an ending step. The
sub-chart described as the macro implementation must be self-contained. The
macro beginning step must have the same reference as the macro-step symbol of
the main branch.

4.2.3 Working on an existing SFC chart
You can use either the mouse or keyboards arrows to select a rectangle area in the
chart. The whole selected area is marked in gray. The commands of the "Edit" menu
can then used:

 Cut / copy / delete / paste commands

The following commands are available from the "Edit" menu when the "arrow" button
is selected in the editor toolbar:

Cut Move selected rectangle from the screen to the
SFC clipboard

Copy Copy selected rectangle from the screen to the
SFC clipboard

Delete Clear (delete) selected rectangle
Paste Insert contents SFC clipboard at the current

position

The "Edit / Paste" copies SFC clipboard to the screen. Copy / Paste commands work
on both SFC chart and step/transition level 2 programming. It is also possible to copy
a chart in a program and paste it in another SFC program. Elements are inserted
before the currently selected position.

User's guide

ABB France Page A-31 1SBC006099R1001 C - 03/07

 Move elements

When SFC elements are selected in the SFC chart, you can move them to another
location of the chart by dragging the selection with the mouse. While you drag the
selection, the initial location of selected elements is hatched.

The destination area for moved elements must be empty. No insertion is possible
while moving SFC symbols.

 Renumbering steps and transitions

Each step or transition is identified by a logical number in the SFC chart. The "Edit /
Renumber" command allows the user to automatically set up numerically sequential
reference numbers for any of the steps and the transitions of the currently edited SFC
program. When a step number is changed, all the jumps to this step are automatically
updated with the new reference number. (this also applies to macro steps and
beginning steps)

 Direct access to a step or transition

The "Edit / Go to" command allows the user to access an existing step or transition.
The scrolling position is automatically adapted so that the step or transition is visible.

 Find and replace texts

The "Edit / Find Replace" command can be used to find or replace text strings in the
complete program (all steps and transitions). The Find/Replace dialog box is used to
enter a searched text and directly open the level 2 programming section where text
occurs.

4.2.4 Entering the level 2 programming
To enter the Level 2 text, the user must double click on the step or transition symbol.
The level 2 programming is displayed on the right of the SFC window. The separation
line between SFC chart and level 2 programming can be freely moved.

You can open one or two level 2 areas at the same time. The following commands
are available from keyboard, mouse or the "Edit" menu:

 Keyboard Mouse "Edit" menu
Open in last default window Enter Double Click Edit level 2
Open in separate window Ctrl+Enter Ctrl + DoubleClick Edit Level 2 in separate window

User's guide

ABB France Page A-32 1SBC006099R1001 C - 03/07

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2
window.

The language for Level 2 programming is IL (Instruction List) or Quick LD. An
independent window is opened to enter the level 2 programming. You can open
several level 2 windows at the same time.

When working on a level 2 programming window, you can still access the commands
of the "Edit" menu in the main window to work on the active level 2 text or diagram.

The “Options / Refresh” can be used at any time when level 2 windows are open to
refresh the main SFC chart with modified level 2 programs.

 Inserting a variable name

When programming in text language, press this button to select a variable declared in
the list of variables and insert its name at the current position of the caret.

P Inserting a Pulse action block in step

When programming the level 2 of a step, press this button to insert the template of a
Pulse action block at the current position of the caret. Below is the format of a Pulse
action block:

Action (P) :
 IL statement;
 ...
End_Action;

Pulse actions are instructions which are executed only once when the step becomes
active. Refer to the AC31GRAF language reference for further details on SFC
programming.

 Inserting a Non stored action block in step

When programming the level 2 of a step, press this button to insert the template of a
Non stored action block at the current position of the caret. Below is the format of a
Non stored action block:

Action (N) :
 IL statement;
 ...
End_Action;

User's guide

ABB France Page A-33 1SBC006099R1001 C - 03/07

Non stored actions are instructions which are executed on every PLC cycle when the
step is active. Refer to the AC31GRAF language reference for further details on SFC
programming.

 New P0 and P1 action qualifiers

AC31GRAF supports new P0 and P1 action qualifiers. When programming the level 2
of a step, press these buttons to insert the template of a P0 or P1 action block at the
current position of the caret. Below is the format of such blocks:

Action (P0) : Action (P1) :
IL statement; IL statement;
... ...

End_Action; End_Action;

P1 actions are instructions which are executed only once when the step becomes
active (same as Pulse). P0 actions are instructions which are executed only once
when the step becomes inactive. Refer to the AC31GRAF language reference for
further details on SFC programming.

 Boolean actions

Other text semantics are available to directly act on a boolean variable according to
the step activity. Such actions consist of attaching the step activity signal to an
internal or output boolean variable. This is the syntax of the basic boolean actions:

var (N); assigns the step activity signal to the variable
var; same effect (N attribute is optional)
/ var; assigns the negation of the step activity signal to

the variable

example :

%O62.00 (N); assigns the step activity signal to the output
%O62.00

%O62.00; same effect (N attribute is optional)
/ %M00.00; assigns the negation of the step activity signal to

the variable %M00.00

Other features are available to set or reset a boolean variable, when the step
becomes active. This is the syntax of set and reset boolean actions:

var (S);.........sets the variable to TRUE when the step activity signal becomes TRUE

var (R); resets the variable to FALSE when the step
activity signal becomes TRUE

example

%O62.00 (S); sets %O62.00 to TRUE when the step activity
signal becomes TRUE

%M00.00 (R);..................... resets %M00.00 to FALSE when the step activity
signal becomes TRUE

User's guide

ABB France Page A-34 1SBC006099R1001 C - 03/07

 Transitions written in IL

The level 2 of a transition is a boolean expression. To program it in IL language, just
enter the boolean condition according to the IL syntax. Optionally, a semi colon may
be added at the end of the expression.

 Transitions written in Quick Ladder

Quick LD editor is available to program the level 2 condition of a transition. In this
case, the diagram is made of just one rung, with only one coil which represents the
transition. The name of the transition is not repeated with the coil symbol. Below is an
example of transition condition programmed in Quick LD.

When programming in Quick LD, use the keyboard arrows to move the selection in
the programming logical grid, and then use the following shortcuts to insert symbols:

F2....................................... insert a contact the before selected symbol /
initiate the rung

F3....................................... insert a contact after the selected symbol
F4....................................... insert a contact in parallel with the selected

symbol
F6....................................... insert a block after the selected symbol
F7....................................... insert a block before the selected symbol
F8....................................... insert a block in parallel with the selected symbol

You can also click on the function key bar at the bottom of the level 2 window instead
of hitting function keys.

Hit RETURN when the selection is on a contact or a block I/O parameter to select a
variable or enter a constant value. Hit RETURN when the selection is on a function
block to select the type of the function block. You can also double click on a symbol
for the same effect.

Hit SPACE bar when a contact is selected to change the type of contact (direct,
negated or with pulse detection). Refer to the chapter "Using the Quick LD editor" in
this document for more details about Quick LD capabilities.

 Verifying a program

The "File / Verify" command runs the AC31GRAF code generator to verify the
programming syntax of the currently edited program. In case of SFC language, both
level 1 and 2 are checked. When syntax verification is complete, the code generator
window must be closed to continue work on the program.

User's guide

ABB France Page A-35 1SBC006099R1001 C - 03/07

 Running the communication

The "File / PLC communication" command runs the AC31GRAF graphic debugger
in connected mode, and re-opens the edited SFC program in debug mode. Used in
debug mode, no modification can be entered in the program.

 Editing variable list

The "File / Variable list" command is used to edit the list of variables for the current
application and the current program.

 Making a graphic

This "File / Graphics" command runs the graphic editor. This tool allows the user to
define graphic images that will be refreshed during debug, based on the state of the
application variables. The images are built with standard windows bitmap (.BMP) and
icon (.ICO) files. This requires additional graphic editing tools, such as PaintBrush,
to create bitmaps and icon files.

 Printing the program

The "File / Print" command outputs the edited program on printer. This command
produces a draft listing of the program. More detailed information is given when the
project document generator is used.

For graphic programs (SFC, FBD), you can also use the "Edit / Copy drawing"
command to copy in the clipboard the drawing of the chart in metafile format, so that
it can be pasted in other applications such as word processors. For SFC programs,
only the level 1 information (chart, numbering and level 1 comments) appears on the
copied metafile.

4.2.5 Selecting a variable from list
 When editing a text program (IL) the "Edit / Insert variable" allows the

selection of a declared variable name to be inserted at the current position of the
caret. When editing LD or FBD programs, variable selection is required for the
description of contacts coils, block I/O parameters or FBD variable boxes. In both
cases, the "Select" dialog box is opened to select a declared variable.

To select a variable, click on its name in the list. Its name and comment are then
displayed on the different fields. Then press the "OK" button to confirm its selection. It
is also possible to enter a variable name with a double click on the selected line in the
list, or manually enter its symbol without using the list.

User's guide

ABB France Page A-36 1SBC006099R1001 C - 03/07

4.2.6 Commands of the "Tools" menu
The following commands are available in the Tools menu. They are used to display
information in a small text list at the bottom of the SFC window:

Find in steps and transitions find occurrences of a text in all steps and transitions
 and list them in the output window
Hide output window close the output list window

When error messages or occurrences are displayed in the output window, double
click on a line to directly open the level 2 programming window at the corresponding
location.

4.2.7 Using the SFC gallery
The AC31GRAF SFC editor manages an SFC gallery: it is a collection of SFC
structures that can be inserted in any SFC chart. Elements of the SFC gallery can
optionally embed the level 2 programming of steps and transitions. Use the following
commands of the "Tools" menu:

Copy to SFC gallery copy selected elements to SFC gallery
Paste from SFC gallery paste an SFC gallery element at the current

location

When copying to SFC gallery (i.e. creating a new SFC gallery element), you can
optionally ask to embed level 2 programming of selected SFC symbols.

User's guide

ABB France Page A-37 1SBC006099R1001 C - 03/07

4.3 Using the Quick LD editor

The LD language enables graphic representation of boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology.
Boolean input variables are attached to graphic contacts. Boolean output variables
are attached to graphic coils. The AC31GRAF Quick LD editor provides easy LD
diagram entering using either keyboard or mouse. Elements are automatically linked
and arranged on rungs by the Quick LD editor. No connection is drawn manually by
the user. The Quick LD editor also arranges rungs in the diagram so that the space
filled by the diagram is always optimized.

4.3.1 Basics of the LD language
A LD program is expressed as a list of rungs where contacts and coils are arranged.
Below are the basic components of an LD diagram:

 Rung head (left power rail)

Each rung begins with a left power rail, which represents the initial "TRUE" state.
AC31GRAF Quick LD editor automatically creates the left power rail when the first
contact of the rung is placed by the user. Each rung may have a logical name, which
can be used as a label for jump instructions.

 Contacts

A contact modifies the boolean data flow, according to the state of a boolean
variable. The name of the variable is displayed upon the contact symbol. The
following types of contacts are supported by AC31GRAF Quick LD editor:

...................................... direct contact

...................................... negated contact

User's guide

ABB France Page A-38 1SBC006099R1001 C - 03/07

...................................... contact with positive (rising) edge detection

...................................... contact with negative (falling) edge detection

 Coils

A coil represents an action. The rung state (state of the link on the left of the coil) is
used to force a boolean variable. The name of the variable is displayed upon the coil
symbol. The following types of coils are supported by AC31GRAF Quick LD editor:

...................................... direct coil

...................................... negated coil

...................................... "set" action coil

...................................... "reset" action coil

...................................... coil with positive (rising) edge detection

...................................... coil with negative (falling) edge detection

 Function blocks

A block in an LD diagram can represent a function, a function block, a sub-program
or an operator. Its first input and output parameters are always connected to the
rung. Other input and output parameters are literally written outside of the block
rectangle.

 Rung end (right power rail)

A rung ends with a right power rail. Using the Quick LD editor, the right power rail is
automatically inserted when a coil is placed by the user.

 Jump symbol

A jump symbol always refers to a rung label, id. the name of a rung defined
somewhere in the same LD diagram. It is placed at the end of a rung. When the rung
state is TRUE, the execution of the diagram directly jumps to this target rung. Note
that backward jumps are dangerous as they may lead to a blocking of the PLC loop in
some cases.

 The "EN" input

On some operators, functions or function blocks, the first input does not have
boolean data type. As the first input must always be connected to the rung, another
input is automatically inserted at the first position, called "EN". The block is executed
only if the EN input is TRUE. Below is the example of a comparison operator, and the
equivalent expression:

User's guide

ABB France Page A-39 1SBC006099R1001 C - 03/07

IF en is true
the comparison is valided and
scanned else
 q := FALSE;

 The "ENO" output

On some operators, functions or function blocks, the first output does not have
boolean data type. As the first output must always be connected to the rung, another
output is automatically inserted at the first position, called "ENO". The ENO output
always takes the same state as the first input of the block.
 On some cases, both EN and ENO are required. Below is an example with an
arithmetic operator, and the equivalent code expressed in pseudo language:

IF en is true, the addition is
valided and scanned
en = eno
(* continue rung with eno state *)

 Limitations of Quick LD editor

The AC31GRAF Quick LD editor does not allow to continue a rung (insert other
contacts or coils) on the right of a coil. If several outputs have to be made on the
same rung, the corresponding coils must be drawn in parallel.

4.3.2 Entering a LD diagram
All the editing commands of the Quick LD editor may be achieved either with the
keyboard or with the mouse.

 The editing grid

The LD diagram is entered in a logical matrix. Each cell of the matrix may contain up
to one LD symbol. Use the arrows of the keyboard, or click on a cell to move the
current selection. The selected cell is marked in reverse. For some cut/copy/paste
operations, it is possible to select several cells. To do that with the mouse, just drag
the mouse cursor in the diagram. With keyboard, use arrow keys with SHIFT key
pressed.

 Starting a new rung

To add a new rung to a diagram, move the selection after the last existing rung and
insert a contact (hit F2 or press the corresponding button in the function key toolbar).
A new rung with one contact and one coil is created.

User's guide

ABB France Page A-40 1SBC006099R1001 C - 03/07

 Entering the rung comment

Each rung may be documented with up to two lines of text. To enter a rung comment
text, move the selection on the cell upon the rung and hit ENTER key, or double click
on this cell with the mouse:

Hit ENTER on this cell

 Entering the rung label

Each rung may be identified by a name. This name can be used as a target label for
jump operations. To enter or change the label of a rung, move the selection on rung
head and hit ENTER key, or double click on this cell with the mouse:

Hit ENTER on this cell

The AC31GRAF Quick LD editor keeps the memory of the rung labels you already
entered, whether it has been specified for a rung name or a jump operation. The
"Jump/Label"' dialog box gives you the possibility either to enter a new label, or to
select an existing one.

If you enter a new name, it will automatically be added to the list. The "Remove"
button is used to remove the selected name from the list. It does not remove the label
on the rung you selected in the diagram. To do this, just press OK when the edit box
is empty.

 Inserting symbols on a rung

The insertion of symbols (contacts, coils, blocks...) on an existing rung is always
made according to the current selection. You have to select a valid cell position within
the rung and hit one of the following function keys to insert:

F2....................................... a contact before the selected symbol (on the left)
F3....................................... a contact after the selected symbol (on the right)
F4....................................... a contact in parallel with the selected symbol
F6....................................... a block before the selected symbol (on the left)
F7....................................... a block after the selected symbol (on the right)
F8....................................... a block in parallel with the selected symbol

User's guide

ABB France Page A-41 1SBC006099R1001 C - 03/07

The following commands are valid when the selection is on the rung output (coil):

F5....................................... add a coil in parallel with the selected one
F9....................................... add a "Jump" symbol in parallel with the selected

one
Shift + F9........................... add a symbol "Return" in parallel with the selected

one

For parallel insertion (F4/F8), if several contacts of a rung are selected together, the
symbol is inserted in parallel with the group of selected elements. Below is an
example:

To insert symbols in the diagram, you can also use the commands of the "Insert"
menu. With the mouse, you can click on the key tool bar located at the bottom of the
screen, on the type of symbol you want to insert:

 Entering symbols

To associate a variable symbol to a contact or a coil, select it and hit ENTER. With
the mouse, double click on the contact or coil. A variable selection box appears.
Refer to chapter "More about program editors" in this document for further
information about how to use this box. To associate a function, function block or
operator to a block, hit ENTER when the selection is on the inside its rectangle. To
associate a variable symbol to an input or output block parameter the selection must
be on the corresponding location, outside the rectangle of the block.

If the mode “Manual keyboard Input” is selected in the “Options” menu, the variable
name is directly catch in a field. Enter the new text and hit Enter to validate, or Esc to
give up. The field used for this mode can not be closed with the mouse.

 Changing the type of contacts and coils

The "Edit / Change coil/contact type" changes the type of the selected contact or
coil. A contact may be direct, negated, with positive or negative edge detection. A coil
may be direct, negated, set or reset, with positive or negative edge detection. Hitting
the SPACE bar has the same effect.

 Inserting a rung in a diagram

The "Edit / Insert rung" command insert a new rung in the diagram, before the
selected one. The rung is initiated with one contact and one coil.

User's guide

ABB France Page A-42 1SBC006099R1001 C - 03/07

4.3.3 Working on an existing diagram
The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

 Correcting a diagram

The DEL key can be used to remove the selected elements. It is not possible to
remove a coils, a jump or return symbol when it is the only output of a rung. Use
"Edit / Undo" command to restore elements after a DEL command. The DEL
command can also be applied to a group of elements selected in the diagram. The
DEL command can be used when selection is on the rung comment text to reset it.
The DEL command, used when the selection is on the rung head, remove the entire
rung.

 Copying symbols

The "Cut", "Copy", "Paste" commands of the "Edit" menu are used to move or copy
selected elements. These commands do not act on rung comments. The "Edit /
Paste special" command gives you the choice to insert the pasted elements:
• before the selected element (on the left)
• after the selected element (on the right)
• in parallel with the selected element

 Managing entire rungs

All editing commands (delete, copy, cut...) act on the entire rung if the selection is on
the rung header (left power rail). This provides an easy way to arrange rungs in the
diagram, just by moving the selection in the first column. It is also possible to extend
the selection vertically so that it includes several rung headers. In this case edition
commands may be applied to a list of entire rungs.

 Find and replace

The "Edit / Find" and "Edit / Replace" menu commands are used to find and replace
texts in the diagram. Only complete names can be found. Search acts on contacts,
coils, block names, block parameters and run labels. It cannot be used to find a string
in a rung comment. The Replace command cannot be used to change the type of a
block. The research can be made upward or downward, starting at position of the
current selection. It "loops" when the limits of the diagram are reached. The following
shortcuts are also available for quick research of variable names:

ALT + F2 finds the next element with the same variable name as the element
currently selected. This feature can also be applied to function blocks and rung
labels.

ALT + F5 finds the next coil with the same variable name as the element currently
selected. This feature is mainly used in debug mode, to quickly find out the rungs
which forces a suspicious variable.

User's guide

ABB France Page A-43 1SBC006099R1001 C - 03/07

4.3.4 Display options
The commands of the "Options" menu are used to customize the drawing of the LD
diagram on the screen, and to hide or display some types of information.

 Rung comments

Use the "Options / Rung comments" command to hide or display the rung
comments in the whole diagram. Hiding the rung comments can be required to have
a more condensed view on a huge diagram, as each comment consumes one row in
the editing matrix. This option does not affect the contents of the existing rung
comments, and can be swapped at any time.

 Switching name and address

Each variable, when associated to a contact, a coil or a block I/O parameter is
identified by its symbolic name. When using the menu "Options / Name/address"
the symbol appears to replace the address or vice-versa

 Rawing options

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
graphic LD diagram.

Use the check boxes in the "Workspace" groupbox to display or hide editor tool bar,
status bar and function key toolbar. Options of the "Document" groupbox allows you
to show or hide points of the editing grid, and to enable/disable the use of colors for
the drawing.

 Options of the "Zoom" groupbox allows you to select a main zoom ratio. You
can also use the "zoom" button in the editor toolbar to swap between default zoom
ratios.

 You can also customize the X/Y aspect ratio of cells in the editing grid. This
last option can be used to reduce the default cell width, if you commonly use short
names for variables. You can also use the "width" button in the editor toolbar to
change the X/Y aspect ratio without entering the Layout dialog box.

4.3.5 Calling other AC31GRAF tools

 Verifying a program

The "File / Verify" command runs the AC31GRAF code generator to verify the
programming syntax of the currently edited program. In case of SFC language, both
level 1 and 2 are checked. When syntax verification is complete, the code generator
window must be closed to continue work on the program. If there is only one program
in the application (the edited one) the application code is generated if no syntax error
is detected. The "Options / Compiling options" command is used to set compiling

User's guide

ABB France Page A-44 1SBC006099R1001 C - 03/07

and optimizing parameters. Refer to chapter "Using the code generator" in this
document for further information about compiling and code generation.

 Running debugger

The "File / PLC Communication" commands run the AC31GRAF graphic debugger
in real connected mode, and re-opens the edited program in debug mode. Used in
debug mode, no modification can be entered in the program.

 Editing the variable list

The "File / Variable list" command is used to edit the variable list of variables for the
current application and the current program. It also contains the entry points to edit
the user defined words. The local declarations or defined words relate to the
currently edited program.

 Printing the program

The "File / Print" command outputs the edited program on printer. This command
produces a draft listing of the program. More detailed information is given when the
project document generator is used.

For graphic programs (SFC, FBD and Quick LD) You can also use the "Edit / Copy
drawing" command to copy in the clipboard the drawing of the chart in metafile
format, so that it can be pasted in other applications such as word processors. For
SFC programs, only the level 1 information (chart, numbering and level 1 comments)
appear on the copied metafile.

4.3.6 Selecting a variable from variable list
 When editing LD or FBD programs, variable selection is required for the

description of contacts coils, block I/O parameters or FBD variable boxes. In both
cases, the "Select" dialog box is open to select a declared variable.

To select a variable, click on its name in the list. Its name and comment are then
displayed on the top of the list. Then press the "OK" button to confirm its selection. It
is also possible to directly enter a variable name in the edit control without using the
list.

User's guide

ABB France Page A-45 1SBC006099R1001 C - 03/07

4.4 Using the IL editor

This chapter only describes features and commands of the AC31GRAF text editor,
particularly when used to enter the source code of IL programs.

The AC31GRAF text editor is also used to enter the project descriptor, to edit diary
files, technical notes (on line documentation) for library elements, and each time a
text document has to be entered by the user.

4.4.1 File commands

 Verifying a program

The "File / Verify" command runs the AC31GRAF code generator to verify the
programming syntax of the current edited program. When syntax verification is
complete, the code generator window must be closed to continue work on the
program.
CAUTION: Verify doesn't compile: only the syntax of each instruction is verified
Missing instruction is not detected.

 Running debugger

The "File / PLC communication" command runs the AC31GRAF graphic debugger
in connected mode, and re-opens the edited IL program in debug mode. Used in
debug mode, no modification can be entered in the program.

 Editing the variable list

The "File / Variable list" command is used to edit the list of variables for the current
application and the current program.

 Making a Graphic

The "File / Graphic" command runs the graphic editor. This tool allows the user to
define graphic images that will be refreshed during debug, based on the state of the
application variables. The images are built with standard bitmap (.BMP) windows and

User's guide

ABB France Page A-46 1SBC006099R1001 C - 03/07

icon (.ICO) files. This requires additional graphic editing tools, such as PaintBrush,
to create bitmaps and icon files.

 Printing the program

The "File / Print" command outputs the edited program on a printer. This command
produces a draft listing of the program. More detailed information is given when the
project document generator is used.

4.4.2 Editing commands
The commands of the "Edit" menu are used to work on the edited text. Most of these
commands act on the characters currently selected in the diagram, or perform an
action at the current location of the caret.

 Cut, paste, and copy

The DEL key can be used to remove the selected text. Use "Edit / Undo" command
to restore elements after a DEL command. The "Cut", "Copy", "Paste" commands of
the "Edit" menu are used to move or copy text in the program, or to insert pieces of
texts copied in the clipboard by other applications.

 Find and replace

The "Edit / Find" and "Edit / Replace" menu commands are used to find and replace
texts in the program. Any character string can be found. Research can be performed
upward or backward, starting at the current location of the caret. It does not "loops"
when the limits of the program are reached.

 Go to line

The "Edit / Go to line" command is used to move the caret to a specific line number.
This can be very useful to have access to a line with an error detected by the
AC31GRAF compiler in an IL program, and referenced by a line number.

 Inserting a variable

Use the "Edit / Insert variable" command to insert at the caret position the symbol of
a variable or object declared in the list of variables. Symbol is selected through the
common variable selection box described in chapter "More about program editors" in
this document.

 Inserting a file

The "Edit / Insert file" command inserts the whole contents of a file at the current
location of the caret. Note that only pure ASCII text files can be handled by this
command.

User's guide

ABB France Page A-47 1SBC006099R1001 C - 03/07

4.4.3 Options
The commands of the "Options" menu are used to display or hide editor toolbars,
and select the character font. The selected character font will be used for any text
editing in all AC31GRAF Workbench.

When used to enter the source code of an IL program, the "Options / Show
keywords" command is used to show or hide a toolbox that groups the most
common keywords of IL language. Click on a button in the toolbar to insert the
corresponding keyword or operator at the current location of the caret.

4.4.4 Selecting a variable from list
 When editing a text program (IL) the "Edit / Insert variable" allows the

selection of a declared variable name to be inserted at the current position of the
caret. When editing LD or FBD programs, variable selection is required for the
description of contacts coils, block I/O parameters or FBD variable boxes. In both
cases, the "Select" dialog box is open to select a declared variable.

To select a variable, click on its name in the list. Its name and comment are then
displayed on the different fields. Then press the "OK" button to confirm its selection. It
is also possible to enter a variable name with a double click on the selected line in the
list, or manually enter its symbol without using the list.

Instruction List, or IL is a low level language. It is highly effective for smaller
applications or for optimizing parts of an application. Instructions always relate to the
current result (or IL register). The operator indicates the operation that must be
made between the current value and the operand. The result of the operation is
stored again in the current result.

User's guide

ABB France Page A-48 1SBC006099R1001 C - 03/07

5 Editor common tools

5.1 Declaring variables

The AC31GRAF variable list editor is an editing tool for the declaration of the internal
variables of the application.

5.1.1 Using the variable list in declaration mode
When the variable list is edited, all the fields are filled with the characteristic of the
last used variable, and the concerned field has just to be changed. So, the user can:

- change the symbol, the comment or the value of the variable constant in order

to modify it or to change its address to enter a new variable.
- Select an address type among the list and to create a new variable.

The variable will be added to the list when the OK button will be pressed.
When leaving the variable list, the user is able to save all modification occurred to the
list.

User's guide

ABB France Page A-49 1SBC006099R1001 C - 03/07

5.1.2 Using the variable list in selection mode
When the variable list is edited, by default, the last selected variable is highlighted in
the list. The user can:
- modify the fields of this variable in order to create an other
- double-click on the variable in the list to take it
- click on the variable in the list and to press OK to take it.

The variable will be added to the list.

Fast way to enter a variable:
(for the select and declare mode)

When the list of variables is edited, the cursor is set on the variable type field.
The user can enter manually the type he wants without using the mouse and with the
‘tab’ key, he can reach the next field in order to complete the address…Finally, he
press OK to enter the variable in the list.

Format of the variable list file
Each variable is described on one line of text. It is not possible to insert an empty
line.
Here is the exact format of the different variable records.

<type>→ <address>→<symbol>→<comment>↵
<type>→ <address>→ → <comment>↵
<type>→ <address>→<symbol>↵
<type>→ <address>↵

type.................................... Variable type (ex : I,O, IW, …..).
address Variable address (ex: 62.01).
symbol Variable symbol (ex : MOTOR). If it is a constant,

add “=<constant_value>” (ex : MOTOR=1)
Comment Variable comment (ex : Motor command).
→ Tabulation.
↵... Carriage return.

What you have to know on the variable creation:

• Address
For TXT, # and #H type, there is no address.
For I, O, A, E, IW, OW, EW and AW type, the address format is : “cc.cc” or “cc,cc”
where c is a digit. For the other type, the address format is “ccc.cc” or “ccc,cc”.
For more information, to range for one type, select the type choose “Edit / Range
on”.
The maximum size for an address is 6 characters.
You can not have twice the same address.
You can not create a variable outside of its declaration area (see “ Edit / Range on
”).

User's guide

ABB France Page A-50 1SBC006099R1001 C - 03/07

• Symbol
The first character must be a letter (“a”-“z” or “A”-“Z”). The next characters must be
some letters or digits.
A symbol must not begin by ‘GT”, “GS” or “LG”.
The words BVARTMP, SFC_EVOL and BVARTMP2 are reserved and are forbidden
for symbol.
The maximum size for a symbol is 16 characters.
You can not have twice the same symbol.

• Constant
A constant type is : K, KW and KD. For these types, the field “constant” must be
filled.
The value of a constant KW is between –32768 and 32767.
The value of a constant KD is between –2147483648 and 2147483647
The value of a constant K is 0 or 1.
The maximum size for a constant is 11 characters.

• Comment
The maximum size for a comment is 100 characters.

• Variable scope
A “local” variable is a variable visible only in a program, a sub-routine or a interrupt
program.
A “global” variable is visible in an application. If a variable has no symbol, it is
considered as a global variable for the application.

For the user library:

For the P, PW, PD, Q, QW, QD type, an address and a symbol are necessary.
For types I, IW, O, OW, S: no symbol, just an address.
For the M, MW, MD, KW, KD, just a symbol is necessary.

 Saving the variable list

The command “FiIe / Save” allows to save the state of the variable list.

 Making the cross references

The command “File / Cross references” runs the cross reference tool.

 Importing a variable list

The command “File / Import” allows to select a variable file on the disk and add all
the variables on the bottom of the list. The source file can have a PC33 file format, in
this case, the checkbox "PC33 format" must be selected.
If an address is already used in the project, a message is displayed to inform the user
and the variable is not set in the list, the same thing happens when a variable is not
inside the range value.
If the file is in an 907PC331 format, it is set in the new one.

User's guide

ABB France Page A-51 1SBC006099R1001 C - 03/07

 Exporting a variable list

The command “File / Import” allows to select variables in the list, record them in a
file on a selected directory. (the file extension is ".dcl")

 Cut variables

The command “Edit / Cut” erases the selected line(s) in the list and record it in the
clipboard.

 Copying variables

The command “Edit / Copy” records the selected line(s) in the list in the clipboard.

 Paste variables

The command “Edit / Paste” writes the contain of the clipboard in the variable list.

 Inserting an empty line

The command “Edit / Insert” inserts an empty line above the selected one.

 Removing a symbol

The command “Edit / Remove symbol” removes the symbol of the selected variable.

 Removing a comment

The command “Edit / Remove comment” removes the comment of the selected
variable.

 Searching an address

The command “Edit / Search” allows to search a defined address and highlight the
line where the variable is found.

 Sorting the variable list

The command “Edit / Sort” allows to set the list in the alphabetic order on the
variable addresses (I, IW, K, KW,…). If you save the sorted list and you open again
the variable list editor, the variables will be sorted in the alphabetic order. But the
global variables will be displayed in first and the local variables after.

 Authorized values area

The command “Edit / Range on type” allows to show the authorized values area for
a selected type. Before to use this command, select a variable in the list with the
correct type (for example the variable “O 62.00” to see the authorized values area of
the type “O”).

User's guide

ABB France Page A-52 1SBC006099R1001 C - 03/07

 Creating a variables area

The command ‘’Edit / Variables area” runs a dialog box containing the current
address type and allowing to select an area of addresses. When clicking on the OK
button, all the variables are added to the bottom of the list. If an address is already
used in the project, a message is displayed to inform the user and the variable is not
set in the list, the same thing happens when a variable is not inside the range value.

Ex:

If a user selects the M type and the following area:
from: 2.3
to: 2.6

the new addresses added to the list are:
M 002.03
M 002.04
M 002.05
M 002.06

User's guide

ABB France Page A-53 1SBC006099R1001 C - 03/07

5.2 Cross References

The AC31GRAF includes a cross-reference editor which provides user with a total
view of the declared variables in the project programs, and where they are used. The
aim of a cross reference is to list all the variables declared in the project, and to
localize at the source of each program the parts of source code where those
variables are used. The cross references are very useful for a global view of one
variable life cycle. They help to localize side effects, and to reduce the time to
understand the project during the maintenance. The cross references may also be
used for a global view of the complete list of variables of a project, so unused
variables are easily found and the complexity of the project measured.

From the variable list editor, the command “File / Cross references” runs the Cross
reference editor.

The list on the left shows the declared objects of the project (programs, variables and
defined words), and the library elements (functions and function blocks) referenced in
the project. The list on the right shows the occurrences in the programs of the object
currently selected in the first list.

 Object type selection

Because a project can group a huge number of declared objects, the combo box in
the editor toolbar is used to select the type of objects which must be listed in the
window. This allows the user to have access to selected information.

Each time the cross references are re-calculated, the selection is reset to "All
objects" in order to present the complete list.

 Re-calculating cross references

The "File / Re-calculate" command can be used at any time to update the cross
references according to the modifications entered in other AC31GRAF editing
windows.

 Exporting cross references

The "File / Export" command is used to write the complete listing of the cross
references in an ASCII text file. This file can then be opened with other applications
such as Windows NotePad or word processors.

 Searching an object

The "Edit / Search" command allows the user to directly select an variable in the
editor list. The searched variable cannot be found if it is not actually listed (when
using a selected display). It is recommended to activate the "All" selection in the
toolbar before searching for a variable.

User's guide

ABB France Page A-54 1SBC006099R1001 C - 03/07

 Opening a program

The list on the right contains the occurrences of the selected object in the source files
and I/O connection of the open project. The "Edit / Open program" command
enables the user to directly open a program where the object appears. It is also
possible to double click the mouse on an occurrence (in the occurrence list) to open
the corresponding program.

User's guide

ABB France Page A-55 1SBC006099R1001 C - 03/07

5.3 Build the application

The window of build application is automatically open with the “File / Verify”
command from the editors or with the “Make / Verify” command from the program
management window for a modularized project.

 Verifying a program

The “Verify” button allows the user to verify the syntax of the program currently
selected (in the program management window or the program currently selected).

 Building a project

The “Build” button allows the user to generate the code for a project.
When building a project, a verified program will not be re-verified, until its contents
has not changed.
Indeed, during the build phase, every program that is still not verified is checked to
detect the syntax error.
If no error occurs during the build phase, the code is generated and ready to be
downloaded.

Errors detected

If there is an error, a double-click on a line error sets the cursor
- on the line containing the error for the IL language
- on the picture containing the error for the FBD and LD language
- or on the current line error of the step or transition in cause for the SFC language.

The window can be resized, so the user can read both his errors and his source
code.

 Exit

The “Exit” button closes the compiler window.

User's guide

ABB France Page A-56 1SBC006099R1001 C - 03/07

5.4 Creating graphics

AC31GRAF contains a graphic editor, which allows the user to define graphic
pictures that can be animated during debug. Graphic objects must be linked to the
variables of the AC31GRAF project. The graphic picture is defined "off line", and
cannot be modified once the communication is running.

5.4.1 Drawing chart
A chart is made of one background picture, and of a set of graphic objects that will be
animated during debug. To enter the chart, the following operations must be
performed:
• Select a background picture
• Insert graphic objects
• Link objects to the variables of the project

The following graphic objects can be inserted in the chart :

Icon (boolean).................... Boolean display: two icons are used to display
either FALSE or TRUE state of the linked variable.

Bar graph (integer)........... Rectangle filled with one solid color. The size of

the rectangle is adjusted according to the value of
the linked analog variable.

Numerical (integer) Numerical display corresponding to the value of

the linked analog variable.

 The background picture

The background picture is contained in a "bitmap" (.BMP) file. This picture either is
built with another tool, or can be copied from an existing graphic library. The
AC31GRAF graphic editor does not include a painting tool. The most common tool to
build bitmap files is Paintbrush, delivered with Windows. The background picture
can have any size. If the AC31GRAF graphic editing window is larger than the
background picture, unused space can be filled with any solid color. The "Draw /

User's guide

ABB France Page A-57 1SBC006099R1001 C - 03/07

Background picture" command is used to select the bitmap file and also to select a
solid color for empty space. The bitmap file must exist before it is inserted in the
chart. Press the "Browse" button of the dialog box to select an existing pathname on
the disk. A background color can be selected to fill unused space, if the selected
bitmap is smaller than the editing window.

Note: Bitmaps consume a large amount of memory. It is highly recommended to
correctly size the picture, and limit the unused space inside the bitmap rectangle.

 Icons

Icons used to display boolean objects are stored in standard icon files (.ICO). These
are 32x32 pixel/16 color pictures, which can use the "transparent" color. Any icon
editor can be used to create .ICO files.

 Bar graph and numerical displays

"Bar graph" and "numerical" objects can be linked to analog (or integer) variables.
The sizing direction of "bar graph" objects can be to the left, to the right, to the top or
to the bottom. Any variable of the AC31GRAF project (global or local to one program)
can be linked to a graphic object.

 Inserting objects

To insert a graphic object in the chart, the following operations have to be performed:
• Select the type of object in the editor toolbar or in the "Draw" menu
• Click at the insert position in the graphic area
• Enter the definition of the object
Analog "bar graph" and "numerical" objects have a variable size. To insert such an
object, the user has to define the boundary of the rectangle, by dragging the mouse
in the drawing area. The following buttons of the editor toolbar are used to select a
type of graphic object:

.. Selection mode (no object can be inserted)

.. Insert boolean icon

.. Insert analog bar graph

.. Insert analog numerical field

 Selecting objects

Selecting graphic objects is needed for most of the editing commands. The
AC31GRAF graphic editor enables the selection of one or more existing objects in
the chart area. To select objects, the "select" (button with an arrow) choice must be
checked in the editor toolbar. You can run the "Draw / Select" command or hit the
ESCAPE key to set the selection mode. To select one object, the user simply has to
click on its symbol. To select a list of objects, drag the mouse in the drawing area to
select a rectangle area. All the graphic objects that intersect the selection rectangle
are marked as "selected". A selected object is drawn with little black squares around
its graphic symbol.

User's guide

ABB France Page A-58 1SBC006099R1001 C - 03/07

By making a new selection, any previously selected objects are unselected. To
remove the existing selection(s), simply click with the mouse on an empty area
outside of the rectangle which borders the selected objects.

 Moving and resizing objects

To move one or more objects in the edited chart, select them and drag them using
the mouse to another location. Some objects, such as analog bar graphs and
numerical fields, have variable height and width. The AC31GRAF graphic editor
enables the user to change the size of such an existing object. To do this, click on the
border of the selected object, and drag the mouse to change the object size. Boolean
"icon" objects have a fixed size (32x32 pixels) and cannot be resized.

 Cut and paste

The commands of the "Edit" menu are used to work on currently selected objects.
Below is the list of available commands:
• Cut the selected objects (and copy them in the clipboard)
• Clear (delete) the selected objects
• Copy the selected objects in the clipboard
• Paste the clipboard in the diagram

Pasted objects are marked as selected objects, so they can be moved to another
place in the diagram.

Note: The AC31GRAF graphic editor uses a dedicated clipboard, which contains
logical information about linked graphic files and variable names. This is not the
standard graphic or text clipboard of Windows.

 Icons and bitmaps

Icon and bitmap files are created using other tools. The only information stored in the
AC31GRAF graphic definition file is the pathname of these files. It is better to store
icon and bitmap files in the AC31GRAF project directory. Therefore, only the
filenames (and not complete pathnames) are stored. This ensures that the
AC31GRAF graphic file can be transported to another platform, which may have
different directory pathnames. If the AC31GRAF Workbench has been installed in the
"c:\AC31GRAF" root directory, the directory which contains the project named "ppp"
has the following pathname :

 c:\AC31GRAF\apl\ppp

Warning: Compressed bitmap files (.BMP files with Run Length Encoding
compression) are not recognized by the AC31GRAF graphic editor.

5.4.2 Object description
The parameters of an existing object can be modified, by double clicking on its
symbol in the graphic area. When the "Name" field is the active field, pressing the
"Browse" button enables the user to find the names of the variables already declared

User's guide

ABB France Page A-59 1SBC006099R1001 C - 03/07

in the list of variables. When an "Icon file" field is the active field (for a boolean icon),
pressing the "Browse" button enables the user to find the pathname of any of the
existing icon files.

 Below is the list of fields that must be entered when defining a boolean "icon"
object:

Name Name of the AC31GRAF boolean variable linked

to the graphic object.
"False" icon file Pathname of the icon (.ICO) file used to display

the False" state of the linked boolean variable.
"True" icon file Pathname of the icon (.ICO) file used to display

the "True" state of the linked boolean variable.
Default value..................... Value used to display the object before it is first

refreshed by the debugger.
Command variable If this option is checked, the user can modify the

value of the linked variable during debug by
double clicking on the corresponding graphic
symbol.

 Below is the list of fields that must be entered when defining an analog "bar

graph" object:

Name Name of the AC31GRAF analog variable linked to
the graphic object.

Range – minimum Indicates the minimum value that can be
displayed. If the value is less than this limit, the
bar graph is not displayed.

Range – maximum Indicates the maximum value that can be
displayed. If the value is greater or equal to this
limit, the bar graph rectangle is completely filled.

Default value..................... Value used to display the object before it is first
refreshed by the debugger.

Direction Indicates the growing direction of the filled part of
the bounded rectangle. When the variable value
increases, the filled rectangle must grow to the
left, to the right, to the top or to the bottom.

Color.................................. Color used to draw the filled part of the moving
bar.

Command variable If this option is checked, the user can modify the
value of the linked variable during debug by
double clicking on the corresponding graphic
symbol.

 Below is the list of fields that must be entered when defining an analog

"numerical" object:

Name Name of the ABB AC31GRAF analog variable
linked to the graphic object.

User's guide

ABB France Page A-60 1SBC006099R1001 C - 03/07

Format Indicates whether the value is displayed as an
integer or real value. The decimal part of a
displayed real value is truncated if the "integer"
format is selected.

Justification Indicates how the text (numerical value) must be
justified (left, right or center) in the bounded
rectangle.

Default value..................... Value used to display the object before it is
refreshed by the debugger.

Command variable If this option is checked, the user can modify the
value of the linked variable during debug by
double clicking on the corresponding graphic
symbol.

5.4.3 Commands of the "File" menu
The "File" menu contains the commands which allow the user to manage the
complete chart as a file.

 The "File / New" command starts the editing of a new graphic chart. The
number of charts defined for a project is not limited by AC31GRAF. Before editing the
new chart, the previously opened chart is closed. The AC31GRAF graphic editing
window cannot be used to edit several charts at once. However, multiple AC31GRAF
graphic editing windows can be opened simultaneously with each used to edit a
different chart.

 The "File / Open" command allows the user to close the currently edited chart
and to start editing another chart of the current project. The new selected chart
replaces the current one in the editing window. When selecting the new chart, the
"Delete" button can be used to delete an existing chart, in order to clean up the
project directory. Icon and bitmap files referenced in a chart are not erased when the
chart is deleted.

 The "File / Save" command stores the currently edited chart on the disk. If the
chart is a new untitled document, the user must give it a name before saving it.
Naming a chart must conform to the following rules:
• The length of the name cannot exceed 8 characters
• The first character must be a letter
• The following ones must be letters, digits or underscore characters
• Naming is case insensitive
The "File / Save as" command allows the user to store the currently edited chart
under another name.

5.4.4 Options
The "Options" menu contains the graphic editing options for displaying the toolbar,
cursor coordinates, or selecting the state of displayed boolean objects.

 The "Options / View false state" and "Options / View true state" commands
are used to select the state (false or true) of the displayed boolean "icon" objects. By
selecting one of these options, the user can simulate the state of the inserted

User's guide

ABB France Page A-61 1SBC006099R1001 C - 03/07

boolean objects, in order to display either "false" state or "true" state icons. These
commands apply to all inserted objects. Object states cannot be changed individually.

User's guide

ABB France Page A-62 1SBC006099R1001 C - 03/07

6 Control panel

6.1 Using the control panel

This window is the main window of the PLC communication menu.
It can be reduced to the state of an icon, or to the state of a minimum graphic as
below :

In this state, the window is set at the right corner at the top of the window.

 Close the communication

 Display the extended graphic

 Control menu

 Transfer menu

In its normal state there four buttons below the menu items, these are:

 Download the program and the constant (the user program is stored into the
flashEprom). The configuration is not sent

 Run the program

 Warm restart of the program

 Abort the running program

User's guide

ABB France Page A-63 1SBC006099R1001 C - 03/07

 Editing the on line list

The “File / On line List” edits the on-line list window. For further information see the
“On line list” chapter.

 Making time diagrams

The “File / Time diagrams” command runs the time diagram tool. This tool allows
the user to watch time diagrams corresponding to the changes in the lists of
variables.

 Making a graphic

The "File / Graphics" command runs the graphic editor. This tool allows the user to
define graphic images that will be refreshed during debug, based on the state of the
application variables. The images are built with standard windows bitmap (.BMP) and
icon (.ICO) files. This requires additional graphic editing tools, such as PaintBrush,
to create bitmaps and icon files.

 Displaying the central unit status

The “File / Status” command edits the status window. This windows display some
information about the central unit. For further information see the “Status / diagnosis”
chapter.

 Configuration

The “File / Configuration” command edits the configuration window. This window
allows the user to accede to central unit parameters. For further information see the
“Configuration” chapter.

 Aborting a PLC program

The command “Control / Abort PLC program” aborts the program in the central
unit. It is no longer running, when launching this command.

 Starting a PLC program

The command “Control / Start PLC program” runs the program in central unit.

 Restarting a PLC program

The command “Control / Reset (Warm) of central unit program” restarts the
program in its current state in the central unit.

 Cold-restarting a PLC program

The command “Control / Cold restart of central unit program” restarts the
program in its initial state (memory and configuration are initialized) in the central unit.

 Delete PROM

User's guide

ABB France Page A-64 1SBC006099R1001 C - 03/07

The command “Control / Delete PROM” deletes the program on the FlashEPROM.

 Save PROM contents

The command “Control / Save PROM contents” cancels the flashEPROM of the
central unit.

 Reactivating a former program

The command “Control / Reactivate program” reactivates the former program.

 Erasing PROM contents

The command “Control / Erase PROM contents” fills the central unit program
memory with NOP instructions.

 Optimizing a PLC program

The command “Control / Optimize program on PLC” suppresses the NOP
instructions.

 Sending a program

The command “Control / Send program” downloads the program (prog.ABB) into
the central unit.

 Sending constants

The command “Control / Send constants” sends the constants of the
application.(not the system constants) into the central unit.

 Sending all

The command “Control / Send all” downloads the program (prog.ABB) and the
constants of the application, except the system constants into the central unit.

 Download / Send system constants

The command “Control / Send system constants” sends the system constants (It is
also be done from the configurator editor) into the central unit.

 Minimizing the window

The option “Options / Minimize window” takes the shape as described on the top.

 Window always visible

If the option “Options / Always on top” is selected, the window is always above all
other windows.

User's guide

ABB France Page A-65 1SBC006099R1001 C - 03/07

On the next selection of this menu item, the window no longer on this state.

 Editing the historic of the errors

The command option “Options / Error list” edits the historic of the errors occurred
with the date and the time.

User's guide

ABB France Page A-66 1SBC006099R1001 C - 03/07

6.2 Time diagrams

The "File / Time diagrams" command of the Communication window enables the
user to watch time diagrams corresponding to the changes in the lists of variables.
Lists are built when debugging the application. They can be stored on the disk and
opened again during other debug sessions. A time diagram list can contain up to 8
variables. Variables of different types can be mixed in the same list. Global and local
variables can be inserted in a list. A list is dedicated to one particular project.

Tracing variables is very useful for the functional testing of an application. Even
though the displayed time diagrams are not precise measurements, they allow the
user to control the synchronization of process events.

 Saving lists on hard disk

The commands of the "File" menu are used to create, open and save the lists of time
diagrams. The number of lists for one project is not limited by AC31GRAF. While
naming the lists of variables to be saved on the disk, the following rules have to be
followed:

• name cannot exceed 8 characters
• the first character must be a letter
• the following characters can be letters, digits
• naming of lists is case insensitive

The time diagram editor cannot display more that one list of variables at a time in the
same window. However, the time diagram editor can be run more than once, in order
to spy different lists simultaneously.

 Inserting variables in the list

The "Edit / Insert" command inserts another variable in the list of time diagrams. The
variable name is selected in the list of variables defined in the project list variables.
The user does not have to manually enter the identifier. The variable is inserted
before the variable currently selected in the list. The list cannot contain more than 8
diagrams. The same variable cannot appear more than once in the same list. If the

User's guide

ABB France Page A-67 1SBC006099R1001 C - 03/07

project is modular, the user can choose the program for the local variables he wants
to see.

 Changing the selected variable

The "Edit / Modify" command replaces the selected variable by another variable.
You can also use the "Cut" command to remove the selected variable from the list.

 Diagram scaling

The "Edit / Set scale" command sets up the minimum and maximum values for the
timing diagram of the selected variable. This command has no effect if the selected
diagram shows a boolean variable.

 Setting refresh duration

The "Options / Cyclic refresh duration" command enables the user to change the
time scale of the timing diagrams. The time scale is defined by entering the cyclic
refresh duration, which is the time elapsed between two consecutive points of a
timing diagram.

 Pause and resume

Another possibility is to pause the cyclic diagram refresh. The ESCAPE key can also
be used to pause or restart refreshing diagrams.

User's guide

ABB France Page A-68 1SBC006099R1001 C - 03/07

6.3 On line list

The "On line list" command enables the user to build non-contiguous lists of
variables which are refreshed with their current values. Lists are built when
debugging the application. The lists can be stored on the disk and opened again
during other debug sessions. Variables of different types may be mixed in the same
list. Global and local variables can be inserted in a list. A list of variables is dedicated
to one particular project. The on line list is very useful for the functional testing of an
application. It allows the user to watch the changes of a limited part of the controlled
process, independent of the corresponding source code in the application programs.
The on line list is also useful while debugging IL text programs. The user can easily
group in a list the set of variables used in a program, in order to control or monitor the
execution of the programmed instructions.

To modify a value, double click on a variable and enter a new value or erase the
current value. The new value appears in the column “write”.

 Creating a variable list

The “File / New“ command creates a new list of variables.

 Opening a variable list

The “File / Open“ command allows the user to select and open a variable list.

 Saving a variable list

The "File / Save" command save a variable list. The number of lists for one project is
not limited by AC31GRAF. While naming the lists of variables to be saved on the
disk, the following rules have to be followed:

• a name cannot exceed eight characters
• the first character must be a letter
• the following characters can be letters, digits
• naming of lists is case insensitive

User's guide

ABB France Page A-69 1SBC006099R1001 C - 03/07

The list editor cannot display more that one list of variables at a time in the same
window. However, the list editor can be run more than once, in order to spy different
lists simultaneously.

 Inserting a variable

The “Edit / Insert” command inserts one or more variables into the On line list which
are selected from the list of variables displaying the global and local variables for a
selected program. In the list of variables, you select continuous variables by selecting
them while holding down the Shift key and non-continuous variables by selecting
them while holding down the Ctrl key. Inserting variables eliminates the need to
manually enter identifiers. Selected variables are inserted before the variable
currently selected in the On line list. A variable cannot appear more than once in a
given On line list.

If a variable has no symbol, its address appears in the column name and column
address. Whereas, if a variable is defined with a symbol, the latter is added in the
column name.

 Modifying a variable

The “Edit / Modify” command replaces the selected variable by another variable.
You can also use the " Edit / Cut" command to remove the selected variable from the
list.

 Cut a variable

The “Edit / Modify” command deletes the current selected line.

 Sending new values

The “Edit / Send new values” command allows to download to the central unit the
new value entered in the column “write” to the selected variable.

 Resetting new values

The “Edit / Reset new values” command erases the column “write”.

 Locking a selected variable

The “Edit / Lock selected variable” command is similar to the send command, but
the variable is locked.
Only for the input/output variables.

 Unlocking selected variable

After having selected the “Edit / Unlock selected variable” command, the selected
variable stops to be locked.
Only for the input/output variables.

User's guide

ABB France Page A-70 1SBC006099R1001 C - 03/07

 Adding list of locked variables

The “Edit / Get list of locked variables” adds the list of locked variables to the
current list in the central unit.

User's guide

ABB France Page A-71 1SBC006099R1001 C - 03/07

6.4 Status / Diagnosis

The diagnostic command is run from the control panel and is always available when
the AC31GRAF is used in On Line mode. It displays diagnostic information from the
central unit.

Cycle Time (ms)................ the central unit cycle time is displayed in ms
PLC State the central unit state (RUN or ABORT) is

displayed
Bar-graph one represents the CPU load and the other one,

the proportion of the memory used.
Update refresh the bar-graph and the different messages

displayed.
Errors detected by PLC ... the error messages emitted by the central unit are

analyzed by AC31GRAF and converted into text
strings. Each error is identified by a class number,
an error number in the class and a meaning. If an
address number is indicated with the error
message, you can double clicked on the message
to open the file of the IL code program (prog.txt).

Acknowledge acknowledge the central unit error.
Miscellaneous................... display different information according to the

central unit type.

Refer to the technical description of each central unit for more details.

User's guide

ABB France Page A-72 1SBC006099R1001 C - 03/07

6.5 Configuration

The configuration tool provides the way to display, enter, upload, download and verify
main central unit parameters.

The list of parameters depends on the central unit type and this list is automatically
selected at the beginning of the project

Parameters are stored in system constants in the central unit. Such constants are not
visible from the program.

The configuration tool may be used in both off-line and on-line modes.

A template of default values is created when a new project is created.

The parameters are displayed in a listbox :
The meaning of each parameter is described on the bottom of the window

Your choice column of the listbox contains values registered on PC. When you leave
the configuration tool (by clicking on ‘EXIT’ choice), your choice is automatically
saved.

The central unit column displays the values that are stored on the central unit. Each
time the configuration tool is launched, the system constants are read and the result
is displayed inside the «central unit» column.

User's guide

ABB France Page A-73 1SBC006099R1001 C - 03/07

 Sending system constants

The “Control / Download” command sends to the central unit the system constant
according your choice.
Once the sending is ended, if you click on refresh, you can verify the central unit
contains the system constant similar to your choice.

 Uploading system constants

The purpose of that choice is to register on PC the values that are stored on central
unit .
The “Control / Download” command copies the content of the column “Central unit”
into the column “Your choice”.

 Setting PLC clock

The “Control / Set PLC clock” command changes the central unit time (available for
serie 30, serie 50 and serie 90).

 Setting the password protection

The “Control / Password protection” command changes the password stored on
central unit (available for serie 40, serie 50 and serie 30)

 Exit

The “Control / Exit” command saves the content of the column “Your choice” and
exit the configuration tool

User's guide

ABB France Page A-74 1SBC006099R1001 C - 03/07

 Showing ToolBar

The “View / Show ToolBar” command displays or removes the toolbar inside the
configuration tool.

 Showing title bar

The “View / Show title bar” command displays or removes the listbox title bar

 Showing status bar

The “View / Show status bar” command displays or removes the status bar, at the
bottom of the window.

 Refreshing the constants

The “View / Reads” command reads again the system constants on the central unit,
and display the result by refreshing the column “Central unit”.

Refer to the technical description of each central unit for more details.

 Automatic launch of editors in debug mode

The following commands have to be set for a direct use of the debug mode
 - To start one project in debug mode
 C:\AC31GRAF\EXE\CORIDA7.EXE -D=PROJECT_NAME
 -To start one project in debug mode with GRAF1 graphic
 C:\AC31GRAF\EXE\CORIDA7.EXE -D=PROJECT_NAME -G=GRAF1
 -To start one project in debug mode with GRAF1, GRAF2 graphics
 C:\AC31GRAF\EXE\CORIDA7.EXE -D=PROJECT_NAME -G=GRAF1
-G=GRAF2
 -To start one project in debug mode with LIST1 list of variables
 C:\AC31GRAF\EXE\CORIDA7.EXE -D=PROJECT_NAME -L=LIST1
 -To start one project in debug mode with GRAF1, GRAF2 graphics, and LIST1
list of variables
 C:\AC31GRAF\EXE\CORIDA7.EXE -D=PROJECT_NAME -G=GRAF1
-G=GRAF2 -L=LIST1
 -To start one project in debug mode with TIME1 chronogram
 C:\AC31GRAF\EXE\CORIDA7.EXE -D=PROJECT_NAME -T=TIME1

User's guide

ABB France Page A-75 1SBC006099R1001 C - 03/07

7 User’s library

7.1 User’s function

A user’s function is developed by the user for a specific and repetitive application.
The user’s library enables the creation and storage of user’s functions.
The “File / Library” command from the “project management” window runs the
library tool.

• The code of a user function is written in FBD/LD (Function Bloc Diagram / Ladder
Diagram) and duplicated on each call.
• A user function is created for one CPU (series 30, series 40, series 50, series 90, or
controller).

 Creating a function

The “File / New” command allows to create a new function (name, language and
CPU used)

 Editing the source

The “File / Open” command allows to edit the source file of the function.

 Renaming a function

The “File / Rename” command allows to change the name of a function.

 Deleting a function

The “File / Delete” command allows to delete a function from the list.

 Showing properties

The “File / Properties” command shows the availability for the other CPUs (maybe
using another name).

User's guide

ABB France Page A-76 1SBC006099R1001 C - 03/07

 Creating an alias

With the “File / Properties/Alias” command, while entering the properties of a
function, you can define an alias for the function when used in a project. Thus a
function created under a name can appear under another name in the function list
when editing a project. Different aliases may be defined for each type of PLC.

A particular use of aliases is the capability to define several functions with different
source code, and thus different names, and to provide all of them under the same
name, so that the end user can use a generic service, without any regard on the
coding differences due to various PLC specific features.

 Editing a technical note

The “Tools / Technical note” command allows to edit the AC31GRAF text editor line
technical note.

 Importing or exporting a function

The “Tools / Import and Export” command allows to retrieve or set a user library on
a floppy disk (everything is copied to one file).

7.2 Variables for a user’s function

A user’s function is programmed with specific variables. The type P, PW, PD are
used as input parameters and Q, QW, QD as output parameters. There is no address
affected to them but these types are numbering from 0 to N, furthermore, they must
contain a symbol.
The internal variables such as M and K have only a name (symbol) and no address.
The direct global variables have only an address, but are not recommended.
Warning: Labels similar to an operator are not allowed (for example: LD, AND, OR
etc...)

User's guide

ABB France Page A-77 1SBC006099R1001 C - 03/07

7.3 Compiling a user’s function

A function must be compiled before to be used in a project.
Never forget to archive a user library on the disk, and the fact that the debug is not
available.
A user’s function is automatically inserted into the standard AC31GRAF library.

Below is an example of a user’s function :

TRIGGER

Source :

IN LAST OUT

IN LAST
TRIGGER

IN OUT

Declaration :
P0 IN
Q0 OUT
M LAST

7.4 User library access and rights control

You can choose to apply up to three levels of access and rights control for users of
the user library:
� Level 1 allowing users to access the library editor
� Level 2 allowing users to access technical information on functions as well as

view their source code (in read-only mode)
� Level 3 allowing users to access technical information on functions, edit the

source code of user functions, and create or delete user functions

Note: The level 1 password is independent from the level 2 and level 3 passwords.
You can only set a level 2 password when a level 3 password is set.

For all three levels of access and rights control, when a user attempts to access the
user library, a dialog box prompts them to enter a password.

You set up access and rights control for the user library from within the library window
by choosing the Tools/Set Password option displaying the Password setting editor.
In the Password setting editor, for each access and rights control level to implement,
you need to provide a password and password confirmation.

Language reference

ABB France 1SBC006099R1001 C - 03/07

B Language reference

Language reference

ABB France Page B-1 1SBC006099R1001 C - 03/07

B LANGUAGE REFERENCE

1 Project architecture .. B-3
1.1 Programs .. B-3
1.2 Modular architecture.. B-3
1.3 No-modular architecture.. B-5

2 Variables .. B-6
2.1 Variables are sorted according to their type. ... B-6
2.2 Variables are sorted according to their range .. B-6

3 FBD language .. B-7
3.1 FBD diagram main format... B-7
3.2 Jumps and labels .. B-8
3.3 Boolean negation ... B-9
3.4 Calling function or function blocks from the FBD.. B-9

4 LD and Quick LD languages.. B-10
4.1 Power rails and connection lines ... B-10
4.2 Multiple connection... B-11
4.3 Basic LD contacts and coils... B-12

4.3.1 Direct contact B-12
4.3.2 Inverted contact B-13
4.3.3 Contact with rising edge detection B-13
4.3.4 Contact with falling edge detection B-14
4.3.5 Direct coil B-14
4.3.6 Inverted coil B-15
4.3.7 SET coil B-15
4.3.8 RESET coil B-16
4.3.9 Coil with rising edge detection B-16

4.4 Jumps and labels .. B-18
4.5 Blocks in LD.. B-18

4.5.1 The "EN" input B-19
4.5.2 The "ENO" output B-19
4.5.3 Using both "EN" and "ENO" B-19

5 SFC language... B-20
5.1 SFC chart main format... B-20
5.2 SFC basic components... B-20

5.2.1 Steps and initial steps B-20
5.2.2 Transitions B-21
5.2.3 Oriented links B-21
5.2.4 Jump to a step B-22

5.3 Divergences and convergences.. B-22
5.3.1 Single divergences B-23
5.3.2 Double divergences B-24

5.4 Macro steps.. B-25
5.5 Actions within the steps... B-26

5.5.1 Boolean actions B-26
5.5.2 Pulse actions B-27
5.5.3 Non-stored actions B-27
5.5.4 Calling function and function blocks from an action B-28
5.5.5 IL convention B-28

Language reference

ABB France Page B-2 1SBC006099R1001 C - 03/07

5.5.6 Activation duration of a step B-29
5.6 Conditions attached to transitions.. B-29

5.6.1 LD convention B-30
5.6.2 IL convention B-30

5.7 SFC dynamic rules... B-30
6 IL language.. B-32

6.1 IL main syntax ... B-32
6.1.1 Labels B-32
6.1.2 Operator modifiers B-32

6.2 IL operators.. B-33
6.2.1 LD operator B-34
6.2.2 ST operator B-34
6.2.3 S operator B-34
6.2.4 R operator B-35
6.2.5 JMP operator B-35
6.2.6 Calling sub-programs and interruptions B-36
6.2.7 Calling function blocks: CAL, !BA 0 operator B-36

6.3 Main differences between IEC IL and ABB IL... B-37

Language reference

ABB France Page B-3 1SBC006099R1001 C - 03/07

1 Project architecture

An AC31GRAF project is divided into several programming units called programs.
The programs of a project are linked together in a tree-like architecture. Programs
can be described using any of FBD, LD, SFC, Quick LD or IL graphic or litteral
languages.

1.1 Programs

A program is a logical programming unit, that describes operations between
variables of the process.

There is three kinds of programs :
 main programs
 subroutines
 interruptions

The main programs are executed according to the order defined by the project
architecture.
The subroutines can be called from each other programs of the project.
The call of subroutines and interruption programs can be done by all editors

Programs are linked together in a hierarchy tree. Programs placed on the top of the
hierarchy are activated by the system. Sub-routines (lower level of the hierarchy) are
activated by their father. A program can be described with any of the available
graphic or literal following languages:

Sequential Function Chart (SFC) for high level programming
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Quick Ladder Diagram (QLD) for boolean operations with function block insertion
Instruction List (IL) for low level operations

The same program can be written with several languages. LD and FBD are
combined in one diagram.

1.2 Modular architecture

A project with a modular architecture contains more than one program.
It could be also composed of several programs , subroutines and interruptions
program. A language is affected to each of them.

The open command of the project manager allows to edit the program manager of
the selected project.

The edition of the programs of a modular project is realized from the program
manager.

If a modular project contains only one program, it becomes a no-modular project.

Language reference

ABB France Page B-4 1SBC006099R1001 C - 03/07

Here is the diagram for the call of the main tools in a modular project :

Project management

Program management

Editor

Communication

Variable list+tools Syntax analysis Code generator

debug mode
Edition mode

Inside the program management, you can create subroutines, interruptions or other
programs.

Each of them are represented by an icon:
- a blue icon for the programs
- a green icon for the subroutines
- a red icon for the interruptions

The icons representing a program are on the left of the client area of the program
management, the subroutines in the middle and the interruptions on the right.

A project can contained only three interruption programs : two hard interruptions, (#1
and #2) and a soft one.
The icons representing the interruption programs allow, thanks to their name, to
make the difference between the hard interruption, (icon name + #1 or #2) and the
soft interruption (icon name + value of the cycle).

Language reference

ABB France Page B-5 1SBC006099R1001 C - 03/07

1.3 No-modular architecture

A project with a no-modular architecture contains only one program.
It does not allow to be composed of several programs and subroutines. A language
is affected to the project.

The open command of the project manager allows to run the edition of the program
which composes the project.

A no-modular project can be set modular by using the modularize command. This
function of the files menu runs the program manager and allows the creation of other
programs or subroutines.

In this case, the program manager contains only one icon which is representing the
program of the project.
By default, its name is «main».

Here is the diagram for the call of the main tools in a no-modular project :

d eb u g m o d e
P ro jec t m an ag e r

E d ito r C o m m u n ica tio n

V ariab le lis t + to o ls A n a ly sis-co d e g en era tio n

E d ito r m o d e

Language reference

ABB France Page B-6 1SBC006099R1001 C - 03/07

2 Variables

2.1 Variables are sorted according to their type.

These are basic types of variables :

BOOLEAN true/false binary values
WORD................................ analog values
DOUBLEWORD................. double word values
CONSTANT binary, analog, double word values
TEXT string characters

Binary variable type I Binary input

O Binary output
S Binary step
K Binary constant
M Binary flag

Word variable type IW Analog input
 OW Analog output
 KW Analog constant
 MW Analog flag

Double word variable type KD Double word constant
 MD Double word flag

Text variable TXT Input string

Direct constant # Value in decimal
 #H Value in hexadecimal

2.2 Variables are sorted according to their range

GLOBAL the variable can be used by all programs of a
project

LOCAL............................... the variable can be used by only one program

Two variables can have the same symbol, but they have to be local in two different
files.
A global variable can not have the same symbol as a local variable file.
A variable defined without a symbol is global.

Language reference

ABB France Page B-7 1SBC006099R1001 C - 03/07

3 FBD language

The Functional Block Diagram (FBD) is a graphic language. It allows the
programmer to build complex procedures by taking existing functions from the
AC31GRAF library and wiring them together in the graphic diagram area.

3.1 FBD diagram main format

FBD diagram describes a function between input variables and output variables. A
function is described as a set of elementary function blocks. Input and output
variables are connected to blocks by connection lines. An output of a function block
may also be connected to an input of another block.

{ }
Function

Inputs Outputs

An entire function operated by an FBD program is built with standard elementary
function blocks from the AC31GRAF library. Each function block has a fixed number
of input connection points and a fixed number of output connection points. A
function block is represented by a single rectangle. The inputs are connected on its
left border. The outputs are connected on its right border. An elementary function
block performs a single function between its inputs and its outputs. The name of the
function to be performed by the block is written in its rectangle symbol. Each input or
output of a block has a well defined type.

{ }Inputs Outputs&

Name of the function

Input variables of an FBD program must be connected to input connection points of
function blocks. The type of each variable must be the same as the type expected for
the associated input. An Input for FBD diagram can be a constant expression, any
internal or input variable, or an output variable.

Output variables of an FBD program must be connected to output connection points
of function blocks. The type of each variable must be the same as the type expected
for the associated block output. An Output for FBD diagram can be any internal or
output variable, or the name of the program (for sub-programs only). When an

Language reference

ABB France Page B-8 1SBC006099R1001 C - 03/07

output is the name of the currently edited sub-program, it represents the assignment
of the return value for the sub-program (returned to the calling program).
Input and output variables, inputs and outputs of the function blocks are wired
together with connection lines. Single lines may be used to connect two logical
points of the diagram:

- An input variable and an input of a function block
- An output of a function block and an input of another block
- An output of a function block and an output variable

The connection is oriented, meaning that the line carries associated data from the
left extremity to the right extremity. The left and right extremities of the connection
line must be of the same type.

Multiple right connection can be used to broadcast an information from its left
extremity to each of its right extremities. All the extremities of the connection must be
of the same type.

3.2 Jumps and labels

Labels and jumps are used to control the execution of the diagram. No other object
may be connected on the right of a jump or label symbol. The following notations are
used:

>>LAB jump to a label (label name is "LAB")
LAB: definition of a label (label name is "LAB")

If the connection line on the left of the jump symbol has the boolean state TRUE, the
execution of the program directly jumps after the corresponding label symbol.

(* Example of a FBD program using labels and jumps *)

manual
b1

&

NOMODIF

input1
input2 result

NOMODIF:

result
valid cmd10

/

&

(* IL Equivalence: *)
 ld manual
 and b1
 jmpc NOMODIF
 ld input1
 or input2
 st result
NOMODIF: ld result

Language reference

ABB France Page B-9 1SBC006099R1001 C - 03/07

 and valid
 st cmd10

3.3 Boolean negation

A single connection line with its right extremity connected to an input of a function
block can be terminated by a boolean negation. The negation is represented by a
small circle. When a boolean negation is used, the left and right extremities of the
connection line must have the BOOLEAN type.

(* Example of a FBD program using boolean negation *)

input1
input2 output1

&

3.4 Calling function or function blocks from the FBD

The FBD language enables the calling of sub-programs, functions or function blocks.
A sub-program, or function or function block is represented by a function box. The
name written in the box is the name of the sub-program or function or function
blocks.
A function block can have more than one outputs.

(* Example of a FBD program using an user function block (Weighing) *)

Weighing
mode

delta net_w

mode
delta

net_weight

=?
IN1

IN2 Q0

+

tare_weight weight

output1

Language reference

ABB France Page B-10 1SBC006099R1001 C - 03/07

4 LD and Quick LD languages

Ladder Diagram (LD) is a graphic representation of boolean equations, combining
contacts (input arguments) with coils (output results). The LD language enables the
description of tests and modifications of boolean data by placing graphic symbols
into the program chart. LD graphic symbols are organized within the chart exactly as
an electric contact diagram. LD diagrams are connected on the left side and on the
right side to vertical power rails.

These are basic graphic components of an LD diagram:

--------------------- Left vertical power rail

--------------------- Right vertical power rail

--------------------- Horizontal connection line

-------------------- Vertical connection line

----------------- Multiple connection lines (all connected together)

----------------- Contact associated with a variable

----------------- Coil associated to an output or to an internal variable

4.1 Power rails and connection lines

An LD diagram is limited on the left and right side by vertical lines, named left power
rail and right power rail respectively.

Right power rail
Left power rail

LD diagram graphic symbols are connected to power rails or to other symbols by
connection lines. Connection lines are horizontal or vertical.

Horizontal connection
lines

Vertical connection
with OR meaning

Vertical
connection line

Each line segment has a boolean state FALSE or TRUE. The boolean state is the
same for all the segments directly linked together. Any horizontal line connected to
the left vertical power rail has the TRUE state.

Language reference

ABB France Page B-11 1SBC006099R1001 C - 03/07

4.2 Multiple connection

The boolean state given to a single horizontal connection line is the same on the left
and on the right extremities of the line. Combining horizontal and vertical connection
lines enables the building of multiple connections. The boolean state of the
extremities of a multiple connection follows logic rules.

A multiple connection on the left combines more than one horizontal lines
connected on the left side of a vertical line, and one line connected on its right side.
The boolean state of the right extremity is the LOGICAL OR between all the left
extremities.

(* Example of multiple LEFT connection *)

v1

v2

v3

(* right extremity state is (v1 OR v2 OR v3) *)

A multiple connection on the right combines one horizontal line connected on the
left side of a vertical line, and more than one line connected on its right side. The
boolean state of the left extremity is propagated into each of the right extremities.

(* Example of multiple RIGHT connection *)

input1 output1

output2

(* means: *)
output1 = input1
output2 = input1

A multiple connection on the left and on the right combines more than one
horizontal line connected on the left side of a vertical line, and more than one line
connected on its right side. The boolean state of each of the right extremities is the
LOGICAL OR between all the left extremities

(* Example of multiple LEFT and RIGHT connection *)

input1

input2

output1

output2

output3

(* means: *)
output1 = input1 OR input2
output2 = input1 OR input2
output3 = input1 OR input2

Language reference

ABB France Page B-12 1SBC006099R1001 C - 03/07

4.3 Basic LD contacts and coils

There are several symbols available for input contacts

There are several symbols available for output coils:

Direct coil
Inverted coil
SET coil
RESET coil
Coils with rising edge detection
Coils with falling edge detection

The name of the variable is written above any of these graphic symbols:

boo_variable

Name of the associated
boolean variable

Left connection Right connection

4.3.1 Direct contact
A direct contact enables a boolean operation between a connection line state and
a boolean variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND
between the state of the left connection line and the value of the variable associated
with the contact.

(* Example using DIRECT contacts *)

input1 input2 output1

(* means: *)
output1 = input1 AND input2

Language reference

ABB France Page B-13 1SBC006099R1001 C - 03/07

4.3.2 Inverted contact
An inverted contact enables a boolean operation between a connection line state
and the boolean negation of a boolean variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND
between the state of the left connection line and the boolean negation of the value
of the variable associated with the contact.

(* Example using INVERTED contacts *)

input1 input2 output1

(* means: *)
output1 = NOT (input1) AND NOT (input2)

4.3.3 Contact with rising edge detection
This contact (positive) enables a boolean operation between a connection line
state and the rising edge of a boolean variable.

boo_variable

Left connection Right connection
P

The state of the connection line on the right of the contact is set to TRUE when the
state of the connection line on the left is TRUE, and the state of the associated
variable rises from FALSE to TRUE. It is reset to FALSE in all other cases.

(* Example using RISING EDGE contacts *)

input1 input2 output1

P
(* means: *)
output1 = input1 AND (input2 AND NOT (input2prev))
(* input2prev is the value of input2 at the previous cycle *)

Language reference

ABB France Page B-14 1SBC006099R1001 C - 03/07

4.3.4 Contact with falling edge detection
This contact (negative) enables a boolean operation between a connection line
state and the falling edge of a boolean variable.

boo_variable

Left connection Right connection
N

The state of the connection line on the right of the contact is set to TRUE when the
state of the connection line on the left is TRUE, and the state of the associated
variable falls from TRUE to FALSE. It is reset to FALSE in all other cases.

(* Example using FALLING EDGE contacts *)

input1 input2 output1

N

(* means: *)
output1 = input1 AND (NOT (input2) AND input2prev)
(* input2prev is the value of input2 at the previous cycle *)

4.3.5 Direct coil
Direct coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean state of the left connection.
The state of the left connection is propagated into the right connection. The right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using DIRECT coils *)

input1 output1

output2

(* means: *)
output1 = input1
output2 = input1

Language reference

ABB France Page B-15 1SBC006099R1001 C - 03/07

4.3.6 Inverted coil
Inverted coils enable a boolean output according to the boolean negation of a
connection line state.

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean negation of the state of the
left connection. The state of the left connection is propagated into the right
connection. Right connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using INVERTED coils *)

input1 output1

output2

(* means: *)
output1 = NOT (input1)
output2 = input1

4.3.7 SET coil
"Set" coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
S

The associated variable is SET TO TRUE when the boolean state of the left
connection becomes TRUE. The output variable keeps this value until an inverse
order is made by a "RESET" coil. The state of the left connection is propagated into
the right connection. Right connection may be connected to the right vertical power
rail.

The associated boolean variable must be OUTPUT or INTERNAL.

Language reference

ABB France Page B-16 1SBC006099R1001 C - 03/07

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* means: *)
IF input1 THEN output1 = TRUE
IF input2 THEN output1 = FALSE

4.3.8 RESET coil
"Reset" coils enable boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
R

The associated variable is RESET TO FALSE when the boolean state of the left
connection becomes TRUE. The output variable keeps this value until an inverse
order is made by a "SET" coil. The state of the left connection is propagated into the
right connection. Right connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* means: *)
IF input1 THEN output1 = TRUE
IF input2 THEN output1 = FALSE

4.3.9 Coil with rising edge detection
"Positive" coils enable boolean output of a connection line boolean state. This type
of coils are only available using the Quick ladder editor.

boo_variable

Left connection Right connection
P

Language reference

ABB France Page B-17 1SBC006099R1001 C - 03/07

The associated variable is set to TRUE when the boolean state of the left
connection rises from FALSE to TRUE. The output variable resets to FALSE in all
other cases. The state of the left connection is propagated into the right connection.
Right connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
P

(* means: *)
IF (input1 and NOT(input1prev)) THEN output1 = TRUE
ELSE output1 = FALSE
(* input1prev is the value of input1 at the previous cycle *)
Coil with falling edge detection
"Negative" coils enable boolean output of a connection line boolean state. This
type of coils are only available using the Quick ladder editor.

boo_variable

Left connection Right connection
N

The associated variable is set to TRUE when the boolean state of the left
connection falls from TRUE to FALSE. The output variable resets to FALSE in all
other cases. The state of the left connection is propagated into the right connection.
Right connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
N

(* means: *)
IF (NOT(input1) and input1prev) THEN output1 = TRUE
ELSE output1 = FALSE
(* input1prev is the value of input1 at the previous cycle *)

Language reference

ABB France Page B-18 1SBC006099R1001 C - 03/07

4.4 Jumps and labels

Labels, conditional and unconditional JUMPS symbols, can be used to control the
execution of the diagram. No connection can be put on the right of the label and jump
symbol. The following notations are used:

>>LAB jump to label named "LAB"
LAB: definition of the label named "LAB"

If the connection on the left of the jump symbol has the TRUE boolean state, the
program execution is driven after the label symbol.

(* Example using JUMP and LABEL symbols *)

manual_mode

input1 result

OTHER

OTHER:

input2 result

END

END:

(* IL Equivalence: *)
 ldn manual_mode
 jmpc other
 ld input1
 st result
 jmp END
OTHER: ld input2
 st result
END: (* end of program *)

4.5 Blocks in LD

Using the Quick LD editor, you connect function boxes to boolean lines. A function
can actually be an operator, a function block or a function. As all blocks do not have
always a boolean input and/or a boolean output, inserting blocks in an LD diagram
leads to the addition of new parameters EN, ENO to the block interface. The EN,
ENO parameters are not added if you use the FBD/LD editor as you can connect the
variable with the required type.
A function block with duplicated inputs can not be used in QUICK LADDER.It has to
be used in the other language as FBD

Language reference

ABB France Page B-19 1SBC006099R1001 C - 03/07

4.5.1 The "EN" input
On some operators, functions or function blocks, the first input does not have
boolean data type. As the first input must always be connected to the rung, another
input is automatically inserted at the first position, called "EN". The block is executed
only if the EN input is TRUE. Below is the example of a comparison operator, and the
equivalent expression

IF en is true then the function is valided
else Q = false

4.5.2 The "ENO" output
On some operators, functions or function blocks, the first output does not have
boolean data type. As the first output must always be connected to the rung, another
output is automatically inserted at the first position, called "ENO". The ENO output
always takes the same state as the first input of the block. On some cases, both EN
and ENO are required. Below is an example with an arithmetic operator, and the
equivalent code expressed in pseudo language:

IF en is true , the addition is valided and
scanned else not
en = eno
continue rung with eno state...

4.5.3 Using both "EN" and "ENO"
On some cases, both EN and ENO are required. Below is an example with an
arithmetic operator, and the equivalent code expressed in pseudo language

IF en is true , the addition is valided and
scanned else not
en = eno
continue rung with eno state...

Language reference

ABB France Page B-20 1SBC006099R1001 C - 03/07

5 SFC language

Sequential Function Chart (SFC) is a graphic language used to describe sequential
operations. The process is represented as a set of well defined steps, linked by
transitions. A boolean condition is attached to each transition. Actions within the
steps are detailed by using IL language.

5.1 SFC chart main format

An SFC program is a graphic set of steps and transitions, linked together by
oriented links. Multiple connection links are used to represent divergences and
convergences. Some parts of the complete program may be separated and
represented in the main chart by a single symbol, called macro steps. The basic
graphic rules of the SFC are:

- A step cannot be followed by another step
- A transition cannot be followed by another transition

5.2 SFC basic components

The basic components (graphic symbols) of the SFC language are: steps and initial
steps, transitions, oriented links, and jumps to a step.

5.2.1 Steps and initial steps
A step is represented by a single square. Each step is referenced by a number,
written in the step square symbol. A main description of the step is written in a
rectangle linked to the step symbol. This description is a free comment (not part of
the programming language). The above information is called the Level 1 of the step:

102 Start motor 1

Reference number

Comment

At run time, a token indicates that the step is active:

Active step: Inactive step:

102 Start motor 1 214 Weighing

Language reference

ABB France Page B-21 1SBC006099R1001 C - 03/07

The initial situation of an SFC program is expressed with initial steps. An initial
step has a double bordered graphic symbol. A token is automatically placed in each
initial step when the program is started.

Initial step:

Start motor 11

An SFC program must contain at least one initial step.

5.2.2 Transitions
Transitions are represented by a small horizontal bar that crosses the connection link.
Each transition is referenced by a number, written next to the transition symbol. A
main description of the transition is written on the right side of the transition symbol.
This description is a free comment (not part of the programming language). The
above information is called the Level 1 of the transition:

Weighing command

Reference number

Comment

102

5.2.3 Oriented links
Single lines are used to link steps and transitions. These are oriented links. When the
orientation is not explicitly given, the link is oriented from the top to the bottom.

100

Explicit orientation
from transition 11

to setp 100
Implicit orientation
from step 100 to
transition 10

101
10

11

Language reference

ABB France Page B-22 1SBC006099R1001 C - 03/07

5.2.4 Jump to a step
Jump symbols may be used to indicate a connection link from a transition to a step,
without having to draw the connection line. The jump symbol must be referenced with
the number of the destination step:

Jump to step 102

102

A jump symbol cannot be used to represent a link from a step to a transition.
Example of jumps - the following charts are equivalent:

1

2

30 31

1

1

2

30 31

1

5.3 Divergences and convergences

Divergences are multiple connection links from one SFC symbol (step or
transition) to many other SFC symbols. Convergences are multiple connection links
from more than one SFC symbols to one other symbol. Divergences and
convergences can be single or double.

Language reference

ABB France Page B-23 1SBC006099R1001 C - 03/07

5.3.1 Single divergences
A single divergence is a multiple link from one step to many transitions. It allows the
active token to pass into one of a number of branches. A single convergence is a
multiple link from many transitions to the same step. A single convergence is
generally used to group the SFC branches which were started on a single
divergence. Single divergences and convergences are represented by single
horizontal lines.

Single divergence

Single convergence

Warning: The conditions attached to the different transitions at the beginning of a
single divergence are not implicitly exclusive. The exclusivity has to be explicitly
detailed in the conditions of the transitions to ensure that only one token progresses
in one branch of the divergence at run time. Below is an example of single
divergence and convergence:

(* SFC program with single divergence and convergence *)

1 Initialize

1
Run & not Error

101
Error

2 Start Motor M1 101 Alarm

2
M1 started

102
Acknowledge

3 Start timer

3
timer > t#3s

4 Stop motor M1

4
M1 stopped

1

Language reference

ABB France Page B-24 1SBC006099R1001 C - 03/07

5.3.2 Double divergences
A double divergence is a multiple link from one transition to many steps. It
corresponds to parallel operations of the process. A double convergence is a multiple
link from many steps to the same transition. A double convergence is generally used
to group the SFC branches started on a double divergence. Double divergences and
convergences are represented by double horizontal lines.

Double divergence

Double convergence

Example of double divergence and convergence:

(* SFC program with double divergence and convergence *)

1 Initialize

1
Run

2 Process1 101 Process2

2
End of Process 1

101
End of Process 2

3 Wait for process 2 102 Wait for process 2

3
true

1

Language reference

ABB France Page B-25 1SBC006099R1001 C - 03/07

5.4 Macro steps

A macro step is a unique representation of a unique group of steps and transitions.
The body of the macro step is described separately, elsewhere in the same SFC
program. It appears as a single symbol in the main SFC chart. This is the symbol
used for a macro step :

102 Process A

Reference number

Comment

The reference number written in the macro step symbol is the reference number of
the first step in the body of the macro step. The macro step body must begin with a
beginning step and terminate with an ending step. The chart must be self-
contained. A beginning step has no upper link (no backward transition). An ending
step has no lower link (no forward transition). A macro step symbol may be put in the
body of another macro step.

Warning: Because macro step is a unique set of steps and transitions, the same
macro step cannot be used more than once in an SFC program.

Example of macro step:
(* Main chart *) (* Body of the macro step *)

1 Initialize 201 Fill WUnit

201
unit full

1
Error

101
Run & not Error 202 Weigh

2 Alarm 201 Weighing
202

weighing done

2
Ack

102
true 203 Empty WUnit

203
unit empty

1
204 Store weight

Language reference

ABB France Page B-26 1SBC006099R1001 C - 03/07

5.5 Actions within the steps

The level 2 of an SFC step is the detailed description of the actions executed during
the step activity. This description is made by using SFC literal features, and other
languages. The basic types of actions are:
Boolean actions
Pulse actions programmed in IL
None-stored actions programmed in IL

Several actions (with same or different types) can be described in the same step. The
special features that enable the use of any of the other languages are:

Calling function and function blocks from an action
IL convention

5.5.1 Boolean actions
Boolean actions assign a boolean variable with the activity of the step. The boolean
variable can be an output or an internal. It is assigned each time the step activity
starts or stops. This is the syntax of the basic boolean actions:

var (N);assigns the step activity signal to the variable
var;same effect (N attribute is optional)
/ var;assigns the negation of the step activity signal to the variable

example :
%O62.00 (N); assigns the step activity signal to the output %O62.00
%O62.00;.....same effect (N attribute is optional)
/ %M00.00; ..assigns the negation of the step activity signal to the variable %M00.00

Other features are available to set or reset a boolean variable, when the step
becomes active. This is the syntax of set and reset boolean actions:

var (S);sets the variable to TRUE when the step activity signal becomes TRUE
var (R);resets the variable to FALSE when the step activity signal becomes

TRUE
example
%O62.00 (S); sets %O62.00 to TRUE when the step activity signal

becomes TRUE
%M00.00 (R); resets %M00.00 to FALSE when the step activity signal

becomes TRUE

Language reference

ABB France Page B-27 1SBC006099R1001 C - 03/07

The boolean variable must be an OUTPUT or an INTERNAL. The following SFC
programming leads to the following behavior:

Boolean actions

Bdirect(N) ;
/Binvert ;
Bset(S) ;
Breset(R) ;

10
step activity

Bdirect

Binvert

Bset

Breset

5.5.2 Pulse actions
A pulse action is a list of IL instructions, which are executed only once at the
activation of the step. Instructions are written according to the following SFC syntax:

 ACTION (P) :
 (* IL statements *)
 END_ACTION ;
The following shows the results of a pulse action:

Step activity

Execution

5.5.3 Non-stored actions
A non-stored (normal) action is a list of IL instructions which are executed at each
cycle during the whole active period of the step. Instructions are written according to
the following SFC syntax:

 ACTION (N) :
 (* IL statements *)
 END_ACTION ;

The following is the results of a non-stored action:

Step activity

Execution

Language reference

ABB France Page B-28 1SBC006099R1001 C - 03/07

5.5.4 Calling function and function blocks from an action
Subroutines, or function blocks (written in IL, LD or FBD language) can be directly
called from an SFC action block, based on the following syntax :

For subroutines
 ACTION (P) :
 CAL_FB(subroutineX, bit)
 END_ACTION;

or

 ACTION (N) :
 CAL_FB(subroutineX, bit)
 END_ACTION;

For function blocks in IL
 ACTION (P) :
 !BA 0
 BlocX
 Param1
 Param2
 ...
 END_ACTION;
or
 ACTION (N) :
 !BA 0
 BlocX
 Param1
 Param2
 ...
 END_ACTION;

Warning: The instructions written between ACTION(P) or (N) and
END_ACTION are scanned and executed only if the step is activated.

5.5.5 IL convention
Instruction List (IL) programming may be directly entered in an SFC action block,
based on the following syntax:

 ACTION (P) : (* or N *)
 <instruction>
 <instruction>

 END_ACTION;

Language reference

ABB France Page B-29 1SBC006099R1001 C - 03/07

Below is an example of an IL program in an action block:

(* SFC program with an IL sequence in an action block *)

1 Action (P):
 LD False
 ST Led1
 ST Led2
End_action;

5.5.6 Activation duration of a step
An action can be actived only for a time.
The timer function has to be used in an transition.
It cannot be used in a action (N) because the timer function cannot be reset when
the step is deactivated.
The start timer bit has to be written in the action .
Check the following example:

102 Bit_timer;

Bit_timer
TON

TIME_VAl
ET

The bit-timer is set to 1 by the step 102 and in the same time the timer TON is
started.
After the time value the next step is activated , the bit-timer is reset and the timer
TON is stopped.

5.6 Conditions attached to transitions

At each transition, a boolean expression is attached that conditions the clearing of
the transition. The condition is usually expressed with LD language. This is the Level
2 of the transition. Other structures may, however, be used:

Warning: When no expression is attached to the transition, the default condition is
TRUE.

Language reference

ABB France Page B-30 1SBC006099R1001 C - 03/07

5.6.1 LD convention
The Ladder Diagram (LD) language can be used to describe the condition attached
to a transition. The diagram is composed of only one rung with one coil. The coil
value represents the transitions value.
Below is an example of LD programming for transitions:

1 Run Error

5.6.2 IL convention
Instruction List (IL) programming may be directly used to describe an SFC transition.

 <instruction>
 <instruction>

The value contained by the current result (IL register) at the end of the IL sequence
causes the resulting of the condition to be attached to the transition:

 current result = 0 condition is FALSE
 current result <> 0 condition is TRUE

Below is an example of IL programming for transitions:

(* SFC program with an IL program for transitions *)

1

 LD Run
 &N Error

5.7 SFC dynamic rules

The five dynamic rules of the SFC language are:

 Initial situation
The initial situation is characterized by the initial steps which are, by definition, in the
active state at the beginning of the operation. At least one initial step must be
present in each SFC program.

 Clearing of a transition
A transition is either enabled or disabled. It is said to be enabled when all
immediately preceding steps linked to its corresponding transition symbol are active,
otherwise it is disabled. A transition cannot be cleared unless:
 - it is enabled, and
 - the associated transition condition is true.

Language reference

ABB France Page B-31 1SBC006099R1001 C - 03/07

 Changing of state of active steps
The clearing of a transition simultaneously leads to the active state of the immediately
following steps and to the inactive state of the immediately preceding steps.

 Simultaneous clearing of transitions
Double lines may be used to indicate transitions which have to be cleared
simultaneously. If such transitions are shown separately, the activity state of
preceding steps (GSnnn.x) can be used to express their conditions.

 Simultaneous activation and deactivation of a step
If, during operation, a step is simultaneously activated and deactivated, priority is
given to the activation.

Language reference

ABB France Page B-32 1SBC006099R1001 C - 03/07

6 IL language

Instruction List, or IL is a low level language. It is highly effective for smaller
applications or for optimizing parts of an application. Instructions always relate to the
current result (or IL register). The operator indicates the operation that must be
made between the current value and the operand. The result of the operation is
stored again in the current result.

6.1 IL main syntax

An IL program is a list of instructions. Each instruction must begin on a new line,
and must contain an operator, completed with optional modifiers and, if necessary,
for the specific operation, one or more operands, separated with commas (','). A
label followed by a colon (':') may precede the instruction. If a comment is attached
to the instruction, it must be the last component of the line. Comments always begin
with '(*' and ends with '*)'. Empty lines may be entered between instructions.
Comments may be put on empty lines.

Below are examples of instruction lines:

Label Operator Operand Comments

Start: LD BUTTON1 (* push button *)
 ANDN %I62.02 (* command is not forbidden *)
 ST START-MOTOR (* start motor *)

6.1.1 Labels
A label followed by a colon (':') may precede the instruction. A label can be put on an
empty line. Labels are used as operands for some operations such as jumps. Naming
labels must conform to the following rules:

- name cannot exceed 16 characters
- first character must be a letter
- following characters must be letters, digits or '-' character

The same name cannot be used for more than one label in the same IL program. A
label can have the same name as a variable.

6.1.2 Operator modifiers
The available operator modifiers are shown below. The modifier character must
complete the name of the operator, with no blank characters between them:

N boolean negation of the operand
C conditional operation

The 'N' modifier indicates a boolean negation of the operand. For example, the
instruction ORN %I62.00 is interpreted as: OR NOT %I62.00

Language reference

ABB France Page B-33 1SBC006099R1001 C - 03/07

The 'C' modifier indicates that the attached instruction must be executed only if the
current result has the boolean value TRUE (different than 0 for non-boolean values).
The 'C' modifier can be combined with the 'N' modifier to indicate that the instruction
must be executed only if the current result has the boolean value FALSE (or 0 for
non-boolean values).

6.2 IL operators

The following table summarizes the standard operators of the IL language:

Operator Modifiers Operand Description

LD N Variable, constant Loads operand
! N Variable, constant Loads operand
ST N Variable Stores current result
S Variable Sets to TRUE
R Variable Resets to FALSE

!BA 0 + function block name -> Calls a function block
CAL FB instance name Calls a function block
CAL_FB Calls a subroutine
VTASK Calls an interruption
JMP C N Label Jumps to label

AND N BOO boolean AND
& N BOO boolean AND
OR N BOO boolean OR
/ N BOO boolean OR

ADD variable, constant Addition
+ variable, constant Addition
SUB variable, constant Subtraction
- variable, constant Substraction
MUL variable, constant Multiplication
* variable, constant Multiplication
DIV variable, constant Division
: variable, constant Division

GT variable, constant Test: >
> variable, constant Test: >
GE variable, constant Test: >=
>= variable, constant Test: >=
EQ variable, constant Test: =
=? variable, constant Test: =
LE variable, constant Test: <=
<= variable, constant Test: <=
LT variable, constant Test: <
< variable, constant Test: <
NE variable, constant Test: <>

Language reference

ABB France Page B-34 1SBC006099R1001 C - 03/07

<> variable, constant Test: <>

In the next section, only operators which are specific to the IL language are
described, other standard operators can be found in the section "standard operators,
function blocks and functions".

6.2.1 LD operator
Operation loads a value in the current result

Allowed modifiers N

Operand constant expression
 internal, input or output variable

Example:

 (* EXAMPLES OF LD OPERATIONS *)
LDex:: LD false (* result = FALSE boolean constant *)
 LD true (* result = TRUE boolean constant *)
 LD boo_var1 (* result = boolean variable *)
 LD ana_var1 (* result = analog variable *)
 LDN boo_var2 (* result = NOT (boolean variable) *)

6.2.2 ST operator
Operation stores the current result in a variable
 the current result is not modified by this operation

Allowed modifiers N

Operand internal or output variable

Example:

 (* EXAMPLES OF ST OPERATIONS *)
STboo: LD false
 ST boo_var1 (* boo_var1 = FALSE *)
 STN boo_var2 (* boo_var2 = TRUE *)
STana: LD %IW3.3
 ST ana_var1 (* ana_var1 = value of %IW3.3 *)

6.2.3 S operator
Operation: stores the boolean value TRUE in a boolean variable, if the current

result has the boolean value TRUE. No operation is processed if current
result is FALSE. The current result is not modified by this operation.

Allowed modifiers: (none)

Operand: output or internal boolean variable

Language reference

ABB France Page B-35 1SBC006099R1001 C - 03/07

Example:

 (* EXAMPLES OF S OPERATIONS *)
SETex: LD true (* current result = TRUE *)
 S var1 (* var1 = TRUE *)
 (* current result is not modified *)
 LD false (* current result = FALSE *)
 S var1 (* nothing done var1 unchanged *)

6.2.4 R operator
Operation stores the boolean value FALSE in a boolean variable, if the current

result has the boolean value TRUE. No operation is processed if current
result is FALSE. The current result is not modified by this operation.

Allowed modifiers (none)

Operand output or internal boolean variable

Example:

 (* EXAMPLES OF R OPERATIONS *)
RESETex: LD true (* current result = TRUE *)
 R var1 (* var1 = FALSE *)
 (* current result is not modified *)
 ST var2 (* var2 = TRUE *)
 LD false (* current result = FALSE *)
 R var1 (* nothing done var1 unchanged *)

6.2.5 JMP operator
Operation jumps to the specified label

Allowed modifiers C N

Operand label defined in the same IL program

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2) *)
(* to set one from 3 output booleans. Test "is equal to 0" is made with *)
(* the JMPC operator *)

JMPex:
 LD selector (* selector is 0 or 1 or 2 *)

 EQ value=0 (* %KW1.0=0*)
 JMPC test1 (* if selector = 0 then *)

 LD true
 ST bo0 (* bo0 = true *)

 JMP JMPend (* end of the program *)

Language reference

ABB France Page B-36 1SBC006099R1001 C - 03/07

test1:
 LD selector

 EQ value=1 (* %KW1.1=1 *)
 JMPC test2 (* if selector = 1 then *)

 LD true
 ST bo1 (* bo1 = true *)

 JMP JMPend (* end of the program *)
test2:
 LD true (* last possibility *)

 ST bo2 (* bo2 = true *)
JMPend: (* end of the IL program *)

6.2.6 Calling sub-programs and interruptions
A sub-program is called from the IL language, using its name as an operator.

Operation executes a sub-program

Allowed modifiers (none)

Operand The first calling parameter must be the name of the subroutine

The following one, separated by a coma, is the call bit of the subroutine.

Example:

 CAL_FB(sub1,%I2.2) (* call the subroutine named sub1 *)

An interruption is called from the IL language, using its name as an operator.

Operation executes an interruption

Allowed modifiers (none)

Operand The first calling parameter must be the name of the interruption

The following one, separated by a coma, is the call bit of the
interruption.

Example:

 VTASK(int, %I2.2) (* call the hard interruption named int *)

6.2.7 Calling function blocks: CAL, !BA 0 operator
Operation calls a function block
 CAL has to be used for blocks not extended.

Allowed modifiers None

Operand Name of the function block instance.
 Output parameters are known if used.

Language reference

ABB France Page B-37 1SBC006099R1001 C - 03/07

Example1:

(* Calling function block TON*)

CAL TON (IN, PT, ET, Q)

is equivalent to :

!BA0
TON
IN
PT
ET
Q

example 2:

(* Calling function block CTUH *)
CAL
CTUH(#1,%I62.00,%I62.01,%MW2.0,%I62.02,%I62.03,%I62.04,%O62.00,%OW62.0
1,%OW62.02)

is equivalent to :

!BA 0
CTUH
#1
%I62.00
%I62.01
%MW2.0
%I62.02
%I62.03
%I62.04
%O62.00
%OW62.01
%OW62.02

6.3 Main differences between IEC IL and ABB IL

With IL ABB, an instruction list must be followed by an operator ST:

LD %I62.01
AND %I62.02
ST %M2.0

In order to use the accumulator %M2.0, we have to load it:

LD %I62.01

Language reference

ABB France Page B-38 1SBC006099R1001 C - 03/07

AND %I62.02
ST %M2.0
LD %M2.0
OR %M3.0
…

With IL IEC, there no need to load the accumulator (the current result), so we can
write:

LD %I62.01
AND %I62.02
ST %M2.2
OR %I62.03
…

Call of subroutines, interruptions and function blocs:

Function blocs:
The following syntax is just used for IL ABB in order to call function blocs
!BA 0
CTUH
…

but it is possible to use the IL IEC as follow:

CAL CTUH(…)

Subroutines and interruption:
To call a subroutine:
CAL_FB
and an interruption:
VTASK

This syntax is specific to the IL ABB

Function block description

ABB France 1SBC006099R1001 C - 03/07

C Function block description

Function block description

ABB France Page C-1 1SBC006099R1001 C - 03/07

C FUNCTION BLOCK DESCRIPTION
1 Libraries ..C-2
2 Basic operators/functions ...C-8

2.1 Binary functions... C-8
2.2 Timer functions.. C-16
2.3 Counter functions... C-33
2.4 Comparison functions, word.. C-39
2.5 Arithmetic functions, word.. C-48
2.6 Logical functions, word ... C-60

3 Program control functions ...C-68
4 CS31 functions...C-84
5 Communication functions ..C-116
6 Regulation functions ...C-154
7 Format conversion functions ...C-174
8 Standard double word functions ...C-200

8.1 Comparison functions, double word.. C-200
8.2 Arithmetic functions, double word .. C-203
8.3 Logical functions, double word ... C-212

9 High order functions...C-216
10 Memory access functions..C-291
11 Special Functions ..C-317
12 Historical values..C-323

12.1 Definition... C-323
12.2 Historical value table ... C-323

13 Runtimes ..C-325
13.1 Definition... C-325
13.2 Runtime table (time in μs) ... C-325

Function block description

ABB France Page C-2 1SBC006099R1001 C - 03/07

1 Libraries

Each central unit serie has its own library of functions. The libraries are specified in
the following table : the "x" symbol indicates the functions available in the different
central unit series.

Binary functions serie

from pages C-8 to C-16
Ctler 40 50 90 30

&, AND And x x x x x
/, OR Or x x x x x
= Allocation x x x x x
=1 Exclusive OR x x x x x
=R Allocation reset memory x x x x x
=S Allocation set memory x x x x x
I+ Pulse (positive edge) x x x x x
I- Pulse (negative edge) x x x x x
MAJ Majority x
RS Set memory dominating x x x x x
SR Reset memory dominating x x x x x

Timer functions serie

from pages C-16 to C-33
Ctler 40 50 90 30

ASV OFF delay x x x x
ESV ON delay x x x x
MOA Monostable element "abort" x x x x
MOAT Monostable element "abort" with time x x
MOK Monostable element "constant" x x x x
PDM Pulse duration modulator x x x x
TIME_W Time_word conversion x x
TOF OFF delay timing x x x
TON ON delay timing x x x
TP Pulse timing x x x
VVZ Variable delay element x
W_TIME Word_time conversion x x

Counter
functions

serie
from pages C-33 to C-39

Ctler 40 50 90 30

CTU Up counter x x x
CTUH Hardware counter for encoder x x
VRZ Up/down counter x x x x x
VRZD Up/down counter, double word x

Comparison
functions, word

serie
from pages C-39 to C-48

Ctler 40 50 90 30

< Less than x x x x x
<= Less than or equal x x x x x
<> Unequal x x x x x
=? Equal x x x x x
> Greater than x x x x x

Function block description

ABB France Page C-3 1SBC006099R1001 C - 03/07

>= Greater than or equal to x x x x x
VGL3P Comparator with 3-point response x
VGLEH Comparator with unilateral hysteresis x
VGLUH Comparator with asymmetrical hysteresis x

Arithmetic
functions, word

serie
from pages C-48 to C-60

Ctler 40 50 90 30

+ Addition x x x x x
- Subtraction x x x x x
* Multiplication x x x x x
DIV Division x x x x x
*: / MULDI Multiplication with division x x x x x
=W Allocation x x x x x
BETR Absolute value generator x x x x
COS1 Cosinus x
MUL2N Multiplication by 2 to the power of N x x x x
NEG Negation x x x x
SIN1 Sinus x
SQRT Square root x x x
ZUDKW Allocation direct constant to word

variable
 x x x x

Logical
functions, word

serie
from pages C-60 to C-68

Ctler 40 50 90 30

MASKE Mask x
SHIFT Shift block x
WAND AND combination, word x x x x
WOR OR combination, word x x x x
WXOR Exclusive OR combination, word x x x x

Program control
functions

serie
from pages C-68 to C-84

Ctler 40 50 90 30

=PE Conditional program end x x x x
ABORT Program abort x
CAL_FB Subroutine call x
CALLUP Subroutine call for an assembler program x
DI Read direct input x x
DIN Read direct inputs x
DO Write direct output x x
DOUT Write direct outputs x
IOCON Input/output configuration x
LZB Run number block x
VTASK Interrupt task validation x x

CS31 functions serie

from pages C-84 to C-116
Ctler 40 50 90 30

CONFIO1 1 analog channel configuration x x
CONFIO4 4 analog channels configuration x x
CONFIO8 8 analog channels configuration x x
CS31CO Configure CS31 module x x x

Function block description

ABB France Page C-4 1SBC006099R1001 C - 03/07

CS31QU Acknowledge CS31 error x x x
MT_CS31 data sent by CS31 master x x x
MR_CS31 data received by CS31 master x x x
ST_CS31 data sent by CS31 slave x x x
SR_CS31 data received by CS31 slave x x x

Communication
functions

serie
from pages C-116 to C-154

Ctler 40 50 90 30

AINIT Initialisation of the ARCnet controller x
APOLL Transfer of the data package to the

ARCnet controller
 x

AREC /
ARECitem

ARCnet data package receiving x

ASEND /
ASEND+

ARCnet data package sending x

MODBUS MODBUS master x x x
MODBMASTK MODBUS master for several interfaces x x 94
REC / EMAS
and RECvars

Receiving of ASCII characters and HEX
values through a serail interface

 x x X x

SEND / DRUCK Sending of ASCII characters and HEX
values through a serail interface

 x x X x

SINIT Initialization and configuration of the
serial interfaces

 x x X x

Regulation
functions

serie
from pages C-154 to C-174

Ctler 40 50 90 30

DT1 Differentiator with delay of the 1st order X
INTK Integrator (extended) X
PI Proportional-integral controller x x X x
PIDT1 PIDT1 controller x x X
PT1 PT1 element X

Format
conversion
functions

serie

from pages C-174 to C-200

Ctler 40 50 90 30

BCDDUAL /
BCDBIN

BCD to binary conversion x x X x

BCDDUALD /
BCDDW

BCD to binary conversion, double word X

DUALBCD /
BINBCD

Binary to BCD conversion x x X x

DUABCDD /
DWBCD

Binary to BCD conversion, double word X

DWW Double word to word conversion x x X x
PACK4 Pack 4 binary variables in a word x x X x
PACK8 Pack 8 binary variables in a word x x X x
PACK16 Pack 16 binary variables in a word x x X x
PACKD4 Pack 4 binary variables in a double word X
PACKD8 Pack 8 binary variables in a double word X
PACKD16 Pack 16 binary variables in a double X

Function block description

ABB France Page C-5 1SBC006099R1001 C - 03/07

word
PACKD24 Pack 24 binary variables in a double

word
 X

PACKD32 Pack 32 binary variables in a double
word

 X

UNPACK4 Unpacking a word into 4 binary variables x x X x
UNPACK8 Unpacking a word into 8 binary variables x x X x
UNPACK16 Unpacking a word into 16 binary

variables
 x x X x

UNPACKD4 Unpacking a double word into 4 binary
variables

 X

UNPACKD8 Unpacking a double word into 8 binary
variables

 X

UNPACKD16 Unpacking a double word into 16 binary
variables

 X

UNPACKD24 Unpacking a double word into 24 binary
variables

 X

UNPACKD32 Unpacking a double word into 32 binary
variables

 X

WDW Word to double word conversion x x X x

Comparison
functions,
double word

serie

from pages C-200 to C-203

Ctler 40 50 90 30

<D / VKLD Less than, double word x x X
=?D / VGLD Equal, double word x x X
>D / VGRD Greater than, double word x x X

Arithmetic
functions,
double word

serie

from pages C-203 to C-212

Ctler 40 50 90 30

+D / ADDD Addition, double word x x X
-D / SUBD Subtraction, double word x x X
*D / MULD Multiplication, double word x x x
:D / DIVD Division, double word x x x
=D / ZUWD Allocation, double word x x x
BETRD Absolute value generator, double word x
MUL2ND Double word multiplication by 2 to the

power of N
 x

NEGD Negation, double word x
SQRT Square root x x x

Logical
functions,
double word

serie

from pages C-212 to C-216

Ctler 40 50 90 30

DWAND AND combination, double word x x x
DWOR OR combination, double word x x x
DWXOR Exclusive OR combination, double word x x x
MASKED Mask, double word x
SHIFT Shift block x

Function block description

ABB France Page C-6 1SBC006099R1001 C - 03/07

High order
functions

serie
from pages C-216 to C-291

Ctler 40 50 90 30

ADRWA Address selection x
AMELD Analog value change annonciator x
AMELDD Analog value change annonciator,

double word
 x

ANAI4_20 Read analog value 4...20 mA (07KT92) x
AWM Selection multiplexer x
AWT Selection gate, word x x x x
AWTB Binary selection gate x x x x
AWTD Selection gate, double word x
BEG Limiter x x x x
BEGD Limiter, double word x
BITSU Bit searcher x
BMELD Binary value change annunciator x x x
DMUX Demultiplexer x
DMUXD Demultiplexer, double word x
DWUMC Double word decoder x
FEHSU Error searcher with automatic deletion x
FIFO Stack, first-in / first-out x
FKG Function generator x x x
HLG Ramp function generator x
IDLB Read binary variable, indexed x x x
IDLm / IDL Read word variable, indexed x x x x
IDSB Write binary variable, indexed x x x
IDSm / IDS Write word variable, indexed x x x x
INITS Initialize memory area in the operand

memory with zero
 x

INITV Initialize variables x
LDT Illumination pushbutton control x
LIFO Stack, last-in / first-out x
LIZU List allocator x x x x
MAX Maximum value generator x x x x
MAXD Maximum value generator, double word x
MAZ Maximum value generator as a function

of time
 x

MAZD Maximum value generator as a function
of time, double word

 x

MIN Minimum value generator x x x x
MIND Minimum value generator, double word x
MUXR Multiplexer with reset x
MUXRD Multiplexer with reset, double word x
NPULSE x x
SFEHSU Error searcher with storage x
UHR Clock x x x x
USM Switchover multiplexer x
UST Switchover gate x
USTD Switchover, double word x
USTR Switchover gate with reset x

Function block description

ABB France Page C-7 1SBC006099R1001 C - 03/07

USTRD Switchover with reset, double word x
WDEC Word decoder x
WUMC Word recoder x

Memory
Access

serie
from pages C-291 to C-317

Ctler 40 50 90 30

COPY Copying memory areas X x x x
DWAES Write double word in the event of value

change
 x

DWOL Read double word with enable x
DWOS Write double word with enabling x
FDEL Delete data segment in Flash EPROM x
FRD Read data segment from the Flash

EPROM
 x

FWR Write data segment to the Flash EPROM x
IOR Read byte value from I/O address x
IOW Write byte value to I/O address x
RDB Read binary values from historical values

memory
 x

RDDW Read double word values from historical
values memory

 x

RDW Read word values from historical values
memory

 x

WAES Write word in the event of value change x
WOL Read word with enabling X x x x
WOS Write word with enabling x
WRB Write binary values into historical values

memory
 x

WRDW Write double word values to historical
values memory

 x

WRW Write word values to historical values
memory

 x

Special
functions

serie
from pages C-317 to C-323

Ctler 40 50 90 30

5F_ARC94 Arcnet for 07KT94 94
COUNTB Test of number of bits in a word/double

word
 94

COUNTW Fast counter on 07KT94 94
DWWW One double word in 2 words conversion 94
IDENT Identification 94
MODMASTK MODBUS master x X 94
SETB Set a bit in a word/double word 94
TESTB Test a bit in a word/double word 94

WWDW 2 words in one double word conversion 94

Function block description

ABB France Page C-8 1SBC006099R1001 C - 03/07

2 Basic operators/functions

2.1 Binary functions

Binary functions serie
from pages C-8 to C-16

Ctler 40 50 90 30

&, AND And x x x x x
/, OR Or x x x x x
=1 Exclusive OR x x x x x
= Allocation x x x x x
=R Allocation reset memory x x x x x
=S Allocation set memory x x x x x
I+ Pulse (positive edge) x x x x x
I- Pulse (negative edge) x x x x x
MAJ Majority x
RS Set memory dominating x x x x x
SR Reset memory dominating x x x x x

& AND

LD
AND
ST

E1
E2
A1

FBD IL (compatible with IEC 1131-3)

&
E1
E2 A1

PARAMETERS
E1 BINARY %I, %M, %O, %S, %K Operand 1
E2 BINARY %I, %M, %O, %S, %K Operand 2

capable of duplication
A1 BINARY %M, %O, %S Result of AND combination

DESCRIPTION
This connection element realizes a logical AND combination of the operands at the
inputs. The result is allocated to the operand at the output.

Truth table :

E1
0
1
0
1

E2
0
0
1
1

A1
0
0
0
1

Function block description

ABB France Page C-9 1SBC006099R1001 C - 03/07

/ OR

FBD IL (compatible with IEC 1131-3)

/
E1
E2 A1

LD
OR
ST

E1
E2
A1

PARAMETERS
E1 BINARY %I, %M, %O, %S, %K Operand 1
E2 BINARY %I, %M, %O, %S, %K Operand 2 capable of

duplication
A1 BINARY %M, %O, %S Result of the OR combination

DESCRIPTION
This connection element realizes a logical OR combination of the operands at the
inputs. The result is allocated to the operand at the output.

Truth table:

E1
0
1
0
1

E2
0
0
1
1

A1
0
1
1
1

= ALLOCATION

FBD IL (compatible with IEC 1131-3)

=
E1 A1

LD
ST

E1
A1

PARAMETERS
E1 BINARY %I, %M, %O, %K,%S Source
A1 BINARY %M, %O, %K,%S Target

DESCRIPTION
This connection element allocates the value of the operand at the input E1 to the
operand at the output A1.

Function block description

ABB France Page C-10 1SBC006099R1001 C - 03/07

=1 EXCLUSIVE OR

FBD IL (compatible with IEC 1131-3)

=1
E1
E2 A1

LD
ANDN
ORN
AND
ST

E1
E2
E1
E2
A1

PARAMETERS
E1 BINARY %I, %M,%O,%S,%K Operand 1
E2 BINARY %I,%M,%O,%S,%K, Operand 2
A1 BINARY %M,%O,%S Result of the XOR

combination

DESCRIPTION
This connection element realizes a logical EXCLUSIVE OR combination of the
operands at the inputs. The result is allocated to the operand at the output.

Truth table:

E1
0
1
0
1

E2
0
0
1
1

A1
0
1
1
0

=R ALLOCATION RESET MEMORY

FBD IL

=R
E1 A1

LD
=R

E1
A1

PARAMETERS
E1 BINARY %I, %M, %O, %S, %K Reset condition
A1 BINARY %M, %O Store variable

DESCRIPTION
A state 1 at the input sets the operand at the output to a state 0. A state 0 at the input
has no influence on the operand at the output.

Function block description

ABB France Page C-11 1SBC006099R1001 C - 03/07

IMPORTANT :
This function block must only be used as an output function block : i. e., in the FBD, it
must not be connected further by a line on the output side.
An operand (%M or %O) must be specified at the output.

Example:

=R
E1 A1 A1

A2

=R
E1 A1

&

not allowed

not allowed

=S ALLOCATION SET MEMORY

FBD IL

=S
E1 A1

LD
=S

E1
A1

PARAMETERS
E1 BINARY %I, %M, %O, %S, %K Set condition
A1 BINARY %M, %O Storage variable

DESCRIPTION
A state 1 at the input sets the operand at the output to a state 1. A state 0 at the input
has no influence on the operand at the output.

IMPORTANT :
This function block must only be used as an output function block : i. e., in the FBD, it
must not be connected further by a line on the output side.

Function block description

ABB France Page C-12 1SBC006099R1001 C - 03/07

An operand (%M or %O) must be specified at the output.

Example:

=S
E1 A1 A1

A2

=S
E1 A1

&

not allowed

not allowed

I+ PULSE (POSITIVE EDGE)

FBD IL

I+
0-1 Q

PULS

LDN
=R
LD
ANDN
=S
ST

0-1
Q
0-1
Q
Q
PULS

PARAMETERS
0-1 BINARY %I, %M, %O, %S, %K Input for 0 - 1 edge
Q BINARY %O, %M Output for edge detection
PULS BINARY %O, %M Pulse output

DESCRIPTION
A positive edge (0->1) at the input 0-1 generates a pulse with the duration of one
PLC program cycle at the PULS output.

The output Q is needed for edge detection. This flag must not be used again in the
PLC program.

Duration of the pulse : From recognition of the 0-1 edge by the connection element
until renewed processing of this connection element in the next program cycle.

0-1

Q

PULS

T T
T: Program cycle time.

Function block description

ABB France Page C-13 1SBC006099R1001 C - 03/07

I- PULSE (NEGATIVE EDGE)

FBD IL

I-
1-0 Q

PULS

LD
=S
LDN
AND
=R
ST

1-0
Q
1-0
Q
Q
PULS

PARAMETERS
1-0 BINARY %I, %M, %O, %S, %K Input for 1 - 0 edge
Q BINARY %O, %M Output for interrogation of the

direct flag
PULS BINARY %O, %M Pulse output

DESCRIPTION
A negative edge (1->0) at the input 1-0 generates a pulse at the output PULS which
has the duration of 1 PLC program cycle.

The output Q is needed for edge detection. This flag must not be used again in the
PLC program.

Duration of the pulse : From recognition of the 1-0 edge by the connection element
up to renewed processing of this connection element in the next program cycle.

1-0

Q

PULS

T T
T: Program cycle time of the PLC

Function block description

ABB France Page C-14 1SBC006099R1001 C - 03/07

MAJ MAJORITY

FBD IL

MAJ
E1
E2
E3 MAJ

CAL MAJ (E1,E2,E3,MAJ)

PARAMETERS
E1 BINARY %I, %M, %O, %S, %K Operand 1
E2 BINARY %I, %M, %O, %S, %K Operand 2
E3 BINARY %I, %M, %O, %S, %K Operand 3
MAJ BINARY %M, %O Result

DESCRIPTION
This connection element realizes a MAJORITY element.

If at least 2 of the 3 binary operands at the inputs E1, E2 and E3 have the state 1,
then the state 1 is allocated to the binary operand at the output MAJ.

If it is not the case, the state 0 is allocated to the binary operand at the output MAJ.

RS SET MEMORY, DOMINATING

FBD IL

RS
R
S Q

LD
=R
LD
=S

R
Q
S
Q

PARAMETERS
R BINARY %I, %M, %O, %S, %K Reset input
S BINARY %I, %M, %O, %S, %K Set input
Q BINARY %M, %O Flip-flop output

DESCRIPTION
A status 1 at the input R resets the operand Q to the status 0.

A status 1 at the input S sets the operand Q to the status 1.

Function block description

ABB France Page C-15 1SBC006099R1001 C - 03/07

A simultaneous 1 status at the inputs S and R sets the operand Q to a status 1
(dominating set).

A status 0 at the input S or R has no influence on the operand Q.

SR RESET MEMORY, DOMINATING

FBD IL

SR
S
R Q

LD
=S
LD
=R

S
Q
R
Q

PARAMETERS
S BINARY %I, %M, %O, %S, %K Set input
R BINARY %I, %M, %O, %S, %K Reset input
Q BINARY %M, %O Flip-flop output

DESCRIPTION
A status 1 at the input S sets the operand Q to the status 1.

A status 1 at the input R resets the operand Q to the status 0.

A simultaneous 1 status at the inputs S and R resets the operand to a status 0
(dominating reset).

A status 0 at the input S or R has no influence on the operand Q.

Function block description

ABB France Page C-16 1SBC006099R1001 C - 03/07

2.2 Timer functions

Timer functions serie
from pages C-16 to C-33

Ctler 40 50 90 30

ASV OFF delay x x x x
ESV ON delay x x x x
MOA Monostable element "abort" x x x x
MOAT Monostable element "abort" with time x x
MOK Monostable element "constant" x x x x
PDM Pulse duration modulator x x x x
TIME_W Time_word conversion x x
TOF OFF delay timing x x x
TON ON delay timing x x x
TP Pulse timing x x x
VVZ Variable delay element x
W_TIME Word_time conversion x x x

ASV OFF DELAY

FBD IL

ASV

ZD

CAL ASV (,ZD,Q)

0-T
Q

0-T

PARAMETERS
0 -T BINARY %I, %M, %O, %S, %K Input signal
ZD DOUBLE

WORD
%MD, %KD Delay time

Q BINARY %M, %O Delayed signal

DESCRIPTION
The 1-0 edge of the input 0I IT is delayed by the time ZD and is output as a 1-0 edge
at the output Q. If the input 0I IT returns to 1 level before expiry of the time ZD, the
output Q retains 1 level.

The time is specified in milliseconds. Only integral multiple of 5 ms are admissible
(Examples: 5 ms, 500 ms, 100 000 ms, ...). Time range which can be specified : 5
ms ... 24.8 days.

Maximum time offset at the output: < 1 cycle time

Function block description

ABB France Page C-17 1SBC006099R1001 C - 03/07

Meaningful range for ZD: > 1 cycle time.

Q
t

ZD

t t

ZD

0 T

t<ZDt0 t0 t0

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

Important note :
Up to versions 07 KR 91 index f and 07 KT 92 index f, the behaviour of the timers is
the following : processing of a timer in the old PLC’s operating system is not
influenced by the following commands :
 Abort program
 Start program
 Stop program
 Continue program
That is to say, processing of a started timer is continued in the PLC’s operating
system even if the affiliated PLC program is aborted, restarted or stopped and
continued again.

ESV ON DELAY

FBD IL

ESV

ZD

CAL ESV (,ZD,Q)

T 0I I
Q

T 0I I

PARAMETERS
T I I 0 BINARY %I, %M, %O, %S, %K Input signal
ZD DOUBLE

WORD
%MD, %KD Delay time

Q BINARY %M, %O Delayed signal

Function block description

ABB France Page C-18 1SBC006099R1001 C - 03/07

DESCRIPTION
The 0-1 edge of the input TI I 0 is delayed by the time ZD and is output as a 0-1
edge at the output Q. The output Q retains 0 level if the input TI I 0 returns to 0 level
before the time ZD has elapsed.

The time is specified in milliseconds in a double word %MD or %KD. Only integral
multiple of 5 ms are admissible (Examples: 5 ms, 500 ms, 100 000 ms, ...). Time
range which can be specified is : 5 ms ... 24.8 days.

Maximum time offset at the output : < 1 cycle time
Meaningful range for ZD : > 1 cycle time

Q
t

ZD

t

T 0

t0 t0 t<ZD

General response
 Started timers are processed by the PLC operating system and are completely

independent of processing of the PLC program.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

Important note :
Up to versions 07 KR 91 index f and 07 KT 92 index f, the behaviour of the timers is
the following : processing of a timer in the old PLC’s operating system is not
influenced by the following commands :
 Abort program
 Start program
 Stop program
 Continue program
That is to say, processing of a started timer is continued in the PLC’s operating
system even if the affiliated PLC program is aborted, restarted or stopped and
continued again.

Function block description

ABB France Page C-19 1SBC006099R1001 C - 03/07

MOA MONOSTABLE ELEMENT ”ABORT”

FBD IL

MOA
1
ZD

CAL MOA (1 ,ZD,Q)

Q

PARAMETERS
1 BINARY %I, %M, %O, %S, %K Input signal
ZD DOUBLE

WORD
%MD, %KD Pulse length

Q BINARY %M, %O Output signal

DESCRIPTION
A 0-1 edge at the input 1 produces a 0-1 edge at the output Q. If the input 1
remains at 1 level, a 1-0 edge is output on output Q after duration ZD has elapsed.
The output Q is also set back to 0 level if the input 1 should return to 0 level before
expiry of time TD.

The time is specified in milliseconds. Only integral multiple of 5 ms are admissible
(Examples: 5 ms, 500 ms, 100 000 ms, ...). Time range which can be specified: 5ms
... 24.8 days.

Maximum time offset at the output: < 1 cycle time
Meaningful range for ZD: > 1 cycle time

Q
t

ZD

t

1

t0 t0 t<ZD

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP

Function block description

ABB France Page C-20 1SBC006099R1001 C - 03/07

 Warm or cold start

Important note :
Up to versions 07 KR 91 index f and 07 KT 92 index f, the behaviour of the timers is
the following : processing of a timer in the old PLC’s operating system is not
influenced by the following commands :
 Abort program
 Start program
 Stop program
 Continue program
That is to say, processing of a started timer is continued in the PLC’s operating
system even if the affiliated PLC program is aborted, restarted or stopped and
continued again.

MOAT MONOSTABLE ELEMENT ”ABORT” with time

FBD IL

MOAT
1
ZD

CAL MOAT (1 ,ZD,ET,Q)

Q
ET

PARAMETERS
1 BINARY %I, %M, %O, %S, %K Input signal
ZD WORD

DOUBLE
WORD

%KW & %KW+1
%MW & %MW+1
%MD, %KD

Pulse length

Q BINARY %M, %O Delayed signal
ET WORD

DOUBLE
WORD

%MW & %MW+1
%MD

Time visualization

DESCRIPTION
A 0-1 edge at the input 1 produces a 0-1 edge at the output Q. If the input 1
remains at 1 level, a 1-0 edge is output on output Q after duration ZD has elapsed.
The output Q is also set back to 0 level if the input 1 should return to 0 level before
expiry of time TD.

The time elapsed can be consulted at the output ET and the pulse lenght at the input
ZD can be modified when the timer is running. The pulse lenght is specified in
milliseconds. The time range which can be specified is : 1 ms ... 24.8 days.

Maximum time offset at the output : < 1 cycle time

Function block description

ABB France Page C-21 1SBC006099R1001 C - 03/07

Meaningful range for PT : > 1 cycle time.

Q
t

ZD

t

1

t0 t0 t<ZD

Note :
If the time is less than 65s, a word can be used for the preset time PT. Then the PT
input can be used :
- with all the other word functions
- from the central unit potentiometer
- or for MODBUS communication (double word are not allowed in MODBUS)
directly without double word to word conversion.

If word variables (%MW or %KW) are used for the parameter PT, two
consecutive addresses are necessary. Never use %MW+1 or %KW+1 in your
program in this case.

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program. An appropriate message
of the operating system is not issued to the affiliated timer block in the PLC program
until the timer has elapsed.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

Function block description

ABB France Page C-22 1SBC006099R1001 C - 03/07

MOK MONOSTABLE ELEMENT ”CONSTANT”

FBD IL

MOK
1
ZD

CAL MOK (1 ,ZD,Q)

Q

PARAMETERS
1 V BINARY %I, %M, %O, %S, %K Input signal
ZD DOUBLE

WORD
%MD, %KD Pulse length

Q BINARY %M, %O Output signal

DESCRIPTION
A 0-1 edge at the input 1 produces a 0-1 edge at the output Q. The output Q is reset
to 0 level after expiry of the period ZD. A second 0-1 edge of the input 1 V before
the time ZD has elapsed is ignored.

The time is specified in milliseconds. Only integral multiple of 5 ms are admissible
(Examples: 5 ms, 500 ms, 100 000 ms, ...). Time range which can be specified: 5
ms ... 24.8 days.

Maximum time offset at the output: < 1 cycle time
Meaningful range for ZD: > 1 cycle time

Q
ZD

1 V

ZD

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

Important note :

Function block description

ABB France Page C-23 1SBC006099R1001 C - 03/07

Up to versions 07 KR 91 index f and 07 KT 92 index f, the behaviour of the timers is
the following : processing of a timer in the old PLC’s operating system is not
influenced by the following commands :
 Abort program
 Start program
 Stop program
 Continue program
That is to say, processing of a started timer is continued in the PLC’s operating
system even if the affiliated PLC program is aborted, restarted or stopped and
continued again.

PDM PULSE DURATION MODULATOR

FBD IL

PDM
t/ta
ta/T

PULS

CAL PDM (t/ta,ta/T,PULS)

PARAMETERS
t/ta WORD %IW, %MW, %OW, %KW Duty ratio
ta/T WORD %IW, %MW, %OW, %KW Period referred to the cycle

time
PULS BINARY %O, %M Pulse duration modulated

signal

DESCRIPTION
This function block generates a pulse duration-modulated binary signal at its PULS
output.

The duty ratio is specified at the t/ta input and the period for the output signal is
specified at the ta/T input.
In case of serie 40 and 50 and cycle time equal to 0 , T is equal to 10ms

t/ta WORD
The required duty ratio for the output signal PULS is specified at the input t/ta.
- ta is the period of the signal at the output PULS
- t is the time within the period ta during which the output signal assumes a 1 level.
The specified value for the required duty ratio at the input t/ta must be specified in
scaled form. To do this, the required duty ratio must be multiplied by the value 32767
and rounded to a whole number. The resulting numerical value is then specified at
the input t/ta.

Marginal condition for t : t > T
That is to say, the required duty cycle of the output signal must be higher than the

Function block description

ABB France Page C-24 1SBC006099R1001 C - 03/07

cycle time of the PLC program.

ta

t

PULS

t

T T T T T T T T
The following relationship applies to specification of the keying ratio at the input t/ta:

Scaled value at the t/ta input Results in duty ratio
at the output PULS

Negative value 0 (0 %)
0 (0 * 32767) 0 (0 %)
. .
. .
16384 (0,5 * 32767) 0,5 (50 %)
. .
. .
32767 (1 * 32767) 1 (100 %)

ta/T WORD
The required period ta for the signal at the output PULS is specified at the input ta/T.
At the same time, the period ta must be scaled to the cycle time T.
Marginal condition for ta:
 - ta = n * T : ta must be an integral multiple of T
 - ta >> T > 0; the higher ta is in relation to T, the more exactly the
 required duty ratio is kept to.
 E.g. ta > 10 * T -> inaccuracy of the duty ratio at the output PULS < 10%.

If a value ta/T < 0 is specified for ta/T, the function block automatically replaces this
meaningless value by 32767.

PULS BINARY
The pulse duration modulated signal is available at the PULS output.

EXAMPLE
Required :
 - Duty ratio : t/ta = 0,25 (25 %)
 - Period : ta = 800 ms (only an integral multiple of the PLC cycle time is
 possible)
 - Cycle time : T = 100 ms

Block parameters to be specified :
 - Value at the input t/ta : 8192 (0,25 * 32767)
 - Value at the input ta/T : 8 (800 ms/100 ms)

Function block description

ABB France Page C-25 1SBC006099R1001 C - 03/07

ta

t

PULS

t

T T T T T T T T

TIME_W TIME_WORD CONVERSION

FBD IL

TIME_W

TIME

CAL TIME W (TIME,H,M,S,MS)

H
M
S

MS

PARAMETERS
TIME DOUBLE

WORD
%MD, %KD Time value

H WORD %MW ,%OW Hour value
M WORD %MW ,%OW Minute value
S WORD %MW ,%OW Second value
MS WORD %MW ,%OW Millisecond value

DESCRIPTION
This functions is used to manage time value with word variables
The Time value TIME is converted in hours, minutes, seconds and milliseconds.

The time value is in millisecond

The maximum value is
0<=TIME<=986399999
0<= H <= 273
0<= M <= 59
0<= S <= 59
0<= MS<= 999

IF TIME is greater than 986399999 then H, M, S, MS are set to the maximum value
IF TIME is negative then H, M, S, MS are set to zero

Function block description

ABB France Page C-26 1SBC006099R1001 C - 03/07

TOF OFF DELAY

FBD IL

TOF

PT

CAL TOF (IN,PT,ET,Q)

IN
Q

ET

PARAMETERS
IN BINARY %I, %M, %O, %S, %K Input signal
PT WORD

DOUBLE
WORD

%KW & %KW+1
%MW & %MW+1
%MD, %KD

Preset time

Q BINARY %M, %O Delayed signal
ET WORD

DOUBLE
WORD

%MW & %MW+1
%MD

Time visualization

DESCRIPTION
The 1-0 edge of the input IN is delayed by the time PT at the output Q. If the input IN
returns to 1 level before expiry of the time PT, the output Q retains 1 level.

The time elapsed can be consulted at the output ET and the preset time value at the
input PT can be modified when the timer is running. The preset time is specified in
milliseconds. The time range which can be specified is : 1 ms ... 24.8 days.

Maximum time offset at the output : < 1 cycle time
Meaningful range for PT : > 1 cycle time.

Q
t

PT

t t

PT

IN

t<PTt0 t0 t0

Note :
If the time is less than 65s, a word can be used for the preset time PT. Then the PT
input can be used :
- with all the other word functions
- from the central unit potentiometer

Function block description

ABB France Page C-27 1SBC006099R1001 C - 03/07

- or for MODBUS communication (double word are not allowed in MODBUS)
directly without double word to word conversion.

If word variables (%MW or %KW) are used for the parameter PT, two
consecutive addresses are necessary. Never use %MW+1 or %KW+1 in your
program in this case.

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program. An appropriate message
of the operating system is not issued to the affiliated timer block in the PLC program
until the timer has elapsed.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

TON ON DELAY

FBD IL

TON

PT

CAL TON (IN,PT,ET,Q)

IN
Q

ET

PARAMETERS
IN BINARY %I, %M, %O, %S, %K Input signal
PT WORD

DOUBLE
WORD

%KW & %KW+1
%MW & %MW+1
%MD, %KD

Preset time

Q BINARY %M, %O Delayed signal
ET WORD

DOUBLE
WORD

%MW & %MW+1
%MD

Time visualization

DESCRIPTION
The 0-1 edge of the input IN is delayed by the time PT at the output Q. The output Q
retains 0 level if the input IN returns to 0 level before the time PT has elapsed.

The time elapsed can be consulted at the output ET and the preset time value at the
input PT can be modified when the timer is running. The preset time is specified in

Function block description

ABB France Page C-28 1SBC006099R1001 C - 03/07

milliseconds. The time range which can be specified is : 1 ms ... 24.8 days.

Maximum time offset at the output : < 1 cycle time
Meaningful range for PT : > 1 cycle time

Q
t

PT

t

t0 t0 t<PT

IN

Note :
If the time is less than 65s, a word can be used for the preset time PT. Then the PT
input can be used :
- with all the other word functions
- from the central unit potentiometer
- or for MODBUS communication (double word are not allowed in MODBUS)
directly without double word to word conversion.

If word variables (%MW or %KW) are used for the parameter PT, two
consecutive addresses are necessary. Never use %MW+1 or %KW+1 in your
program in this case.

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program. An appropriate message
of the operating system is not issued to the affiliated timer block in the PLC program
until the timer has elapsed.

 Processing of a timer in the PLC operating system is influenced by the following

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

TP MONOSTABLE ELEMENT ”CONSTANT”

FBD IL

TP

PT

CAL TP (IN,PT,ET,Q)

IN
Q

ET

Function block description

ABB France Page C-29 1SBC006099R1001 C - 03/07

PARAMETERS
IN BINARY %I, %M, %O, %S, %K Input signal
PT WORD

DOUBLE
WORD

%KW & %KW+1
 %MW & %MW+1
%MD, %KD

Preset time

Q BINARY %M, %O Delayed signal
ET WORD

DOUBLE
WORD

%MW & %MW+1
%MD

Time visualization

DESCRIPTION
A 0-1 edge at the input IN produces a 0-1 edge at the output Q. The output Q is reset
to 0 level after expiry of the period PT. A second 0-1 edge of the input IN before the
time PT has elapsed is ignored.

The time elapsed can be consulted at the output ET and the preset time value at the
input PT can be modified when the timer is running. The preset time is specified in
milliseconds. The time range which can be specified is : 1 ms ... 24.8 days.

Maximum time offset at the output : < 1 cycle time
Meaningful range for PT : > 1 cycle time

Q
PT

IN

PT

Note :
If the time is less than 65s, a word can be used for the preset time PT. Then the PT
input can be used :
- with all the other word functions
- from the central unit potentiometer
- or for MODBUS communication (double word are not allowed in MODBUS)
directly without double word to word conversion.

If word variables (%MW or %KW) are used for the parameter PT, two
consecutive addresses are necessary. Never use %MW+1 or %KW+1 in your
program in this case.

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program. An appropriate message
of the operating system is not issued to the affiliated timer block in the PLC program
until the timer has elapsed.

 Processing of a timer in the PLC operating system is influenced by the following

Function block description

ABB France Page C-30 1SBC006099R1001 C - 03/07

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

VVZ VARIABLE DELAY ELEMENT

FBD IL

VVZ
t
tD
TD Q

CAL VVZ (t T,tD,TD,Q)

I IT

I I

PARAMETERS
tI IT BINARY %I, %M, %O, %S, %K Input signal
tD DOUBLE

WORD
%MD, %KD Delay time 0-1 edge

TD DOUBLE
WORD

%MD, %KD Delay time 1-0 edge

Q BINARY %M, %O Output signal

DESCRIPTION
A 0-1 edge at the input tI IT longer or equal to tD activates the output Q during the
time TD. The output Q is delayed from the input tI IT by the time tD.

The time is specified in milliseconds. Only integral multiple of 5 ms are admissible
(Examples: 5 ms, 500 ms, 100 000 ms, ...). Time range which can be specified : 5
ms ... 24.8 days.

Maximum time offset at the output: < 1 cycle time
Meaningful range for tD and TD: > 1 cycle time

Q

tD

t T

TD tD

General response
 Started timers are processed by the PLC operating system and are therefore

completely independent of processing of the PLC program.

 Processing of a timer in the PLC operating system is influenced by the following

Function block description

ABB France Page C-31 1SBC006099R1001 C - 03/07

commands. All running timers are stopped and initialized when one of the following
actions occurs:
 Abort PLC program
 RUN/STOP switch from RUN -> STOP
 Warm or cold start

Important note :
Up to versions 07 KR 91 index f and 07 KT 92 index f, the behaviour of the timers is
the following : processing of a timer in the old PLC’s operating system is not
influenced by the following commands :
 Abort program
 Start program
 Stop program
 Continue program
That is to say, processing of a started timer is continued in the PLC’s operating
system even if the affiliated PLC program is aborted, restarted or stopped and
continued again.

Function block description

ABB France Page C-32 1SBC006099R1001 C - 03/07

W_TIME WORD_TIME CONVERSION

FBD IL

W_TIME

TIME

CAL W_TIME(H,M,S,MS,TIME)

H
M
S
MS

PARAMETERS
H WORD %IW, %KW, %MW, %OW Hour value
M WORD %IW, %KW, %MW, %OW Minute value
S WORD %IW, %KW, %MW, %OW Second value
MS WORD %IW, %KW, %MW, %OW Millisecond value
TIME DOUBLE

WORD
%MD Time value

DESCRIPTION
This functions is used to set a TIME value through words
The words values are converted in a double word for timer functions

The time value is in millisecond

The maximum value is
0<= H <= 273
0<= M <= 32767
0<= S <= 32767
0<= MS<= 32767

If one parameter is set to a negative value, the value used for the internal calculation
is 0

Function block description

ABB France Page C-33 1SBC006099R1001 C - 03/07

2.3 Counter functions

Counter
functions

serie
from pages C-33 to C-39

Ctler 40 50 90 30

CTU Up counter x x x
CTUH Hardware counter for encoder x x
VRZ Up/down counter x x x x x
VRZD Up/down counter, double word x

CTU UP COUNTER

FBD IL

CTU
CU
R
PV

CAL CTU (CU,R,PV,Q,CV)

CV

Q

PARAMETERS
CU BINARY %I, %M, %O, %K, %S Pulse input
R BINARY %I, %M, %O, %K, %S Counter reset input
PV WORD %IW, %MW, %OW, %KW High counter limit
Q BINARY %M, %O, Limit indicator
CV WORD %OW, %MW Counter value

DESCRIPTION
This function block serves to count pulses. Each positive edge (0->1 edge) at the
input CU increases the current counter value specified at output CV by 1.

CU BINARY
The pulse signal is allocated to the input CU. The positive edge of the pulse is
evaluated in each case.

R BINARY
A 1 signal at the input R sets the counter content to the value 0.
The reset input R has the highest priority.

PV WORD
The high limit of the counter is specified at the input PV.

Q BINARY
The output Q indicates if the counter value is higher or not than the value at the input
PV.
CV ≥ PV -> Q = 1

Function block description

ABB France Page C-34 1SBC006099R1001 C - 03/07

CV < PV -> Q = 0

CV WORD
The current counter value is available at the output CV.
If the counter reaches the positive or negative limit of the number range, the counter
is limited to this value.

Number range
Integer word (16 bits)
• Low limit : 0
• High limit : 7FFFH + 32767

CTUH HIGH SPEED COUNTER

#num
R
S
INIT
RPI
CATCH

CTUH

R-Q

Q
CV

CATV

FBD IL

CAL CTUH (#num,R,S,INIT,RPI,
CATCH,R-Q,Q,CV,CATV)

PARAMETERS
#num DIRECT

CONSTANT
#, #H Counter mode

R BINARY %I, %M, %O, %K, %S Counter reset input
S BINARY %I, %M, %O, %K, %S Counter set input
INIT WORD %IW, %MW, %OW, %KW Set value
RPI BINARY %I, %M, %O, %K, %S Reset point indicator
CATCH BINARY %I, %M, %O, %K, %S Catch counter value
R-Q BINARY %I, %M, %O, %K, %S Reset bit overflow
Q BINARY %M, %O Overflow
CV WORD %OW, %MW Counter value
CATV WORD %OW, %MW Catched counter value

DESCRIPTION
The CTUH function block allows the counting of high speed counters of units serie 40
and 50.

Units serie 40 and 50 have two high speed counters that can be used in the following
modes :

- C1 : counting on the %I 62.00 input
 Counting start : on positive edge (0->1 edge)
 Representation : 1 word (16 bits)

Function block description

ABB France Page C-35 1SBC006099R1001 C - 03/07

 Overflow : when passing from -1 to 0.
 Capture : on positive edge of the %I 62.02 input

- C2 : counting on the %I 62.01 input
 Counting start : on positive edge (0->1 edge)
 Representation : 1 word (16 bits)
 Overflow : when passing from -1 to 0.
 Capture : on positive edge of the %I 62.03 input

- Incremental encoder : counting on the %I 62.00 and %I 62.01 inputs
 Counting start : on positive edge (0->1 edge)
 Representation : 1 word (16 bits)
 Overflow : when passing from -1 to 0 or from 0 to -1
 Capture : on positive edge of the %I 62.02 input
 In case of defective channel (ie one input not connected) the value
increases of +1 and decreases of -1.

#num DIRECT CONSTANT
The counting mode is specified at the input #num.
#1 = counter C1
#2 = counter C2
#3 = incremental encoder
>3 -> the block is not processed

R BINARY
A 1 signal at the input R resets the counter value and the capture register to the
value 0. The reset input R has the highest priority.
If R = 1 then CV = 0 and CATV = 0

S BINARY
A 1 signal at the input S loads the counter value with the preset value specified at the
input INIT.
If S = 1 then CV = INIT

INIT WORD
The preset value is specified at the input INIT.

RPI BINARY
A 1 signal at the input RPI validates the counter value capture and the counter reset
during the capture. The RPI input has a higher priority than CATCH.
RPI = 1 Capture is valid on all the counters.
 If there is a positive edge on %I 62,02 or %I 62,03, there is a
hard capture of the counter. The counter is reset to 0.

CATCH BINARY
A 1 signal at the input CATCH validates the counter value capture.
CATCH = 0 Capture not valid
CATCH = 1 Capture is valid on all the counters.
 If there is a positive edge on %I 62,02 or %I 62,03, there is a

Function block description

ABB France Page C-36 1SBC006099R1001 C - 03/07

hard capture of the counter. The counter is not reset to 0.

R-Q BINARY
A 1 signal at the input R-Q resets the overflow to the value 0.
If R-Q = 1 then Q = 0

Q BINARY
The overflow is specified at the input Q.
Q = 1 when CV passes from -1 to 0 or from 0 to -1.

CV WORD
The current counter value is available at the output CV.

CATV WORD
The counter value when CATCH =1 is available at the output CATV.

Number range
Integer word (16 bits)
• Low limit : 8000H - 32768
• High limit : 7FFFH + 32767

VRZ UP / DOWN COUNTER
FBD IL

VRZ
FREI
ZV
ZR
DIFF

CAL VRZ (R,DIFF,S,ZW,FREI,ZV,ZR,Z)

S
ZW
R Z

PARAMETERS
FREI BINARY %I, %M, %O, %K, %S Enable block processing
ZV BINARY %I, %M, %O, %K, %S Pulse input, up counting
ZR BINARY %I, %M, %O, %K, %S Pulse input, down counting
DIFF WORD %IW, %MW, %OW, %KW Counter content change per

positive edge (increment)
S BINARY %I, %M, %O, %K, %S Set counter to an

intermediate value
ZW WORD %IW, %MW, %OW, %KW Intermediate value
R BINARY %I, %M, %O, %K, %S Reset counter
Z WORD %OW, %MW Output for counter content

Function block description

ABB France Page C-37 1SBC006099R1001 C - 03/07

DESCRIPTION
This function block serves to count pulses. When counting enabled (FREI = 1), the
positive edge of the pulse is evaluated in each case. The counter is capable of
counting both up and down and the counting increment can be specified. It is
possible to preset the counter content to an intermediate value.

FREI BINARY
Counting is enabled or disabled by means of the FREI input. The following applies :
 FREI = 0 -> Counting disabled
 FREI = 1 -> Counting enabled

ZV BINARY
Each positive edge (0->1 edge) at the input ZV increases the current counter content
by the increment specified at the DIFF input.

ZR BINARY
Each positive edge (0->1 edge) at the input ZR decreases the current counter
content by the increment specified at the DIFF input.

DIFF WORD
The increment for the counting operation is specified at the DIFF input. The
increment is the value by which the counter is changed at the input ZV or ZR with
each positive edge.

S BINARY
By means of a 1 signal at the input S, the counter content is set to the value specified
at the input ZW. Counting is blocked as long as 1 signal is present at the input S.
Setting is also effective when a 1 signal is present at the FREI input.

ZW WORD
The value to which the counter content is set by a 1 signal at the input S is specified
at the input ZW.

R BINARY
A 1 signal at the input R sets the counter content to the value 0. The reset input R
has the highest priority of all inputs.

Z WORD
The current counter content is available at the output Z.
If the counter reaches the positive or negative limit of the number range, the counter
is limited to this value.

Number range
Integer word (16 bits)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)
Note for serie 90 :
The output is limited to -32767.
The value -32768 is an inadmissible value for word inputs.

Function block description

ABB France Page C-38 1SBC006099R1001 C - 03/07

VRZD UP / DOWN COUNTER, DOUBLE WORD

FBD IL

VRZD
FREI
ZV
ZR
DIFF

CAL VRZD (R,DIFF,S,ZW,FREI,ZV,ZR,Z)

S
ZW
R Z

PARAMETERS
FREI BINARY %I, %M, %O, %K, %S Enable block processing
ZV BINARY %I, %M, %O, %K, %S Pulse input, up counting
ZR BINARY %I, %M, %O, %K, %S Pulse input, down counting
DIFF DOUBLE

WORD
%MD, %KD Counter content change per

positive edge (increment)
S BINARY %I, %M, %O, %K, %S Set counter to an intermediate

value
ZW DOUBLE

WORD
%MD, %KD Intermediate value

R BINARY %I, %M, %O, %K, %S Reset counter
Z DOUBLE

WORD
%MD Output for counter content

DESCRIPTION
This function block serves to count pulses. When counting enabled (FREI = 1), the
positive edge of the pulse is evaluated in each case. The counter is capable of
counting both up and down and the counting increment can be specified. It is
possible to preset the counter to an intermediate value.

FREI BINARY
Counting is enabled or disabled by means of the FREI input. The following applies :
 FREI = 0 -> Counting disabled
 FREI = 1 -> Counting enabled

ZV BINARY
Each positive edge (0->1 edge) at the input ZV increases the current counter content
by the increment specified at the DIFF input.

ZR BINARY
Each positive edge (0->1 edge) at the input ZR decreases the current counter
content by the increment specified at the DIFF input.

Function block description

ABB France Page C-39 1SBC006099R1001 C - 03/07

DIFF DOUBLE WORD
The increment for the counting operation is specified at the DIFF input. The
increment is the value by which the counter is changed at the input ZV or ZR with
each po–sitive edge.

S BINARY
By means of a 1 signal at the input S, the counter content is set to the value specified
at the input ZW. Counting is blocked as long as 1 signal is present at the input S.
Setting is also effective when a 1 signal is present at the FREI input.

ZW DOUBLE WORD
The value to which the counter content is set by a 1 signal at the input S is specified
at the input ZW.

R BINARY
A 1 signal at the input R sets the counter content to the value 0. The reset input R
has the highest priority of all inputs.

Z DOUBLE WORD
The current counter content is available at the output Z.
If the counter reaches the positive or negative limit of the number range, the counter
is limited to this value.

Number range
Integer double word (32 bits)
• Low limit : 8000 0001H -2 147 483 647
• High limit : 7FFF FFFFH +2 147 483 647
• Inadmissible value : 8000 0000H ---

All blocks for double word arithmetic subject values to be processed for admissibility.
If the inadmissible value occurs, it is corrected to the admissible value 8000 0001H (-
2 147 483 647).

2.4 Comparison functions, word

Comparison
functions, word

serie
from pages C-39 to C-48

Ctler 40 50 90 30

< Less than x x x x x
<= Less than or equal x x x x x
<> Unequal x x x x x
=? Equal x x x x x
> Greater than x x x x x
>= Greater than or equal to x x x x x
VGL3P Comparator with 3-point response x
VGLEH Comparator with unilateral hysteresis x
VGLUH Comparator with asymmetrical hysteresis x

Function block description

ABB France Page C-40 1SBC006099R1001 C - 03/07

< LESS THAN

FBD IL (compatible with IEC 1131-3)

<
Z1<
Z2 Q

LD
LT
ST

Z1<
Z2
Q

PARAMETERS
Z1< WORD %IW, %MW, %OW, %KW Value to be compared
Z2 WORD %IW, %MW, %OW, %KW Comparison value
Q BINARY %O, %M, %S Result of the comparison

DESCRIPTION
The value of the operand at the input Z1< is compared to the value of the operand at
the input Z2.
If the value at Z1< is less than the one at Z2, the state 1 is allocated to the operand at
the output Q. The state 0 is allocated to Q if Z1< is equal to or greater than Z2.

Number range
Integer word (16 Bit)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)

Function block description

ABB France Page C-41 1SBC006099R1001 C - 03/07

<= LESS THAN OR EQUAL

FBD IL (compatible with IEC 1131-3)

<=<=
Z1<=
Z2 Q

LD
LE
ST

Z1<==
Z2
Q

PARAMETERS
Z1<= WORD %IW, %MW, %OW, %KW Value to be compared
Z2 WORD %IW, %MW, %OW, %KW Comparison value
Q BINARY %O, %M, %S Result of the comparison

DESCRIPTION
The value of the operand at the input Z1<= is compared to the value of the operand
at the input Z2.
The state 1 is allocated to the operand at the output Q if the value at Z1<= is less
than or equal to the value at Z2. The state 0 is allocated to Q if Z1<= is greater than
Z2.

Number range
Integer word (16 Bit)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)

<> UNEQUAL

FBD IL (compatible with IEC 1131-3)

<>
Z1<>
Z2 Q

LD
NE
ST

Z1<>
Z2
Q

PARAMETERS
Z1<> WORD %IW, %MW, %OW, %KW Value to be compared
Z2 WORD %IW, %MW, %OW, %KW Comparison value
Q BINARY %O, %M, %S Result of the comparison

Function block description

ABB France Page C-42 1SBC006099R1001 C - 03/07

DESCRIPTION
The value of the operand at the input Z1<> is compared to the value of the operand
at the input Z2.
If the vaue at Z1<> is greater than or less than the one at Z2, the state 1 is allocated
to the operand at the output Q. The state 0 is allocated to Q if Z1<> is equal to Z2.

Number range
Integer word (16 bits)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)

=? EQUAL

FBD IL (compatible with IEC 1131-3)

=?
Z1=?
Z2 Q

LD
EQ
ST

Z1=?
Z2
Q

PARAMETERS
Z1=? WORD %IW, %MW, %OW, %KW Value to be compared
Z2 WORD %IW, %MW, %OW, %KW Comparison value
Q BINARY %O, %M, %S Result of the comparison

DESCRIPTION
The value of the operand at the input Z1=? is compared to the value of the operand
at the input Z2. If the value at Z1=? is equal to the one at Z2, the state 1 is allocated
to the operand at the output Q. The state 0 is allocated to Q if Z1=? is unequal to Z2.

Number range
Integer word (16 Bit)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)

Function block description

ABB France Page C-43 1SBC006099R1001 C - 03/07

> GREATER THAN

FBD IL (compatible with IEC 1131-3)

>
Z1>
Z2 Q

LD
GT
ST

Z1>
Z2
Q

PARAMETERS
Z1> WORD %IW, %MW, %OW, %KW Value to be compared
Z2 WORD %IW, %MW, %OW, %KW Comparison value
Q BINARY %O, %M, %S Result of the comparison

DESCRIPTION
The value of the operand at the input Z1> is compared to the value of the operand at
the input Z2. If the value at Z1> is greater than the one at Z2, the state 1 is allocated
to the operand at the output Q. The state 0 is allocated to Q if Z1> is equal to or less
than Z2.

Number range
Integer word (16 Bit)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)

>= GREATER THAN OR EQUAL TO

FBD IL (compatible with IEC 1131-3)

>==
Z1>=
Z2 Q

LD
GE
ST

Z1>=
Z2
Q

PARAMETERS
Z1>= WORD %IW, %MW, %OW, %KW Value to be compared
Z2 WORD %IW, %MW, %OW, %KW Comparison value
Q BINARY %O, %M, %S Result of the comparison

Function block description

ABB France Page C-44 1SBC006099R1001 C - 03/07

DESCRIPTION
The value of the operand at the input Z1>= is compared to the value of the operand
at the input Z2. The state 1 is allocated to the operand at the output Q if the value at
Z1>= is greater than or equal to the value at Z2. The state 0 is allocated to Q if Z1>=
is less than Z2.

Number range
Integer word (16 Bit)
• low limit : 8000H (-32768)
• high limit : 7FFFH (+32767)

VGL3P COMPARATOR WITH 3-POINT RESPONSE

FBD IL

VGL3P
E
OG
UG

E<UG
E>OG

CAL VGL3P (E,OG,UG,E>OG,E<UG,Q)

Q

PARAMETERS
E WORD %IW, %MW, %OW, %KW Input value
OG WORD %IW, %MW, %OW, %KW High limit
UG WORD %IW, %MW, %OW, %KW Low limit
E>OG BINARY %O, %M Value > high limit
E<UG BINARY %O,%M Value < low limit
Q BINARY %O,%M Low limit < input limit value <

high

DESCRIPTION
The value of the operand at the input E is compared to the values of the operands at
the inputs OG and UG.
The possible results are signalled at the outputs E>OG, E<UG and Q.

The following applies:
E < UG ---> E>OG = 0, E<UG = 1, Q = 0
UG < E < OG ---> E>OG = 0, E<UG = 0, Q = 1
E > OG ---> E>OG = 1, E<UG = 0, Q = 0

Function block description

ABB France Page C-45 1SBC006099R1001 C - 03/07

E>OG = 0
E<UG = 1
Q = 0

E>OG = 0
E<UG = 0
Q = 1

E>OG = 1
E<UG = 0
Q = 0

UG OG E

Number range
Integer word (16 bits)
• Low level : 8000H -32768
• High level : 7FFFH +32767

VGLEH COMPARATOR WITH UNILATERAL HYSTERESIS

FBD IL

VGLEH
E1
E2
HYS Q

CAL VGLEH (E1,E2,HYS,Q)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input value 1
E2 WORD %IW, %MW, %OW, %KW Input value 2
HYS WORD %IW, %MW, %OW, %KW Hysteresis
Q BINARY %O, %M Result of the comparison

DESCRIPTION
The values of the operands at the inputs E1 and E2 are compared to each other.
Taking the hysteresis at the input HSY into account, the result is signalled at the
output Q.

Function block description

ABB France Page C-46 1SBC006099R1001 C - 03/07

The following applies :
E1 > E2 ---> Q = 1
E1 < E2 - HYS ---> Q = 0
E2 - HYS < E1 < E2 ---> Q as in the previous cycle

E2-HYS E2 E1

1

Q

1

0

HYS

HYS = Hysteresis

Number range
Integer word (16 bits)
• Low limit : 8001H -32767
• High limit : 7FFFH +32767
• Inadmissible value : 8000H ---

The following especially applies here to the specification for the left edge of the
hysteresis : E2 - HYS > -32 767 (8001H)

VGLUH COMPARATOR WITH ASYMMETRICAL HYSTERESIS

FBD IL

VGLUH
E1
E2
OHYS
UHYS

CAL VGLUH (E1,E2,OHYS,UHYS,Q)

Q

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input value 1
E2 WORD %IW, %MW, %OW, %KW Input value 2
OHYS WORD %IW, %MW, %OW, %KW High hysteresis
UHYS WORD %IW, %MW, %OW, %KW Low hysteresis
Q BINARY %O, %M Output

Function block description

ABB France Page C-47 1SBC006099R1001 C - 03/07

DESCRIPTION
The values of the operands at the inputs E1 and E2 are compared to each other.
Taking the hystereses at the inputs OHYS (high hysteresis) and UHYS (low
hysteresis) into account, the result is signalled at the output Q.

The following applies :
E1 < E2 - UHYS ---> Q = 0
E1 > E2 + OHYS ---> Q = 1
E2-UHYS < E1 < E2+OHYS ---> Q as in the previous cycle

E2-UHYS E2 E1

1

E2+OHYS

Q

UHYS OHYS

0

Number range
Integer word (16 bits)
• Low limit : 8001H -32767
• High limit : 7FFFH +32767
• Inadmissible value : 8000H ---

The following especially applies here :
E1 > 8000H (-32768)
E2 - UHYS > 8001H (-32767)

Function block description

ABB France Page C-48 1SBC006099R1001 C - 03/07

2.5 Arithmetic functions, word

Arithmetic
functions, word

serie
from pages C-48 to C-60

Ctler 40 50 90 30

+ Addition x x x x x
- Subtraction x x x x x
* Multiplication x x x x x
DIV Division x x x x x
*: / MULDI Multiplication with division x x x x x
=W Allocation x x x x x
BETR Absolute value generator x x x x
COS1 Cosinus x
MUL2N Multiplication by 2 to the power of N x x x x
NEG Negation x x x x
SIN1 Sinus x
SQRT Square root x x x
ZUDKW Allocation direct constant to word

variable
 x x x x

+ ADDITION

FBD IL (compatible with IEC 1131-3)

+
E1
E2 A1

LD
ADD
ST

E1
E2
A1

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Summand 1
E2 WORD %IW, %MW, %OW, %KW Summand 2; duplicable
A1 WORD %MW, %OW Total

DESCRIPTION
The values of the operands at the inputs are added and the result is allocated to the
operand at the output.

Number range
Integer Word (16 Bits)
• Low limit : 8000H -32768
• High limit : 7FFFH +32767

Function block description

ABB France Page C-49 1SBC006099R1001 C - 03/07

Note for serie 90 :
The output is limited to -32767.
The value -32768 is an inadmissible value for the input E1. If the value 8000H (-
32768) is present at E1, it is automatically corrected to the permissible value 8001H
(-32767) before processing.

- SUBTRACTION

FBD IL (compatible with IEC 1131-3)

-
E1
E2 A1

LD
SUB
ST

E1
E2
A1

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Minuend
E2 WORD %IW, %MW, %OW, %KW Subtrahend; duplicable
A1 WORD %MW, %OW Result (difference)

DESCRIPTION
The value of the operand at the input E2 is subtracted from the value of the operand
at the input E1 and the result is allocated to the operand at the output A1.
The input E2 is capable of duplication (E2...En). If it is duplicated, all values of the
operands at the inputs E2...En are subtracted from the operand at the input E1.

Number range
Integer Word (16 Bits)
• Low limit : 8000H -32768
• High limit : 7FFFH +32767

Note for serie 90 :
The output is limited to -32767.
The value -32768 is an inadmissible value for the input E1. If the value 8000H (-
32768) is present at E1, it is automatically corrected to the permissible value 8001H
(-32767) before processing.

Function block description

ABB France Page C-50 1SBC006099R1001 C - 03/07

* MULTIPLICATION

FBD IL (compatible with IEC 1131-3)

*
E1
E2 A1

LD
MUL
ST

E1
E2
A1

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Multiplicand
E2 WORD %IW, %MW, %OW, %KW Multiplier; duplicable
A1 WORD %MW, %OW Result (Product)

DESCRIPTION
The values of the operands at the inputs of this connection element are multiplied by
each other and the result is allocated to the operand at the output.

Number range
Integer Word (16 Bits)
• Low limit : 8000H -32768
• High limit : 7FFFH +32767

Note for serie 90 : The output is limited to -32767.

DIV DIVISION

FBD IL (compatible with IEC 1131-3)

DIV
E1
E2 A1

LD
DIV
ST

E1
E2
A1

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Dividend
E2 WORD %IW, %MW, %OW, %KW Divisor
A1 WORD %MW, %OW Result (quotient)

Function block description

ABB France Page C-51 1SBC006099R1001 C - 03/07

DESCRIPTION
The value of the operand at the input E1 is divided by the value of the operand at the
input E2 and the result is allocated to the operand at the output A1. The following
applies if input E2 is duplicated : E1 : E2 : E3 ... : En = A1. The result of division is
always a whole number. Rounding (inclusion of the digits after the decimal point)
does not take place.

Number Range
Integer Word (16 Bits)
• Low limit : 8000H -32768
• High limit : 7FFFH +32767

Note for serie 90 : The output is limited to -32767.

*: MULTIPLICATION WITH DIVISION

FBD IL

*:
Z1*
Z2:
Z3 A1

CAL MULDI (Z1*,Z2:,Z3,A1)

PARAMETERS
Z1* WORD %IW, %MW, %OW, %KW Multiplicand
Z2: WORD %IW, %MW, %OW, %KW Multiplier
Z3 WORD %IW, %MW, %OW, %KW Divisor
A1 WORD %MW,%OW Result

DESCRIPTION
The value of the operand at the input Z1 is multiplied by the value of the operand at
the input Z2, the intermediate result is divided by the value of the operand at the input
Z3 and then the result is allocated to the operand at the output A1.

Internally, this function block operates with double word accuracy (32 bits) when
multiplying and dividing. Only when allocating the result to the output A1 is the value
limited to word accuracy (16 bits). The result is rounded up if the remainder of
division is > 0.5. If a number overflow occurs during division (e.?g. division by 0), the
limit value of the number range is allocated to the output A1 with the correct sign.

Number range
Integer Word (16 Bits)
• Low limit : 8000H -32768
• High limit : 7FFFH +32767

Function block description

ABB France Page C-52 1SBC006099R1001 C - 03/07

Note for serie 90 :
The output is limited to -32767.
The value -32768 is an inadmissible value for the word inputs. If the value 8000H (-
32768) is present at an input, it is automatically corrected to the permissible value
8001H (-32767) before processing.

=W ALLOCATION

FBD IL (compatible with IEC 1131-3)

=W
E1 A1

LD
ST

E1
A1

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Source
A1 WORD %MW, %OW Target

DESCRIPTION
This connection element allocates the value of the operand at the input E1 to the
operand at the output A1.

Number range
Integer word (16 bits).
• Low limit : -32768
• High limit : 32767

Note for serie 90 : If the value 8000H (-32768) is present at the input E1, the
permissible value 8001H (-32767) is allocated to the output A1.

BETR ABSOLUTE VALUE GENERATOR

FBD IL

BETR
E1 A1

CAL BETR (E1,A1)

Function block description

ABB France Page C-53 1SBC006099R1001 C - 03/07

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input value
A1 WORD %MW, %OW Absolute value of the input

value

DESCRIPTION
The absolute value of the word operand at the input E1 is generated and is allocated
to the operand at the output A1.

Number range
Integer Word (16 Bits)
• Low limit : 8000H -32768
• High limit : 7FFFH +32767

Note for serie 90 : The output is limited to -32767.
The value -32768 is an inadmissible value for the word inputs. If the value 8000H (-
32768) is present at the input E1, the maximum possible value 7FFFH (+32767) is
allocated to the output A1.

COS1 COSINE

FBD IL

COS1
ANG AD

ER

CAL COS1 (ANG,AD,ERR)

PARAMETERS
ANG WORD %IW, %MW, %OW Angle 0...3600 (0.0°....360.0°)
AD DOUBLE

WORD
%MD Cosine of the input value

ERR BINARY %M, %O Error if ANG is out of range

DESCRIPTION
The function block calculates the cosine of the value at the input ANG and assigns it
to the output AD.

The input value has to be in the following range : 0 ≤ ANG ≤ 3600
 0000 -> 0°
 0001 -> 0.1°
 0010 -> 1.0°

Function block description

ABB France Page C-54 1SBC006099R1001 C - 03/07

 ...
 3600 -> 360.0°
If the value at ANG is negative or greater than 3600 (360°), the output AD is set to 0
and the error output ERR is set to 1.
 0 ≤ ANG ≤ 3600 => ERR = 0 and AD = cos (ANG)
 ANG < 0 or ANG > 3600 => ERR = 1 and AD = 0

The result is within the range of -100 000 to +100 000.

Examples :
 cos (0) = 100000
 cos (450) = 70711
 cos (900) = 0
 cos (1800) = -100000
 cos (2360) = -55919
 cos (2700) = 0
 cos (3600) = 100000

MUL2N MULTIPLICATION BY 2 TO THE POWER OF N

FBD IL

MUL2N
E1
N A1

CAL MUL2N (E1,N,A1)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input operand
N WORD %IW, %MW, %OW, %KW Quantity
A1 WORD %MW, %OW Result

DESCRIPTION
The value of the operand at the input E1 is shifted bit-by-bit N times.

If the value at the input N is positive, the value is shifted to the left. For each shift by 1
bit position, this corresponds to multiplication of the current value by 2.

If the value at the input N is negative, it is shifted to the right. For each shift by 1 bit
position, this corresponds to division of the current value by 2.

If N = 0, the value at the input E1 is passed directly to the output A1.

The result is allocated to the operand at the output A1.

Function block description

ABB France Page C-55 1SBC006099R1001 C - 03/07

Meaningful range for N: -14 < N < +14

Sign of the value at the input E1:
The sign of the value E1 is not influenced by the shift operation. That is to say, the
sign of the output value is always identical with the sign of the input value.

Shift to the left (Multiplication):
When the value at the input is shifted to the left, the released bit 0 is filled with 0. The
sign bit (bit 15) is not changed because limiting to the limit of the number range takes
place beforehand.

Limiting of the value at the output A1 when shifting to the left:

• The following applies to positive values at the input E1:
If bit 14 has a “1” and if shift operations still have to be carried out on the basis of the
value at the input N, these are no longer executed. Instead, the output is set to the
limit of the positive number range. That is to say, the limit has been reached in any
case at the latest after 14 shifts.
Limit value: Output A1 = +32767 (7FFFH).

• The following applies to negative values at the input E1:
If bit 14 has a “0” and shift operations still have to be carried out because of the value
at the input N, these will no longer be executed. Instead, the output is set to the limit
of the negative number range. That is to say, the limit has been reached in any case
at the latest after 14 shifts.
Limit: Output A1 = -32767 (8001H)

Shift to the right (Division):
When shifting to the right, every bit moves to the right by one position. At the same
time, the sign bit (bit 15) always retains its value. The released bit (bit 14) is filled in
each case with the value of the sign bit.

Limiting of the value at the output when shifting to the right:

• The following applies to positive values at the input E1:
If now only bit 0 has a “1” and shift operations still have to be carried out because of
the value at the input N, the output will be set to the value 0. That is to say, the value
0 has been reached in any case at the latest after 14 shifts.
Output A1 = 0.

• The following applies to negative values at the input E1:
If bit 0 ... bit 15 has a “1” as the result of the shift, the limit value (-1) has been
reached. Further shifts have no effect. That is to say, the value -1 has been reached
at the latest after 15 shifts.
Output A1 = -1 (FFFFH).

Function block description

ABB France Page C-56 1SBC006099R1001 C - 03/07

Examples:
1. Input value E1 = 5498 (157AH)
 Exponent N = 2 -> 2 * Left shift

0.0.0.1 0.1.0.1 0.1.1.1 1.0.1.0

0.1.0.1 0.1.0.1 1.1.1.0 1.0.0.0

Bit 15 0

Bit 15 0

157AH Input value

Result after
2 left shifts

55E8H
(21992)

before the left shift

2. Input value E1 = 32612 (7F64H)
 Exponent N = -3 -> 3 * Right shift

0.1.1.1 1.1.1.1 0.1.1.0 0.1.0.0

0.0.0.0 1.1.1.1 1.1.1.0 1.1.0.0

Bit 15 0

Bit 15 0

Input value
before the right shift

3 right shifts
Result after

7F64H
(32612)

0FECH
(4076)

3. Input value E1 = -32612 (8008H)
 Exponent N = -3 -> 3 * Right shift

1.0.0.0 0.0.0.0 0.0.0.0 1.0.0.0

1.1.1.1 0.0.0.0 0.0.0.0 0.0.0.1

Bit 15 0

Bit 15 0

Input value
before the right shift

Result after
3 right shifts

8008 H
(-32760)

F001 H
(-4095)

Function block description

ABB France Page C-57 1SBC006099R1001 C - 03/07

NEG NEGATION

FBD IL

NEG

IN

CALL NEG(IN,Q)

Q

PARAMETERS
IN WORD %IW, %MW, %OW, %KW Word value
Q WORD %OW, %MW Negation

DESCRIPTION
The NEG fonction block allocates the negation of the variable at the input IN to the
output Q.

Number range
Integer word (16 bits)
• Low limit : 8000H - 32768
• High limit : 7FFFH + 32767

Note : if IN = -32768 then Q = +32767.

SIN1 SINE

FBD IL

SIN1
ANG AD

ER

CAL SIN1 (ANG,AD,ERR)

PARAMETERS
ANG WORD %IW, %MW, %OW Angle 0...3600 (0.0°....360.0°)
AD DOUBLE

WORD
%MD Sine of the input value

ERR BINARY %M, %O Error if ANG is out of range

Function block description

ABB France Page C-58 1SBC006099R1001 C - 03/07

DESCRIPTION
The function block calculates the sine of the value at the input ANG and assigns it to
the output AD.

The input value has to be in the following range : 0 ≤ ANG ≤ 3600
 0000 -> 0°
 0001 -> 0.1°
 0010 -> 1.0°
 ...
 3600 -> 360.0°
If the value at ANG is negative or greater than 3600 (360°), the output AD is set to 0
and the error output ERR is set to 1.
 0 ≤ ANG ≤ 3600 => ERR = 0 and AD = cos (ANG)
 ANG < 0 or ANG > 3600 => ERR = 1 and AD = 0

The result is within the range of -100.000 to +100.000.

Examples :
 sin (0) = 0
 sin (450) = 70711
 sin (900) = 100000
 sin (1800) = 0
 sin (2360) = -82904
 sin (2700) = -100000
 sin (3600) = 0

SQRT SQUARE ROOT

E

ERR

D/W
A

SQRT

FBD IL

CAL SQRT (E,D/W,A,ERR)

PARAMETERS
E WORD,

DOUBLE
WORD

%IW, %OW, %MW, %KW,
%MD, %KD

Input

D/W BINARY %I, %O, %M, %K, %S Format of the input/output
A WORD,

DOUBLE
WORD

%OW, %MW
%MD, %KD

Square root of the input value

ERR BINARY %O, %M Error if the input value is
negative

Function block description

ABB France Page C-59 1SBC006099R1001 C - 03/07

DESCRIPTION
The function block SQRT generates the square root of the value at the input E. The
result is available at the output A and is always rounded down to an integral number.

The value at the input E must be a positive number. If the value at the input is
negative, the value ’zero’ is output through the output A and the value ’1’ is output
through the ERR output. The ERR output indicates whether the value of the input
operand E is positive (> 0) or negative (< 0).
Input E > 0 -> ERR = 0 and A = square root
Input E < 0 -> ERR = 1 and A = 0

The input D/W defines the format of the input/output operand.
D/W = 0 -> WORD
D/W = 1 -> DOUBLE WORD

ZUDKW ALLOCATION DIRECT CONSTANT TO WORD VARIABLE

FBD IL

ZUDKW

#W V

CAL ZUDKW (#W,V)

PARAMETERS
#W DIRECT

CONSTANT
#, #H Numerical value which is to be

allocated to the word variable
at output V

V WORD %MW, %OW Word variable to which the
numerical value of input # is to
be allocated

DESCRIPTION
The function block serves to allocate a numerical value to a word variable. The
numerical value is specified as a direct constant.

#W DIRECT CONSTANT (#, #H)
This numerical value is allocated to the word variable at output V.

V WORD
Word variable to which the numerical value of input #W is allocated.

Function block description

ABB France Page C-60 1SBC006099R1001 C - 03/07

2.6 Logical functions, word

Logical
functions, word

serie
from pages C-60 to C-68

Ctler 40 50 90 30

MASKE Mask x
SHIFT Shift block x
WAND AND combination, word x x x x
WOR OR combination, word x x x x
WXOR Exclusive OR combination, word x x x x

MASKE MASK

FBD IL

MASKE
E1
MASK

KEIN
ALLE

CAL MASKE (E1,MASK,ALLE,KEIN)

PARAMETERS
E1 WORD %IW, %OW, %MW, %KW Input value
MASK WORD %IW, %OW, %MW, %KW Mask
ALLE BINARY %O, %M All bits agree
KEIN BINARY %O, %M No bit agrees

DESCRIPTION
The individual bits of the operand at the input E1 are compared to the bits of the
operand at the input MASK. The result of the comparison is signalled at the outputs
ALLE and KEIN.

If at least all bits, which are set on the operand at the input MASK, are set on the
operand at the input E1, the following applies to the outputs : ALLE = 1
 KEIN = 0

If none of the bits, which are set on the operand at the input MASK, are set on the
operand at the input E1, the following applies to the outputs : ALLE = 0
 KEIN = 1

Function block description

ABB France Page C-61 1SBC006099R1001 C - 03/07

If only some of the bits, which are set on the operand at the input MASK, are set on
the operand at the input E1, the following applies to the outputs : ALLE = 0
 KEIN = 0

E1 X1111XX11XXXX11X

00XXXXX0XXX0XXXX

1X1X1XXX10XXXX10

MASK 0111100110000110

1100000100010000

0010100011000011

ALLE = 1
KEIN = 0

:
:

Example

E1
MASK

ALLE
KEIN

:
:

E1
MASK

ALLE
KEIN

:
:

= 0
= 1

= 0
= 0

X: These bits may have any value (don't care)
SHIFT SHIFT BLOCK

FBD IL

SHIFT

E
D/W
ANZ
LKS
ROT

CY A
A

CAL SHIFT (E,D/W,ANZ,LKS,ROT,ROTC,
SLOG,SARI,CY E,CY A,A)

ROTC
SLOG
SARI
CY E

PARAMETERS
E WORD,

DOUBLE
WORD

%IW, %OW, %MW, %KW,
%KD, %MD

Operand to be shifted Word or
double word

D/W BINARY %I, %O, %M, %K, %S Format selection (W or DW)
ANZ WORD %IW, %OW, %MW, %KW Number of bit positions to be

shifted
LKS BINARY %I, %O, %M, %K, %S Shift direction, left or right
ROT BINARY %I, %O, %M, %K, %S Shift-Art: ROTATE
ROTC BINARY %I, %O, %M, %K, %S Shift-Art: ROTATE by the

CARRY FLAG
SLOG BINARY %I, %O, %M, %K, %S SHIFT type: LOGICAL SHIFT
SARI BINARY %I, %O, %M, %K, %S SHIFT type: ARITHMETIC

SHIFT
CY_E BINARY %I, %O, %M, %K, %S Initial value for the CARRY

FLAG in the case of shift type
ROTC

CY_A BINARY %O, %M Status of the CARRY FLAG
after the shift

Function block description

ABB France Page C-62 1SBC006099R1001 C - 03/07

A WORD,
DOUBLE
WORD

%OW, %MW, %MD Result of the shift

DESCRIPTION
This function block shifts the operand present at the input by a specified number of
bit positions to the left or right. The result of the shift and the CARRY flag are
available at the block’s outputs. The operand at the input remains unchanged.

The required shift type is planned at the inputs :
 • ROT
 • ROTC
 • SLOG
 • SARITH
If several shift types are specified simultaneously, the shift type located furthest to the
front in the sequence of the block’s inputs applies.

The block can shift both word and double word operands.

Important: In certain circumstances, the value 8000H or 8000 0000H forbidden for
arithmetic operations may be present at this block’s output.

E WORD/DOUBLE WORD
Operand to be shifted
The planned SHIFT operation is applied to the input operand, which is not changed.

D/W BINARY
Format selection for the input operand
D/W = 0 -> WORD
D/W = 1 -> DOUBLE WORD

ANZ WORD
Number of bit positions to be shifte. Meaningful range for the quantity n :
Word operands : 0 < n < 16
Double word operands : 0 < n < 32

LKS BINARY
Direction in which shifting takes place
LKS = 0 -> shift to right
LKS = 1 -> shift to left

ROT BINARY
Shift type: ROTATE
The bit position released by the shift is replaced by the bit shifted out. The contents of
the CARRY FLAG are additionally replaced by the bit shifted out. After the shift, the
result and the contents of the CARRY FLAG are available at the block’s outputs.

Function block description

ABB France Page C-63 1SBC006099R1001 C - 03/07

ROT to right :

MSB LSB..... C

ROT to left :

MSB LSB.....C

LSB : Least significant bit
MSB : Most significant bit

ROTC BINARY
Shift type: ROTATE by the CARRY FLAG
The bit position released by the shift is replaced by the contents of the CARRY
FLAG. The CARRY FLAG is then replaced by the bit shifted out. After the shift, the
result and the contents of the CARRY FLAG are available at the block’s outputs.

ROTC to the right :

MSB LSB..... C

ROTC to the lef :

MSB LSB.....C

LSB : Least significant bit
MSB : Most significant bit

SLOG BINARY
Shift type: LOGICAL SHIFT
The bit position released by the shift is replaced by the value 0.
The contents of the CARRY FLAG are replaced by the bit shifted out.
After the shift, the result and the contents of the CARRY FLAG are available at the
block’s outputs.

SLOG to the right :

MSB LSB..... C0

Function block description

ABB France Page C-64 1SBC006099R1001 C - 03/07

SLOG to the left :

MSB LSB.....C 0

LSB : Least significant bit
MSB : Most significant bit

SARI BINARY
Shift type: ARITHMETIC SHIFT

ARITHMETIC SHIFT to the right:
The bit position 15 (MSB, sign bit) released by the shift operation is replaced by itself.
The contents of the CARRY FLAG are replaced by the bit shifted out. After the shift,
the result and the contents of the CARRY FLAG are available at the block’s outputs

ARITHMETIC SHIFT to the left (identical with SLOG left):
The bit position 0 released by the shift is replaced by the value 0. The contents of the
CARRY FLAG are replaced by the bit shifted out. After the shift, the result and the
contents of the CARRY FLAG are available at the block’s outputs.

SARI to the right :

MSB LSB..... C

SARI to the left : (Identical with SLOG to the left)

MSB LSB.....C 0

LSB : Least significant bit
MSB : Most significant bit

CY_E BINARY
Initial value for the CARRY FLAG with shift type ROTC. For the shift type “ROTATE
by the CARRY FLAG”, an initial value is needed for the CARRY FLAG. This initial
value is specified at the CY_E input.

CY_A BINARY
State of the CARRY FLAG after the shift. After the shift, the current value of the
CARRY FLAG is available at this output.

A WORD/DOUBLE WORD
Result of the shift. After the shift, the result is available at this output.

Function block description

ABB France Page C-65 1SBC006099R1001 C - 03/07

WAND AND COMBINATION, WORD

FBD IL

WAND
E1
E2 A1

CAL WAND (E1,E2,A1)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Operand 1
E2 WORD %IW, %MW, %OW, %KW Operand 2
A1 WORD %MW, %OW Result of the AND

combination

DESCRIPTION
This function block generates the bit-by-bit AND combination of the operands present
at the inputs E1 and E2. The result is allocated to the operand at the output A1.

Example :

0.0.0.0 0.0.1.1 0.0.1.0 0.1.1.0

1.0.0.1 0.0.0.0 0.0.1.0 1.1.1.1

0.0.0.0 0.0.0.0 0.0.1.0 0.1.1.0

E1

E2

A1

Function block description

ABB France Page C-66 1SBC006099R1001 C - 03/07

WOR OR COMBINATION, WORD

FBD IL

WOR
E1
E2 A1

CAL WOR (E1,E2,A1)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Operand 1
E2 WORD %IW, %MW, %OW, %KW Operand 2
A1 WORD %MW, %OW Result of the OR

combination

DESCRIPTION
This function block generates the bit-by-bit OR combination of the operands present
at the inputs E1 and E2. The result is allocated to the operand at the output A1.

Example :

0.0.0.0 0.0.1.1 0.0.1.0 0.1.1.0

1.0.0.1 0.0.0.0 0.0.1.0 1.1.1.1

1.0.0.1 0.0.1.1 0.0.1.0 1.1.1.1

E1

E2

A1

Function block description

ABB France Page C-67 1SBC006099R1001 C - 03/07

WXOR EXCLUSIVE OR COMBINATION, WORD

FBD IL

WXOR
E1
E2 A1

CAL WXOR (E1,E2,A1)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Operand 1
E2 WORD %IW, %MW, %OW, %KW Operand 2
A1 WORD %MW, %OW Result of the XOR combination

DESCRIPTION
This function block generates the bit-by-bit XOR combination of the operands present
at the inputs E1 and E2. The result is allocated to the operand at the output A1.

Example :

0.0.0.0 0.0.1.1 0.0.1.0 0.1.1.0

1.0.0.1 0.0.0.0 0.0.1.0 1.1.1.1

1.0.0.1 0.0.1.1 0.0.0.0 1.0.0.1

E1

E2

A1

Function block description

ABB France Page C-68 1SBC006099R1001 C - 03/07

3 Program control functions

Program control
functions

serie
from pages C-68 to C-84

Ctler 40 50 90 30

=PE Conditional program end x x x x
ABORT Program abort x
CAL_FB Subroutine call x
CALLUP Subroutine call for an assembler program x
DI Read direct input x x
DIN Read direct inputs x
DO Write direct output x x
DOUT Write direct outputs x
IOCON Input/output configuration x
LZB Run number block x
VTASK Interrupt task validation x x

=PE CONDITIONAL PROGRAM END

FBD IL

=PE
BED

LD
ST

BED
PE

PARAMETERS
BED BINARY %I, %M, %O, %S, %K Condition for program end

DESCRIPTION
Depending on the status of the operand at the input BED, processing of the PLC
program is ended or is not ended here. :
BED = 0 : The PLC program is processed up to the end.
BED = 1 : The PLC program is processed only up to this point. The subsequent
 part of the PLC program is not processed.

Function block description

ABB France Page C-69 1SBC006099R1001 C - 03/07

ABORT PROGRAM ABORT

FBD IL

ABORT
FREI

CAL ABORT (FREI)

PARAMETERS
FREI BINARY %I, %M, %O, %K Block enable

DESCRIPTION
The function block serves to abort a PLC program. All outputs are set to 0 if the PLC
program is aborted.

The block can be used in particular for aborting the PLC program if a specific error of
error class 3 occurs.

The function block is activated by a 1 signal at its enable input FREI.
If a 0 signal is applied to the enable input, the function block has no effect.
The following thus applies :
FREI = 0 : --> the block has no effect
FREI = 1 : --> the block aborts the program

CAL_FB SUBROUTINE CALL

FBD IL

NAME

EN

CAL CAL_FB (NAME,EN)

PARAMETERS
NAME TXT Subroutine name
EN BINARY %I, %M, %O, %K, %S Call of the subroutine

DESCRIPTION
The CAL_FB function validates the execution of a subroutine whose name is
specified in NAME variable

Function block description

ABB France Page C-70 1SBC006099R1001 C - 03/07

In function block diagram, the block has the name of the subroutine.
In instruction list, the function is CAL_FB with NAME and EN as parameters.

CALLUP SUBROUTINE CALL FOR AN ASSEMBLER PROGRAM

FBD IL

CALLUP
FREI
#OFF
#SEG
#VGW
#VAR
E

CAL CALLUP (FREI, #OFF,
#SEG, #VGW, #VAR,E)

PARAMETERS
FREI BINARY %I, %M, %O, %K, %S Block enable
#OFF DIRECT #, #H Offset address of the
 CONSTANT subroutine
#SEG DIRECT #, #H Segment address of the
 CONSTANT subroutine
#VGW DIRECT #, #H Number of historical values of
 CONSTANT the subroutine
#VAR DIRECT #, #H Number of input/output
 CONSTANT variables of the subroutine
E X %I, %M, %O, %K, %S, As an input variable;
 %IW, %MW, %OW, %KW,
 %MD, %KD
 %M, %O, %MW, %OW As an output variable capable
 %MD of duplication

DESCRIPTION
The function block calls a subroutine stored on the PLC in INTEL machine code. The
machine code must be compatible with the processor of the relevant PLC.

After processing of the subroutine, the program branches back to the block. Before
the subroutine is called, all registers are automatically saved and restored after the
return.

FREI BINARY
Enable function block processing
FREI = 0 : Block is not processed
FREI = 1 : Block is processed

Function block description

ABB France Page C-71 1SBC006099R1001 C - 03/07

#OFF DIRECT CONSTANT
#SEG DIRECT CONSTANT
The start address of the assembler subroutine is specified at these two inputs. The
start address consists of an offset and a segment address. The offset and segment
addresses are specified as direct constants.

If the value “0” is specified as the segment address, the block expects the subroutine
to have been stored in the user program memory. The offset address then represents
the byte spacing between start of user program and start of subroutine. The
subroutine is automatically saved as well when saving the PLC program on EPROM
or flash EPROM.

#VGW DIRECT CONSTANT
The number of historical values used in the subroutine is specified at the input
#VGW. This is specified as a direct constant.

#VAR DIRECT CONSTANT
The total number of input and output variables of the subroutine is specified at the
input #VAR. Therefore, this is the total of all E1...En and A1...An. This is specified as
a direct constant.

E BINARY, WORD, DOUBLE WORD
The input E is capable of duplication (E1...Em).
The input variables for the subroutine are specified at the inputs E1...Em. The
subroutine performs “reading” access to these variables. When the subroutine
accesses these variables, the assembler programmer must pay attention to the
defined data format. Direct constants (value transfer) are not allowed at the inputs
E1...Em.
The output variables for the subroutine are specified at the outputs Em+1...En. The
subroutine performs “writing” access to these variables, i.e. values calculated in the
subroutine are provided to the main program with the aid of the output variables
Em+1...En. The assembler programmer must pay attention to the defined data format
when accessing these variables.

Application notes

Store subroutine
The best possibility to store the subroutine is to store it in the user program memory
(after PE). The subroutine can be loaded e. g. with a HEX file loader or the PLC
monitor.
If the value “0” is specified as the segment address, the block expects the subroutine
to have been stored in the user program memory. The offset address then represents
the byte spacing between start of user program and start of subroutine.
The subroutine is automatically saved as well when saving the PLC program on
EPROM or flash EPROM.

Loading the subroutine
The subroutine can be loaded into the PLC via the serial interface COM2 with monitor
command “Read INTEL-HEX-FILE”. (See Description of the monitor functions,
command “R”). This can be done only in connection with PLCs which have two serial

Function block description

ABB France Page C-72 1SBC006099R1001 C - 03/07

interfaces (e. g. 07 KT 92).

Subroutine creation
1. Register
When creating the subroutine, use can be made of the following registers to suit
requirements :

 AX, BX, CX, DX, BP

The following registers are intended for access to variables :

 DS, ES, DI, SI

However, these registers can also be changed because they are corrected again
after execution of the subroutine in the CALLUP block.

2. Start address
Subroutine’s start address must be specified at the #OFF and #SEG inputs in the call
of the block. The offset and segment are each specified as direct constants.

3. Access to input and output variables
Access to the variables is by way of the pointers ES:SI and DS:BX.
When the subroutine is entered, the pointer to the address of the first variable in the
call of the block is located in (ES:SI) and the pointer to the address of the second
variable is located in (ES:SI+2) etc. Access to the contents of these variables is then
by means of DS:BX

Example 1 :
The values of the first two word variables in the block call are to be fetched to the
registers AX and CX.
MOV BX,ES:[SI] ;Fetch address for 1st variable and store in BX
MOV AX,DS:[BX] ;fetch value to AX
MOV BX,ES:[SI+2] ;fetch address for second variable and store in BX
MOV CX,DS:[BX] ;fetch value to CX

Example 2 :
The value of the first two binary variables in the call of the block are to be fetched to
the registers AL and CL.
MOV BX,ES:[SI] ;Fetch address for 1st variable and store in BX
MOV AL,DS:[BX] ;Fetch value to AL
MOV BX,ES:[SI+2] ;Fetch address for second variable and store in BX
MOV CL,DS:[BX] ;Fetch value to CL
Binary variables occupy a whole byte. This byte may only have 0 or 1 as its contents.

4. Access to historical values/RAM
If RAM space is needed in the subroutine for intermediate values, use can be made
of the historical values memory.

The intermediate values are retained and are again available in the next program
cycle for further processing. For each call of the subroutine, its own memory locations

Function block description

ABB France Page C-73 1SBC006099R1001 C - 03/07

are available in the historical values memory. If a subroutine is called three times, for
instance, in total 3 times as many historical values are occupied in the historical
values memory as are specified in the call. The number of memory words used (1
word = 16 bits) in the historical values memory must be specified as a direct constant
in the call of the block. If too many historical values are occupied, the PLC issues an
error message when the command PA (program editing) is used or when the
program is started.

The historical values are addressed by way of the pointers DS:DI
In doing so, DS:DI points to the first available historical value when entering the
subroutine.

Example :
The value fetched to register AX in point 3. is to be compared to the first word in the
historical values memory.
CMP AX,DS :[DI] ;Compare value to historical value

5. The stack has a depth of 40 words. In this way, up to 40 PUSH commands can be
executed successively.

6. Return from the subroutine
The return is achieved by means of RET FAR (8086 machine code : CB). RET FAR
is generated by the 8086 assembler by virtue of the fact that the subroutine is
declared as PROC FAR.

Function block description

ABB France Page C-74 1SBC006099R1001 C - 03/07

FBD IL

CALLUP
FREI
#OFF
#SEG
#VGW
#VAR

In a subroutine, the contents of the flag word %MW 01,00 are to be incremented and
the contents of the flag word %MW 02,00 are to be decremented.

Subroutine

TEST PROC FAR

MOV BX,ES:[SI] ;address of %MW 01,00 to BX
MOV AX,DS:[BX] ;load value from %MW 01,00 to register AX
INC AX ;increment value
MOV DS:[BX],AX ;again write value back to %MW 01,00
MOV BX,ES:[SI+2] ;address of %MW 02,00 to BX
MOV AX,DS:[BX] ;load value from %MW 02,00 to register AX
DEC AX ;decrement value
MOV DS:[BX],AX ;again write value back to %MW 02,00
RET
TEST ENDP

The subroutine is stored in the program memory 2. In case of this example the
distance between the start of the subroutine and the start of the user program memory
amounts to 7400H byte. It must be enable for execution (%K00,01=1). No historical
values are needed and 2 variables are used.

%K 00,01
#H 7400
#H 0000
0
2
%MW 00,00
%OW02.00

CAL CALLUP (%K00,01,#H7400,
#H0000, #0, #2, %MW00,00,
%OW02,00)

DI READ DIRECT INPUT

FBD IL

DI

IN

CAL DI (ENA,IN)

ENA

PARAMETERS
ENA BINARY %I, %M, %O, %K, %S enable input
IN BINARY %I Input to be updated

DESCRIPTION
This function can only be used with serie 40 & 50 central units.
The function block DI reads ONE direct input of the central unit and its extensions.
The direct input to be read is specified at the input IN.

Function block description

ABB France Page C-75 1SBC006099R1001 C - 03/07

The function block is useful : if the cycle time is long
 if the capacity utilization of the central unit is high

The PLC processor automatically builds an updated process image of the inputs at
the start of each program cycle. The DI function block is able to get the physical input
value specified at the input IN within a program cycle. This may be required in
conjunction with specific applications, in order to detect and process the input signal
changes more than once per program cycle.

- If the input to be read is on the central unit :
the new input value can be read instantaneously.

- If the input to be read is on an extension unit :
the DI function reads the present input value and generates at the same time a
refreshment of the extension bus. The DI function block is usefull if it is used in a time
interruption knowing that the present input value read in one interruption is the input
value refreshed by the DI function of the previous interruption.

- Remote inputs are refreshed every cycle time. The DI function block can not be
used for remote units.

DIN READ DIRECT INPUTS

FBD IL

CAL DINDIN

DESCRIPTION
This function can only be used with serie 90 central units.
With the help of the CS31 bus processor, the function block DIN reads all of the
direct inputs of the PLC processor. The direct inputs are the inputs which are directly
available at the terminals of the PLC processor.

The function block is useful : with stand-alone PLC processors
 if the cycle time is long
 if the capacity utilization of the PLC is high

The PLC processor automatically builds an updated process image of the direct
inputs at the start of each program cycle. The DIN function block is able to create
additional updates of the process image of the direct inputs within program cycles.
This may be required in conjunction with specific applications, in order to detect and
process signal changes of the direct inputs more than once per program cycle.

If the DIN and DOUT function blocks are used, the terminal–to–terminal reaction time
between direct inputs and direct outputs can be reduced.

Function block description

ABB France Page C-76 1SBC006099R1001 C - 03/07

Example :
- Cycle time : 80 ms
- Capacity utilization : 95%
- 3 DIN + 3 DOUT blocks distributed regularly over the PLC program (i.e. after 20 ms,
40 ms and 60 ms)
In this example, the direct inputs of the PLC processor are read every 20 ms. The
updated values of the direct outputs are provided with the same frequency. See the
figure below for illustration.

Cycle time: 80 ms, capacity utilization: 95%

0 ms 20 ms 40 ms 60 ms 80 ms

Read inputs Write outputs

D
I
N

D
O
U
T

D
I
N

D
O
U
T

D
I
N

D
O
U
T

P
E

DO WRITE DIRECT OUTPUT

FBD IL

DO

OUT

CAL DO (ENA,OUT)

ENA

PARAMETERS
ENA BINARY %I, %M, %O, %K, %S enable input
OUT BINARY %O Output to be updated

DESCRIPTION
This function can only be used with serie 40 & 50 central units.
The function block DO writes ONE direct output of the central unit or its extension.
The direct output to be written is specified at the output OUT.

The function block is useful if the cycle time is long
 if the capacity utilization of the central unit is high

The PLC processor automatically outputs a process image of the direct outputs,
which was updated during the program cycle, at the end of each program cycle. The

Function block description

ABB France Page C-77 1SBC006099R1001 C - 03/07

DO function block is able to set the physical output specified at the OUT parameter
within program cycles. This may be required in conjunction with specific applications,
in order to have available the output signal changes more than once per program
cycle.

- If the output to be written is on the central unit :
the new output value can be write instantaneously.

- If the output to be written is on an extension unit :
the new output value can be write with a delay of max 2 ms.

- Remote outputs are refreshed every cycle time. The DO function block can not be
used for remote outputs.

DOUT WRITE DIRECT OUTPUTS

FBD IL

CAL DOUTDOUT

DESCRIPTION
This function can only be used with serie 90 central units.
With the help of the CS31 bus processor, the function block DOUT writes all of the
direct outputs of the PLC processor. The direct outputs are the outputs which are
directly available at the terminals of the PLC processor.

The function block is useful : with stand-alone PLC processors
 if the cycle time is long
 if the capacity utilization of the PLC is high

The PLC processor automatically outputs a process image of the direct outputs,
which was updated during the program cycle, at the end of each program cycle. The
DOUT function block is able to output additional updates of the process image of the
direct outputs within program cycles. This may be required in conjunction with
specific applications, in order to have available signal changes of the direct outputs
more than once per program cycle.

If the DIN and DOUT function blocks are used, the terminal–to–terminal reaction time
between direct inputs and direct outputs can be reduced.

Example :
- Cycle time : 80 ms
- Capacity utilization : 95%
- 3 DIN + 3 DOUT blocks distributed regularly over the PLC program (i.e. after 20 ms,
40 ms and 60 ms)
In this example, the direct inputs of the PLC processor are read every 20 ms. The

Function block description

ABB France Page C-78 1SBC006099R1001 C - 03/07

updated values of the direct outputs are provided with the same frequency. See the
figure below for illustration.

Cycle time: 80 ms, capacity utilization: 95%

0 ms 20 ms 40 ms 60 ms 80 ms

Read inputs Write outputs

D
I
N

D
O
U
T

D
I
N

D
O
U
T

D
I
N

D
O
U
T

P
E

IOCON INPUT/OUTPUT CONFIGURATION

FBD IL

CAL IOCON (BASE,#OFF,#ANZ)IOCON
BASE
#OFF
#ANZ

PARAMETERS
BASE BINARY %I, %O Base of input or output
 identifier
#OFF DIRECT #, #H Offset of the desired group
 CONSTANT number (related to BASE)
#ANZ DIRECT #, #H Number of channels to be
 CONSTANT configured

DESCRIPTION
The PLC processor only operates those binary inputs and outputs whose identifier
are explicitly configured in the PLC program.

The IOCON function block can enable a defined range of binary inputs or outputs for
operation, whose identifier do not exist in the PLC program. Normally, those inputs
and outputs are not processed automatically. This enable function is, for instance,
required, when binary inputs are to be read with the IDLB function block or binary
outputs are to be written with the IDSB function block, respectively.

The input or output range is specified at the function block. The range is configured at
the program start in conjunction with the program preparation. The IOCON block has
no function within the program cycle itself.

Function block description

ABB France Page C-79 1SBC006099R1001 C - 03/07

BASE BINARY
The identifier of a binary input or output is given at the input BASE. This identifier is
the base which #OFF and #ANZ relate to.

#OFF DIRECT CONSTANT
Range of values : #OFF > 0
At the input #OFF, it is specified where the input or output range, which is to be
operated additionally, starts.
The beginning of the additionally configured range is as follows :
The value specified at the input #OFF is added to the group number of the configured
input or output identifier, which is given at the input BASE. The new input or output
identifier, calculated in this way, marks the beginning of the input or output range
which is to be configured additionally.

The beginning of the range is calculated as follows :
GroupNo._beginning_of_range = GroupNo._BASE + #OFF
Channel_number_beginning_of_range = Channel_number_BASE
where : GroupNo._beginning_of_range : first group number of the range
 Channel_number_beginning_of_range : first channel number of the range
 #OFF : value at the input #OFF
 GroupNo._BASE : group number of the identifier at BASE
 Channel_number_BASE : channel number of the identifier at BASE

Example :
- Input BASE : %O 01,04, i.e. group number = 01 and channel number = 04
- Input #OFF : 3, i.e. the range to be configured starts with : %O (01+3),04 = %O
04,04

#ANZ DIRECTE CONSTANT
Range of values : #ANZ > 1
The input #ANZ specifies the number of input or output channels to be configured in
the additional range.

The end of the range is calculated as follows :
Equation : (#ANZ-1 + channel_number_BASE) :16 = DG,
 Remainder = channel_number_of_end_of_range

GroupNo_end_of_range = GroupNo._beginning_of_range + DG
where : GroupNo_end_of_range : last group number of the range
 Channel_number_of_end_of_range : last channel number of the range
 GroupNo_beginning_of_range : first group number of the range
 Channel_number_BASE : channel number of the identifier at BASE

Example :
Configured : BASE : %O 01,04
 #OFF : 3
 #ANZ : 32
It follows : Beginning of range : %O (01+3),04 = %O 04,04
 End of range : Equation : (32 -1 + 4) :16 = 2, Remainder 3

Function block description

ABB France Page C-80 1SBC006099R1001 C - 03/07

 --> %O (04+2),03 = %O 06,03
 Range : %O 04,04 ... %O 06,03

FBD IL

CAL IOCON (%O01,04,#3,#32)
%O 01,04
#3
#32

IOCON
BASE
#OFF
#ANZ

The outputs %O 04,04 ... %O 06,03 are output, even if their
names are not conf igured in the PLC

%O 01,00
%O 01,01
%O 01,02

%O 02,00

%O 03,00

%O 01,03
%O 01,04
%O 01,05

%O 04,00

%O 05,00

%O 06,00
%O 06,01
%O 06,02
%O 06,03
%O 06,04

%O 00,00

%O 01,00
%O 01,01
%O 01,02

%O 02,00

%O 03,00

%O 01,03
%O 01,04
%O 01,05

%O 04,00

%O 05,00

%O 06,00
%O 06,01
%O 06,02
%O 06,03
%O 06,04

%O 00,00

#OFF = 3

%O 04,01
%O 04,02
%O 04,03
%O 04,04

Beginning of range = %O 04,04

End of range = %O 06,03

#ANZ = 32

BASE = %O 01,04

LZB RUN NUMBER BLOCK

Function block description

ABB France Page C-81 1SBC006099R1001 C - 03/07

FBD IL

LZB
!BA
LZB

MA

0

E1
NR
#0
#0
#0

E1

JMP

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Run number
JMP SPECIAL Target label

DESCRIPTION
This function block controls processing of a program part. This program part is called
run number block and begins with the function block LZB and ends with the affiliated
target label This program part is processed as follows depending on the value of the
operand at the input E1 :
E1 = 0 : Program part is not processed
E1 = 1 : Program part is processed during every cycle
E1 = 2 : Program part is processed during every second cycle
E1 = n : Program part is processed during every nth cycle

FBD
Designation of the target label : JUMP label
The output JMP has to be connected to a jump label

IL
Designation of the target label : MA No.
Where : MA Key word
 0 < Nr < 999 Number of the label

The PLC automatically calculates :
• The number of historical values to be skipped
• The address of the target label
• The pointer to the own historical value
The PLC enters the 3 computed values in the intended positions of the LZB block.
When planned in IL, the user can basically fill these 3 program words with any
contents. However, it is suggested to enter here the numerical value 0.

Caution : The 3 program words should not be written with NOPs because these are
removed when optimizing the user program.

Function block description

ABB France Page C-82 1SBC006099R1001 C - 03/07

FBD/LD IL

LZB

JMP

!BA
LZB

MA
%MW 01,00
10
0
0
0

%MW 01,00

0

.

.

.

.

.

.

.

.

MA 10

Label

Label :

Function block description

ABB France Page C-83 1SBC006099R1001 C - 03/07

VTASK INTERRUPTION TASK VALIDATION

FBD IL

NAME

EN

CAL VTASK (NAME,EN)

PARAMETERS
NAME TXT Interruption name
EN BINARY %I, %M, %O, %K, %S Interruption validation

DESCRIPTION
The VTASK function validates the execution of an interruption whose name is
specified in NAME variable

In function block diagram, the block has the name of the interruption.
In instruction list, the function is VTASK with NAME and EN as parameters.

Function block description

ABB France Page C-84 1SBC006099R1001 C - 03/07

4 CS31 functions

CS31 functions serie
from pages C-84 to C-116

Ctler 40 50 90 30

CONFIO1 1 analog channel configuration x x
CONFIO4 4 analog channels configuration x x
CONFIO8 8 analog channels configuration x x
CS31CO Configure CS31 module x x x
CS31QU Acknowledge CS31 error x x x
MT_CS31 data sent by CS31 master x x x
MR_CS31 data received by CS31 master x x x
ST_CS31 data sent by CS31 slave x x x
SR_CS31 data received by CS31 slave x x x

Function block description

ABB France Page C-85 1SBC006099R1001 C - 03/07

CONFIO1 1 ANALOG CHANNEL CONFIGURATION

FBD IL

CONFIO1
ENA
CHAN0
TYPE0
DOT0
OFFS0

RDY
ERR

CAL CONFIO1(ENA, CHAN0, TYPE0, DOT0,
OFFS0, MULT0, FILT0, RDY, ERR)

MULT0
FILT0

PARAMETERS
ENA BINARY %I, %O, %M, %S,%K Enable block processing
CHAN0 WORD %IW, %OW Channel identification
TYPE0 WORD %MW, %OW, %KW Type of analog channel
DOT0 WORD %MW, %OW, %KW Position of the dot of the display value
OFFS0 WORD %MW, %OW, %KW Value of the offset for the display value
MULT0 WORD %MW, %OW, %KW Value of the multiplication for the display

value
FILT0 WORD %MW, %OW, %KW Filtering time
RDY BINARY %O, %M Processing of the configuration is

completed
ERR BINARY %O, %M An error is detected

DESCRIPTION
The function block CONFIO1 is used to

-configure the type (voltage, current or PT100/Pt1000) of one analog channel
on the AC31 extensions.

-change the filtering time of the analog input
-change the scale of the display value.
-lock or unlock the configuration for all analog channels of one analog

extension.

The analog channel configuration is set through the function block instead of

the pushbutton on the front plate of the analog extension.
The configuration is stored in an internal EEPROM in the analog extension.

The scale of the display value is set according to the formula

Display value = word value * MULT0/ 32767 + OFFS0

Function block description

ABB France Page C-86 1SBC006099R1001 C - 03/07

The latest configured channel number of one analog extension is displayed

ENA Binary
The function block is processed when ENA is on the rising edge 0->1

CHAN0 Word
The analog channel to be configured is directly set
For example, %IW00.00 for the analog input 0 on the analog extension at the
address 0, %OW65.01 for the analog output 1 on the analog extension at the
address 65

TYPE0 Word
Type of analog signal:

0 : the channel is set to +/- 10 V
1 : the channel is set to 0-20mA
2 : the channel is set to 4-20mA
3 : the channel is set to Pt100
4 : the channel is set to Pt1000
5 : the channel is set to Pt100 3 wires
6 : the channel is set to Pt1000 3 wires
8 : the channel is set to Ni 1000
9: the channel is set to BALCO500
14 : unlock the configuration through the pushbutton on the analog extension

front plate at the address xx when CHAN0 is %Iwxx.yy or %Owxx.yy
15 : lock the configuration through the pushbutton on the analog extension

front plate at the address xx when CHAN0 is %Iwxx.yy or %Owxx.yy

The configuration is automatically unlocked after a power supply ON

DOT0 Word

Position of the dot on the display

DOT0=0 4 digits are displayed without dot

Example :value =1234 display value is 1234
DOT0=1 4 digits are displayed with dot on position 1

Example :value =1234 display value is 123.4
DOT0= 2 4 digits are displayed with dot on position 2

Example: value =1234 display value is 12.34
DOT0= 3 4 digits are displayed with dot on position 3

Example: value =1234 display value is 1.234

If DOT0 <0 or DOT0>3, the configuration is the same than DOT0=0

OFFS0 Word
Value of the offset
-32767 <= OFFS0 <= 32767

Function block description

ABB France Page C-87 1SBC006099R1001 C - 03/07

MULT0 Word
Value of the multiplication
-32767 <= OFFS0 <= 32767
If MULT0 =0, the parameters OFFS0 and DOT0 are not used.
In this case, the scale is set to the factory setting scale.
The parameter MULT0=0 can be used to set a channel value to the display

FILT0 Word

0 : internal filter according to the documentation of analog extension
 1-127 : integration number

160 : Fast refresh time (50ms instead of 120 ms in standard)
192 : 60Hz Filter
224 : 50Hz Filter

All channels of one extension will be affected by this parameter.

The time filter formula is
 K=FILT0
 Vn= result (T)
 Vn-1=result (T-1)
 Vins=analog value without filtering

Vn=Σn/ K
 With Σn=(Vins –Vn-1) + Σn-1
 Initial value is : V1=Vins
 Σ1=K V1

RDY Binary
This bit is set to 0 during the function processing

ERR Binary
This bit is set to 1 during one cycle (the bit RDY is set to 1 in the same time)
An error is detected if:

-one parameter value is wrong
-the analog channel doesn’t exist
-communication problem between central unit and analog extension

Note: 3 historical values are used by the function CONFIO1

Function block description

ABB France Page C-88 1SBC006099R1001 C - 03/07

CONFIO4 4 ANALOG CHANNELS CONFIGURATION

FBD IL

CONFIO4
ENA
CHAN0
TYPE0
DOT0
OFFS0

RDY
ERR

CAL CONFIO4(ENA, CHAN0, TYPE0, DOT0,
OFFS0, MULT0, FILT0,…,FILT3, RDY, ERR)

MULT0
FILT0

MULT3
FILT3

PARAMETERS
ENA BINARY %I, %O, %M, %S,%K Enable block processing
CHAN0 WORD %IW, %OW Channel identification
TYPE0 WORD %MW, %OW, %KW Type of analog channel
DOT0 WORD %MW, %OW, %KW Position of the dot of the display value
OFFS0 WORD %MW, %OW, %KW Value of the offset for the display value
MULT0 WORD %MW, %OW, %KW Value of the multiplication for the display

value
FILT0 WORD %MW, %OW, %KW Filtering time
CHAN1 WORD %IW, %OW Channel identification
TYPE1 WORD %MW, %OW, %KW Type of analog channel
….. …. …. …..
MULT3 WORD %MW, %OW, %KW Value of the multiplication for the display

value
FILT3 WORD %MW, %OW, %KW Filtering time
RDY BINARY %O, %M Processing of the configuration is

completed
ERR BINARY %O, %M An error is detected

DESCRIPTION
The function block CONFIO4 is used to

-configure the type (voltage, current or PT100/Pt1000) of four analog channels
on the AC31 extensions. The 4 channels can be located on different extensions.

-change the filtering time of the analog input
-change the scale of the display value.
-lock or unlock the configuration for all analog channels of one analog

extension.

Function block description

ABB France Page C-89 1SBC006099R1001 C - 03/07

The analog channel configuration is set through the function block instead of
the pushbutton on the front plate of the analog extension.

The configuration is stored in an internal EEPROM in the analog extension.

The scale of the display value is set according to the formula

Display value = word value * MULT0/ 32767 + OFFS0

The latest configured channel number of one analog extension is displayed

ENA Binary
The function block is processed when ENA is on the rising edge 0->1

CHAN0 Word
The analog channel to be configured is directly set
For example, %IW00.00 for the analog input 0 on the analog extension at the
address 0, %OW65.01 for the analog output 1 on the analog extension at the
address 65

TYPE0 Word
Type of analog signal:

0 : the channel is set to +/- 10 V
1 : the channel is set to 0-20mA
2 : the channel is set to 4-20mA
3 : the channel is set to Pt100
4 : the channel is set to Pt1000
5 : the channel is set to Pt100 3 wires
6 : the channel is set to Pt1000 3 wires
8 : the channel is set to Ni 1000
9: the channel is set to BALCO500
14 : unlock the configuration through the pushbutton on the analog extension

front plate at the address xx when CHAN0 is %Iwxx.yy or %Owxx.yy
15 : lock the configuration through the pushbutton on the analog extension

front plate at the address xx when CHAN0 is %Iwxx.yy or %Owxx.yy

The configuration is automatically unlocked after a power supply ON

DOT0 Word

Position of the dot on the display

DOT0=0 4 digits are displayed without dot

Example :value =1234 display value is 1234
DOT0=1 4 digits are displayed with dot on position 1

Example :value =1234 display value is 123.4
DOT0= 2 4 digits are displayed with dot on position 2

Example: value =1234 display value is 12.34
DOT0= 3 4 digits are displayed with dot on position 3

Example: value =1234 display value is 1.234

Function block description

ABB France Page C-90 1SBC006099R1001 C - 03/07

If DOT0 <0 or DOT0>3, the configuration is the same than DOT0=0

OFFS0 Word
Value of the offset
-32767 <= OFFS0 <= 32767

MULT0 Word
Value of the multiplication
-32767 <= OFFS0 <= 32767
If MULT0 =0, the parameters OFFS0 and DOT0 are not used.
In this case, the scale is set to the factory setting scale.
The parameter MULT0=0 can be used to set a channel value to the display

FILT0 Word

0 : internal filter according to the documentation of analog extension
 1-127 : integration number

160 : Fast refresh time (50ms instead of 120 ms in standard)
192 : 60Hz Filter
224 : 50Hz Filter

All channels of one extension will be affected by this parameter.

The time filter formula is
 K=FILT0
 Vn= result (T)
 Vn-1=result (T-1)
 Vins=analog value without filtering

Vn=Σn/ K
 With Σn=(Vins –Vn-1) + Σn-1
 Initial value is : V1=Vins
 Σ1=K V1

CHAN1 Word

The analog channel to be configured is directly set
For example, %IW00.00 for the analog input 0 on the analog extension at the
address 0, %OW65.01 for the analog output 1 on the analog extension at the
address 65. The channel can be located on a other extension.
For example %IW00.00 on CHAN0 and %OW02.01 on CHAN1

….

RDY Binary
This bit is set to 0 during the function processing

Function block description

ABB France Page C-91 1SBC006099R1001 C - 03/07

ERR Binary
This bit is set to 1 during one cycle (the bit RDY is set to 1 in the same time)
An error is detected if:

-one parameter value is wrong
-the analog channel doesn’t exist
-communication problem between central unit and analog extension.

Note: 3 historical values are used by the function CONFIO4

CONFIO8 8 ANALOG CHANNELS CONFIGURATION

FBD IL

CONFIO8
ENA
CHAN0
TYPE0
DOT0
OFFS0

RDY
ERR

CAL CONFIO4(ENA, CHAN0, TYPE0, DOT0,
OFFS0, MULT0, FILT0,…,FILT7, RDY, ERR)

MULT0
FILT0

MULT7
FILT7

PARAMETERS
ENA BINARY %I, %O, %M, %S,%K Enable block processing
CHAN0 WORD %IW, %OW Channel identification
TYPE0 WORD %MW, %OW, %KW Type of analog channel
DOT0 WORD %MW, %OW, %KW Position of the dot of the display value
OFFS0 WORD %MW, %OW, %KW Value of the offset for the display value
MULT0 WORD %MW, %OW, %KW Value of the multiplication for the display

value
FILT0 WORD %MW, %OW, %KW Filtering time
CHAN1 WORD %IW, %OW Channel identification
TYPE1 WORD %MW, %OW, %KW Type of analog channel
….. …. …. …..
MULT7 WORD %MW, %OW, %KW Value of the multiplication for the display

value
FILT7 WORD %MW, %OW, %KW Filtering time
RDY BINARY %O, %M Processing of the configuration is

completed
ERR BINARY %O, %M An error is detected

Function block description

ABB France Page C-92 1SBC006099R1001 C - 03/07

DESCRIPTION
The function block CONFIO8 is used to

-configure the type (voltage, current or PT100/Pt1000) of eight analog
channels on the AC31 extensions. The 8 channels can be located on different
extensions.

-change the filtering time of the analog input
-change the scale of the display value.
-lock or unlock the configuration for all analog channels of one analog

extension.

The analog channel configuration is set through the function block instead of

the pushbutton on the front plate of the analog extension.
The configuration is stored in an internal EEPROM in the analog extension.

The scale of the display value is set according to the formula

Display value = word value * MULT0/ 32767 + OFFS0

The latest configured channel number of one analog extension is displayed

ENA Binary
The function block is processed when ENA is on the rising edge 0->1

CHAN0 Word
The analog channel to be configured is directly set
For example, %IW00.00 for the analog input 0 on the analog extension at the
address 0, %OW65.01 for the analog output 1 on the analog extension at the
address 65

TYPE0 Word
Type of analog signal:

0 : the channel is set to +/- 10 V
1 : the channel is set to 0-20mA
2 : the channel is set to 4-20mA
3 : the channel is set to Pt100
4 : the channel is set to Pt1000
5 : the channel is set to Pt100 3 wires
6 : the channel is set to Pt1000 3 wires
8 : the channel is set to Ni 1000
9: the channel is set to BALCO500
14 : unlock the configuration through the pushbutton on the analog extension

front plate at the address xx when CHAN0 is %Iwxx.yy or %Owxx.yy
15 : lock the configuration through the pushbutton on the analog extension

front plate at the address xx when CHAN0 is %Iwxx.yy or %Owxx.yy

The configuration is automatically unlocked after a power supply ON

DOT0 Word

Function block description

ABB France Page C-93 1SBC006099R1001 C - 03/07

Position of the dot on the display

DOT0=0 4 digits are displayed without dot

Example :value =1234 display value is 1234
DOT0=1 4 digits are displayed with dot on position 1

Example :value =1234 display value is 123.4
DOT0= 2 4 digits are displayed with dot on position 2

Example: value =1234 display value is 12.34
DOT0= 3 4 digits are displayed with dot on position 3

Example: value =1234 display value is 1.234

If DOT0 <0 or DOT0>3, the configuration is the same than DOT0=0

OFFS0 Word
Value of the offset
-32767 <= OFFS0 <= 32767

MULT0 Word
Value of the multiplication
-32767 <= OFFS0 <= 32767
If MULT0 =0, the parameters OFFS0 and DOT0 are not used.
In this case, the scale is set to the factory setting scale.
The parameter MULT0=0 can be used to set a channel value to the display

FILT0 Word

0 : internal filter according to the documentation of analog extension
 1-127 : integration number

160 : Fast refresh time (50ms instead of 120 ms in standard)
192 : 60Hz Filter
224 : 50Hz Filter

All channels of one extension will be affected by this parameter.

The time filter formula is
 K=FILT0
 Vn= result (T)
 Vn-1=result (T-1)
 Vins=analog value without filtering

Vn=Σn/ K
 With Σn=(Vins –Vn-1) + Σn-1
 Initial value is : V1=Vins
 Σ1=K V1

CHAN1 Word

The analog channel to be configured is directly set

Function block description

ABB France Page C-94 1SBC006099R1001 C - 03/07

For example, %IW00.00 for the analog input 0 on the analog extension at the
address 0, %OW65.01 for the analog output 1 on the analog extension at the
address 65. The channel can be located on a other extension.
For example %IW00.00 on CHAN0 and %OW02.01 on CHAN1

….

RDY Binary
This bit is set to 0 during the function processing

ERR Binary
This bit is set to 1 during one cycle (the bit RDY is set to 1 in the same time)
An error is detected if:

-one parameter value is wrong
-the analog channel doesn’t exist
-communication problem between central unit and analog extension.

Note: 3 historical values are used by the function CONFIO8

CS31CO CONFIGURE CS31 MODULES

FBD IL

CS31CO
FREI
GRN
CODE
D1
D2

A3
A4

A1
A2

A5
A6

D3
D4
D5
D6
D7
D8

ERR

RDY
OK

A7

CAL CS31CO (FREI,GRN,CODE,D1,D2,D3,D4,D5,D6,D7,
RDY,OK,ERR,A1,A2,A3,A4,A5,A6,A7)

PARAMETERS
FREI BINARY %I, %O, %M, %S Enable (0->1 edge) for processing the

block
GRN WORD %IW, %OW, %MW, %KW Group number of the remote module to

which the job refers
CODE WORD %IW, %OW, %MW, %KW Identification of the job to be performed
D1 WORD %IW, %OW, %MW, %KW 1st parameter of the job
D8 WORD %IW, %OW, %MW, %KW 8th parameter of the job
RDY BINARY %O, %M Processing of the job is completed
OK BINARY %O, %M It has been possible to process the job

correctly
ERR WORD %OW, %MW Error message/status message

Function block description

ABB France Page C-95 1SBC006099R1001 C - 03/07

A1 WORD %OW, %MW 1st parameter of the response
A7 WORD %OW, %MW 7th Parameter of the response

DESCRIPTION
The function block serves to configure the CS31 remote modules. The block can both
send configuration parameters to the remote modules and also scan their currently
set configuration.
Apart from configuration of the CS31 remote modules, the function block can also
process further jobs (see List of jobs).

Enable for processing a job once is triggered by a 0->1 edge at input FREI. The
required job identification is specified at input CODE. The parameters required for the
job are planned at inputs D1...D8. Status messages are signalled at outputs RDY, OK
and ERR. The response data of the job are available at outputs A1...A7.
It may take several PLC cycles to process the job.

FREI BINARY
Processing of the block is controlled via input FREI.
FREI = 0 : All block outputs are set to value “0”. However, this is not
 valid, if a job is currently being processed, i. e. processing of
 a job which is currently being processed, is not influenced by
 FREI = 0.
FREI = 0 1 edge : Processing of the job is enabled. Input FREI is no longer
 evaluated during processing of the job.
FREI = 1 : Block is not processed, i. e. it no longer changes its outputs.
 However, this is not valid, if a job is currently being
 processed.

GRN WORD
Group number with which the remote module is addressed by the PLC program.
Range : 0...63
Example : On binary input %I 12,08, “12” is the group number and “08” is the channel
number.

CODE WORD
The identification of the job to be executed is specified at input CODE. (See List of
jobs on next page).

D1...D8 WORD
The parameters required for the job are preset at inputs D1...D8. The number of
parameters is dependent upon the job to be executed. There are also jobs requiring
no parameters (see List of jobs on next page).

RDY BINARY
Output RDY signals that processing of the job currently being processed is
completed. Output RDY does not indicate whether processing of the job has been
successful or not. Output RDY has therefore always to be considered together with
output OK.

Function block description

ABB France Page C-96 1SBC006099R1001 C - 03/07

RDY = 1 and OK = 1 : Processing of the job is completed without errors. A new job
 can be started with a 0->1 edge at the input FREI.
RDY = 1 and OK = 0 : During processing of the job an error has been detected. The
 corresponding error identification is present at the ERR
 output. A new job can be started with a 0->1 edge at the
 input FREI.
RDY = 0 : Processing of an enabled job has not yet been completed
 (job is still being processed) or the output RDY has been
 reset with FREI = 0.

OK BINARY
Output OK signals whether the job has been handled successfully or whether an
error has been detected during processing. In the event of an error, an error number
is indicated at output ERR. Output OK is not valid until the job has been completed,
i.e. when RDY = 1.
The following applies :
If RDY = 1 and OK = 1 : Job has been processed successfully
 OK = 0 : An error has been detected during processing of the
job.

ERR WORD
Status and error identifications are output at output ERR. The status identifications
are output during processing of a job in order to signal in what stage of processing
the job currently is. After enabling a job, status identifications are signalled only for as
long as RDY = 0.
The error identifications are output after completion of the job processing if an error
has occurred. Error identifications are thus not signalled until RDY = 1 and OK = 0.

Error identifications
ERR = 1 : An illegal job identification has been specified at input CODE.
ERR = 2 : Incorrect parameters have been specified at inputs D1...D8 (e.g. a group
 number for which there is no remote module on the CS31 bus).
ERR = 3 The addressed CS31 remote module does not accept the job.

Status identifications
ERR = 8 : The function block is waiting since a job of another user is currently being
 processed.
ERR = 10 : The job has been sent to the addressee and the block is waiting for its
 response.

Function block description

ABB France Page C-97 1SBC006099R1001 C - 03/07

A1...A7 WORD
After completion of job processing, the response is available at outputs A1...A7. The
number of response parameters depends upon the job performed (see List of jobs).

FBD

IL

CS31CO
FREI
GRN
CODE
D1
D2

ERR
A1

RDY
OK

A2
A3

Example of configuration of the analog input %IW 00,03 for current
range 4 - 20 :
%MW 10,00 = 0 Group
%MW 10,01 =170 Job identifier for "configure analog unit

channel"
%MW 10,02 =3 Channel
%MW 10,03 =49 Identification for current range 4 - 20 mA

These flags may be set to these values, e.g. with function "overwrite" in
the PLC.

D3
D4
D5
D6
D7

%MW 10,02
%MW 10,03

%MW 10,01
%MW 10,00
%M 00,00

%MW 10,07
%MW 10,08

%MW 10,06
%MW 10,05
%MW 10,04

%MW 10,09 D8

A4
A5
A6
A7

%O 00,00
%M 00,01
%MW 10,10
%MW 10,11
%MW 10,12
%MW 10,13
%MW 10,14
%MW 10,15
%MW 11,00
%MW 11,01

CAL CS31CO (%M00,00, %MW10,00, %MW10,01, %MW10,02,
%MW10,03, %MW10,04, %MW10,05, %MW10,06,
%MW10,07, %MW10,08, %MW10,09, %O 00,00
%M00,01, %MW10,10, %MW10,11, %MW10,12,
%MW10,13, %MW10,14, %MW10,15, %MW11,00,

%MW11,01)

List of jobs

Processing a job consists of :
- transferring the job and
- supplying the OK response or not-OK response

The OK response is described in connection with the corresponding job.

The not-OK response of the individual jobs always looks as follows :

 Not-OK response

The following basically applies for the not-OK response :
RDY : 1
OK : 0

Function block description

ABB France Page C-98 1SBC006099R1001 C - 03/07

ERR : 1 inadmissible job identification
 2 wrong parameter; e.g. group number to which there exists
 no remote module
 3 remote module does not accept job
A1 ... A7 : 0

 Updating of the maximum number of remote modules detected
Input word %IW 07,15 contains, amongst other things, the maximum number of
remote modules detected in the past. The actual number of remote modules which
exist at the moment may be less. This command is used to update this value. The
modules which exist are counted and the value is stored. The user can scan this
value in the PLC program. It is located in input word %IW 07,15, bits 8...15.

 job

GRN : 255 (Master PLC with bus)
CODE : 132
D1 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Scanning the open-circuit monitoring of an input to establish whether it is
activated or deactivated
 job

GRN : group number 0 ... 63
CODE : 32
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : 47 open-circuit monitoring ON
 32 open-circuit monitoring OFF
A2 ... A7 : 0

 Scanning the open-circuit monitoring of an output to establish whether it is
activated or deactivated
 job

GRN : group number 0 ... 63
CODE : 33
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : 47 open-circuit monitoring ON
 32 open-circuit monitoring OFF
A2 ... A7 : 0

Function block description

ABB France Page C-99 1SBC006099R1001 C - 03/07

 Deactivating or activating open-circuit monitoring of an input
 job

GRN : group number 0 ... 63
CODE : 224 open-circuit monitoring ON
 160 open-circuit monitoring OFF
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Deactivating or activating open-circuit monitoring of an output
 job

GRN : group number 0 ... 63
CODE : 225 open-circuit monitoring ON
 161 open-circuit monitoring OFF
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Scanning a channel to establish whether it is configured as input or
input/output
 job

GRN : group number 0 ... 63
CODE : 34
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : 34 input
 35 input/output
A2 ... A7 : 0

 Configuration of a channel as input or input/output
 job

GRN : group number 0 ... 63
CODE : 162 input
 163 input/output
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

Function block description

ABB France Page C-100 1SBC006099R1001 C - 03/07

 Scanning the input delay of a channel
 job

GRN : group number 0 ... 63
CODE : 38
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : input delay :
 2 2 ms
 4 4 ms
 .
 .
 .
 30 30 ms
 32 32 ms
A2 ... A7 : 0

 Setting the input delay of a channel
 job

GRN : group number 0...63
CODE : 166
D1 : channel number
D2 : input delay :
 2 2 ms
 4 4 ms
 .
 .
 .
 30 30 ms
 32 32 ms
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Acknowledging errors on remote module
This command can be used to reset the error messages registered on the selected
remote module. Reset is possible only if the cause of the error is no longer operative.
 job

GRN : group number 0 ... 63
CODE : 232
D1 : lowest channel number on the module :
 0 lowest channel number on the module is 0 (<7)
 8 lowest channel number on the module is 8 (>7)
D2 : module type :
 0 binary input
 1 analog input
 2 binary output

Function block description

ABB France Page C-101 1SBC006099R1001 C - 03/07

 3 analog output
 4 binary input/output
 5 analog input/output
 Note : Bit : even number (0, 2, 4)
 Word : odd number (1, 3, 5)
D3 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Acknowledging errors on remote module and resetting configuration values
to default setting
In addition to the job ’Acknowledging errors on remote module’, all configurable
settings are reset to the default setting.
 job

GRN : group number 0 ... 63
CODE : 233
D1 : first channel number on the module :
 0 first channel number on the module is 0 (<7)
 8 first channel number on the module is 8 (>7)
D2 : module type :
 0 binary input
 1 analog input
 2 binary output
 3 analog output
 4 binary input/output
 5 analog input/output
 Note : Bit : even number (0, 2, 4)
 Word : odd number (1, 3, 5)
D3 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Scanning configuration of an analog input
 job

GRN : group number 0 ... 63
CODE : 42
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : 50 input 0 ... 20 mA
 49 input 4 ... 20 mA
A2 ... A7 : 0

 Scanning configuration of an analog output

Function block description

ABB France Page C-102 1SBC006099R1001 C - 03/07

 job
GRN : group number 0 ... 63
CODE : 43
D1 : channel number
D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : 50 output 0 ... 20 mA
 49 output 4 ... 20 mA
 51 output + 10V
A2 ... A7 : 0

 Configuration of an analog input
 job

GRN : group number 0 ... 63
CODE : 170
D1 : channel number
D2 : 50 input 0 ... 20 mA
 49 input 4 ... 20 mA
D3 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Configuration of an analog output
 job

GRN : group number 0 ... 63
CODE : 171
D1 : channel number
D2 : 50 output 0 ... 20 mA
 49 output 4 ... 20 mA
 51 output + 10V
D3 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Scanning bus configuration
The bus interface of the Master PLC has a list which stores specific data of the
remote modules. The remote modules are numbered in this list in the order in which
they can be found on the CS31 bus. The internal number of the modules must be
specified with this command. The response to this command is the group number
stored under this number and status information on the corresponding module.
 job

GRN : not evaluated
CODE : 80
D1 : number from module list (1 ... 31)

Function block description

ABB France Page C-103 1SBC006099R1001 C - 03/07

D2 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : status of the remote module :
 Bit 0 ... 3 : number of process data bytes (binary module) or words
 (word module), which the module sends to the master
 Bit 4 ... 7 : number of process data bytes (binary module) or words
 (word module), which the master sends to the module
A2 : group number (0 ... 63)
A3 : Bit 0 : 0 lowest channel number <7
 1 lowest channel number > 7
 Bit 1 : 0 binary module
 1 word module
A4 ... A7 : 0

 Read 1 ... 6 bytes
 job

GRN : group number 0 ... 63
CODE : 49 read 1 byte
 50 read 2 bytes
 51 read 3 bytes
 52 read 4 bytes
 53 read 5 bytes
 54 read 6 bytes
D1 : first channel number on the module :
 0 first channel number on the module is 0 (<7)
 8 first channel number on the module is 8 (>7)
D2 : module type :
 0 binary input
 1 analog input
 2 binary output
 3 analog output
 4 binary input/output
 5 analog input/output
 Note : bit : even number (0, 2, 4)
 word : odd number (1, 3, 5)
D3 : Byte start address (Low Byte)
D4 : Byte start address (High Byte)
D5 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : value of 1st byte
A2 : value of 2nd byte or 0
A3 : value of 3rd byte or 0
A4 : value of 4th byte or 0
A5 : value of 5th byte or 0
A6 : value of 6th byte or 0
A7 : 0

Function block description

ABB France Page C-104 1SBC006099R1001 C - 03/07

 Read 1 bit of 1 byte

 job
GRN : group number 0 ... 63
CODE : 63
D1 : first channel number on the module :
 0 first channel number on the module is 0 (<7)
 8 first channel number on the module is 8 (>7)
D2 : module type :
 0 binary input
 1 analog input
 2 binary output
 3 analog output
 4 binary input/output
 5 analog input/output
 Note : bit : even number (0, 2, 4)
 word : odd number (1, 3, 5)
D3 : byte start address (Low Byte)
D4 : byte start address (High Byte)
D5 : bit position within bytes 0 ... 7
D6 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 : bit value (0 or 1)
A2 ... A7 : 0

 Write 1 ... 4 bytes
 job

GRN : group number 0 ... 63
CODE : 65 write 1 byte
 66 write 2 bytes
 67 write 3 bytes
 68 write 4 bytes
D1 : first channel number on the module :
 0 first channel number on the module is 0 (<7)
 8 first channel number on the module is 8 (>7)
D2 : module type :
 0 binary input
 1 analog input
 2 binary output
 3 analog output
 4 binary input/output
 5 analog input/output
 Note : bit : even number (0, 2, 4)
 word : odd number (1, 3, 5)
D3 : byte start address (Low Byte)
D4 : byte start address (High Byte)
D5 : value of 1st byte
D6 : value of 2nd byte or not used

Function block description

ABB France Page C-105 1SBC006099R1001 C - 03/07

D7 : value of 3rd byte or not used
D8 : value of 4th byte or not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

 Write 1 bit of 1 byte
 job

GRN : group number 0 ... 63
CODE : 79
D1 : first channel number on the module :
 0 first channel number on the module is 0 (<7)
 8 first channel number on the module is 8 (>7)
D2 : module type :
 0 binary input
 1 analog input
 2 binary output
 3 analog output
 4 binary input/output
 5 analog input/output
 Note : bit : even number (0, 2, 4)
 word : odd number (1, 3, 5)
D3 : byte start address (Low Byte)
D4 : byte start address (High Byte)
D5 : bit position within bytes 0 ... 7
D6 : bit value (0 or 1)
D7 ... D8 : not used
 OK response

RDY : 1
OK : 1
A1 ... A7 : 0

CS31QU ACKNOWLEDGE CS31 ERRORS

FBD IL

CS31QU

FREI

CAL CS31QU (FREI)

PARAMETERS
FREI BINARY %I, %O, %M, %S Enable block processing

Function block description

ABB France Page C-106 1SBC006099R1001 C - 03/07

DESCRIPTION
This function block permits error messages of CS31 remote modules to be
acknowledged automatically.
Error messages are stored on the CS31 remote modules until they are
acknowledged. Even if the error has been remedied, the error message is still
pending on the module until acknowledgment and is also signalled to the PLC until
such time as it is acknowledged.
Processing of the block is enabled with a 1 signal at input FREI, and the block then
acknowledges CS31 errors continuously. It may take several PLC cycles to
acknowledge an error on a CS31 module.
If the function block is enabled, it constantly checks whether a CS31 error of class 3
or 4 has occurred and acknowledges this error.

1. A CS31 error of class 3 has occurred :
The block acknowledges the error on the CS31 remote module signalling the error
and also clears the error message on the PLC, i.e. the error flag %M 255,13 is reset
and LED FK3 is deactivated.

Example of an FK3 error :
- a remote module is disconnected from the CS31 bus.

Note : In PLC configuration menu of the Control Panel in the CS31Graf, the "central
unit reaction in case of FK3 error" must be "warning" in order to permit errors of class
3 to be processed. If "abort" is selected, the PLC automatically aborts execution of
the PLC program when an FK3 error is detected.

2. A CS31 error of class 4 has occurred :
The block acknowledges the error on the CS31 remote module signalling the error
and also clears the error message on the PLC, i.e. error flag %M 255,14 is reset.

Examples of an FK4 error :
- a remote module signals open circuit

MT_CS31 DATA SENT BY A MASTER TO A SLAVE

FBD IL

MT CS31
START
SLAV
W_NB
T_NB
AD

S_OK
END

user function block(IL not available)

PARAMETERS
START BINARY %I, %O, %M, %S Enable block processing

Function block description

ABB France Page C-107 1SBC006099R1001 C - 03/07

SLAV WORD %MW, %OW, %KW Slave number of the slave CPU
W_NB WORD %MW, %OW, %KW Word number to exchange per sending
T_NB WORD %MW, %OW, %KW Total word number to transmit
AD WORD %MW, %OW, %KW First variable address of the data area
S_OK BINARY %O, %M Slave CPU is ready to receive data
END BINARY %O, %M Data area has been transmitted

DESCRIPTION
The function block MT_CS31 in the master has to be used with the function block
SR_CS31 in the slave; and MR_CS31 in the master with ST_CS31 in the slave.

These function blocks allow to exchange a data area between a master central unit
and a slave central unit on the CS31 bus, with the possibility to keep a quick data
transfer between the master and the slave.
The transmission or receiving has to be configured in the slave central unit as follows
Size of the transmitting and sending area on CS31 bus for slave central unit.: 8 words

A maximum of 7 words are allowed to exchange in one direction per sending. The 8th
word is reserved for the handshake.
Only the address of the 1st variable of the data area has to be given.
Words are then automatically transfered 7 by 7 (or 6 by 6,...) from the data area to
OW xx,01 to OW xx,07 (or OW xx,01 to OW xx,06;...)
OW xx,00 is always reserved for the handshake to send; and IW xx,07 for the
handshake to be received.
When words are sent 6 by 6 (or 5 by 5,...), OW xx,07 (and OW xx,06;...) stays
available for a quick data transfer between the master and the slave.
(xx = the slave number of the slave central unit : 0 ≤ xx ≤ 61 for a 50 serie and 0 ≤ xx
≤ 5 for a 90 serie).

START Binary
The transfert is started. The data area is trasmitted only one time .
A new transmit is possible when END=1

SLAV Word
(For the function blocks in the master only)
Slave number of the slave central unit
The value is : 0 ≤ SLAV ≤ 61 for 50 serie and 0 ≤ SLAV ≤ 5 for 90 & 30
serie

W_NB Word
Number of words to transmit or receive per sending
The value is : 1 ≤ W_NB ≤ 7
The value has to be the same than the W_NB of the corresponding function block
used
in the other central unit.

ex : if W_NB=6 in the master then W_NB=6 in the slave.
 In the master, OW xx,01 to OW xx,06 are used for the transmission of words.
 OW xx,00 and IW xx,07 are reserved for the handshake.

Function block description

ABB France Page C-108 1SBC006099R1001 C - 03/07

 OW xx,07 is free and available for direct control of the slave I/O for example.

T_NB Word
(For a transmission only)
Total word number to transmit
The value has to be a multiple of W_NB : T_NB = n * W_NB

Note : n has to be chosen not to exceed addresses allowed in the central unit
selected.

AD Word
Address of the first variable of the data area. Only the offset address is requested.

The Segment is 0 for 30 & 50 serie and 30C2H for a 90 serie
A 90 serie with 8 kinstructions memory can not use this function block.
The segment (30C2H) has to be modified in the code with the user library.

Please refer to the CPU respective documentation to find the hexadecimal addresse
of variable,.

S_OK Binary
This bit is set by the slave.
It can be used to start a new transmit of data area

END Binary
This bit is set when the data area is completly transmitted to the slave CPU.
This bit is reset when START=0. Information that the slave has received this bit is
necessary to start again the transfer. The bit S_OK can be use (it can be managed
by the slave).

_

CAUTION

The data are sent every three cycle times between the master and the slave.

The value of W_NB in the slave has to be the same than W_NB in the master.

T_NB = n * W_NB
Pay attention not to exceed addresses allowed in the central unit selected.
The data area has to be chosen without any reserved area.

OW xx,00 to OW xx,07 and IW xx,00 to IW xx,07 are used following the function
block used and the value of W_NB.

The data exchange is an exchange of words or double words. In the case of the 30
serie & 50 serie , the data area can be a bit area.

Several slaves can be used for the data exchange.

Function block description

ABB France Page C-109 1SBC006099R1001 C - 03/07

This function block used 431 words in the user program memory.

MR_CS31 DATA RECEIVED BY A MASTER FROM A SLAVE

FBD IL

MR CS31
SLAV
W_NB
AD

M_OK END

user function block(IL not available)

PARAMETERS
SLAV WORD %MW, %OW, %KW Slave number of the slave CPU
W_NB WORD %MW, %OW, %KW Word number to exchange per

receiving
AD WORD %MW, %OW, %KW First variable address of the data area
M_OK BINARY %I, %O, %M CPU is ready to receive data
END BINARY %O, %M Data area has been transmitted

DESCRIPTION
The function block MR_CS31 in the master has to be used with the function block
ST_CS31 in the slave; and MT_CS31 in the master with SR_CS31 in the slave.

These function blocks allow to exchange a data area between a master central unit
and a slave central unit on the CS31 bus, with the possibility to keep a quick data
transfer between the master and the slave.
The transmission or receiving has to be configured in the slave central unit as follows
Size of the transmitting and sending area on CS31 bus for slave central unit.: 8 words

A maximum of 7 words are allowed to exchange in one direction per sending. The 8th
word is reserved for the handshake.
Only the address of the 1st variable of the data area has to be given.
Words are then automatically transfered 7 by 7 (or 6 by 6,...) from IW xx,00 to IW
xx,06 (or from IW xx,00 to IW xx,05;...) to the data area.
IW xx,07 is always reserved for the handshake to be received; and OW xx,00 for the
handshake to send.
When words are sent 6 by 6 (or 5 by 5,...), IW xx,06 (and IW xx,05;...) stays available
for a quick data transfer between the master and the slave.
(xx = the slave number of the slave central unit : 0 ≤ xx ≤ 61 for a 50 serie and 0 ≤ xx
≤ 5 for a 90 serie).

SLAV Word
(For the function blocks in the master only)

Function block description

ABB France Page C-110 1SBC006099R1001 C - 03/07

Slave number of the slave central unit
The value is : 0 ≤ SLAV ≤ 61 for 50 serie and 0 ≤ SLAV ≤ 5 for 30 1 90
series

W_NB Word
Number of words to transmit or receive per sending
The value is : 1 ≤ W_NB ≤ 7
The value has to be the same than the W_NB of the corresponding function block
used
in the other central unit.

ex : if W_NB=6 in the master then W_NB=6 in the slave.
 In the master, OW xx,01 to OW xx,06 are used for the transmission of words.
 OW xx,00 and IW xx,07 are reserved for the handshake.
 OW xx,07 is free and available for direct control of the slave I/O for example.

AD Word
Address of the first variable of the data area. Only the offset address is requested.

The Segment is 0 for 30 & 50 series and 30C2H for a 90 serie
A 90 serie with 8 kinstructions memory can not use this function block.
The segment (30C2H) has to be modified in the code with the user library.

Please refer to the CPU respective documentation to find the hexadecimal addresse
of variable,.

M_OK Binary
This bit is set when the master central unit is ready to receive data area from the
CPU slave.
It can be used by the slave CPU to start a new transmit of data area

END Binary
This bit is set when the data area is completly transmitted from the slave CPU.
This bit is reset by the slave CPU

_

CAUTION

The data are sent every three cycle times between the master and the slave.

The value of W_NB in the master has to be the same than W_NB in the slave.

OW xx,00 to OW xx,07 and IW xx,00 to IW xx,07 are used following the function
block used and the value of W_NB.

The data exchange is an exchange of words or double words. In the case of the 30
serie & 50 serie, the data area can be a bit area.

Function block description

ABB France Page C-111 1SBC006099R1001 C - 03/07

Several slaves can be used for the data exchange.

This function block used 230 words in the user program memory.

ST_CS31 DATA SENT BY A SLAVE TO A MASTER

FBD IL

ST CS31
START

W_NB
T_NB

AD
M_OK
END

user function block(IL not available)

PARAMETERS
START BINARY %I, %O, %M, %S Enable block processing
W_NB WORD %MW, %OW, %KW Word number to exchange per sending
T_NB WORD %MW, %OW, %KW Total word number to transmit
AD WORD %MW, %OW, %KW First variable address of the data area
M_OK BINARY %O, %M Master CPU is ready to receive data
END BINARY %O, %M Data area has been transmitted

DESCRIPTION
The function block ST_CS31 in the slaver has to be used with the function block
MR_CS31 in the master.

These function blocks allow to exchange a data area between a master central unit
and a slave central unit on the CS31 bus, with the possibility to keep a quick data
transfer between the master and the slave.
The transmission or receiving has to be configured in the slave central unit as follows
Size of the transmitting and sending area on CS31 bus for slave central unit.: 8 words

A maximum of 7 words are allowed to exchange in one direction per sending. The 8th
word is reserved for the handshake.
Only the address of the 1st variable of the data area has to be given.
Words are then automatically transfered 7 by 7 (or 6 by 6,...) - from the data area to
OW 00,00 to OW 00,06 (or OW 00,00 to OW 00,05;...)
OW 00,07 is always reserved for the handshake to send; and IW 00,00 for the
handshake to be received.
When words are sent 6 by 6 (or 5 by 5,...), OW 00,06 (and OW 00,05;...) stays
available for a quick data transfer between the master and the slave.

START Binary

Function block description

ABB France Page C-112 1SBC006099R1001 C - 03/07

The transfert is started. The data area is trasmitted only one time .
A new transmit is possible when END=1

W_NB Word
Number of words to transmit or receive per sending
The value is : 1 ≤ W_NB ≤ 7
The value has to be the same than the W_NB of the corresponding function block
used in the other central unit.

ex : if W_NB=6 in the master then W_NB=6 in the slave.
 In the master, OW xx,01 to OW xx,06 are used for the transmission of words.
 OW xx,00 and IW xx,07 are reserved for the handshake.
 OW xx,07 is free and available for direct control of the slave I/O for example.

T_NB Word
(For a transmission only)
Total word number to transmit
The value has to be a multiple of W_NB : T_NB = n * W_NB

Note : n has to be chosen not to exceed addresses allowed in the central unit
selected.

AD Word
Address of the first variable of the data area. Only the offset address is requested.

The Segment is 0 for 30 & 50 serie and 30C2H for a 90 serie
A 90 serie with 8 kinstructions memory can not use this function block.
The segment (30C2H) has to be modified in the code with the user library.

Please refer to the CPU respective documentation to find the hexadecimal addresse
of variable,.

M_OK Binary
This bit is set by the master.
It can be used to start a new transmit of data area

END Binary
This bit is set when the data area is completly transmitted to the master CPU.
This bit is reset when START=0. Information that the master has received this bit is
necessary to start again the transfer. The bit M_OK can be use (it can be managed
by the master).

_

CAUTION

The data are sent every three cycle times between the master and the slave.

Function block description

ABB France Page C-113 1SBC006099R1001 C - 03/07

The value of W_NB in the slave has to be the same than W_NB in the master.

T_NB = n * W_NB
Pay attention not to exceed addresses allowed in the central unit selected.
The data area has to be chosen without any reserved area.

OW xx,00 to OW xx,07 and IW xx,00 to IW xx,07 are used following the function
block used and the value of W_NB.

The data exchange is an exchange of words or double words. In the case of the 30
serie & 50 serie , the data area can be a bit area.

Several slaves can be used for the data exchange.

This function block used 431 words in the user program memory

Function block description

ABB France Page C-114 1SBC006099R1001 C - 03/07

SR_CS31 DATA RECEIVED BY A SLAVE FROM A MASTER

FBD IL

SR CS31

W_NB
AD

S_OK END

user function block(IL not available)

PARAMETERS
W_NB WORD %MW, %OW, %KW Word number to exchange per

receiving
AD WORD %MW, %OW, %KW First variable address of the data

area
S_OK BINARY I%, %O, %M CPU is ready to receive data
END BINARY %O, %M Data area has been transmitted

DESCRIPTION
The function block SR_CS31 in the slave has to be used with the function block
MT_CS31 in the master

These function blocks allow to exchange a data area between a master central unit
and a slave central unit on the CS31 bus, with the possibility to keep a quick data
transfer between the master and the slave.
The transmission or receiving has to be configured in the slave central unit as follows
Size of the transmitting and sending area on CS31 bus for slave central unit.: 8 words

A maximum of 7 words are allowed to exchange in one direction per sending. The 8th
word is reserved for the handshake.
Only the address of the 1st variable of the data area has to be given.
Words are then automatically transfered 7 by 7 (or 6 by 6,...) from IW 00,01 to IW
00,07 (or from IW 00,01 to IW 00,06;...) to the data area.
IW 00,00 is always reserved for the handshake to be received and OW 00,07 for the
handshake to send.
When words are sent 6 by 6 (or 5 by 5,...), IW 00,07 (and IW 00,06;...) stays available
for a quick data transfer between the master and the slave.

W_NB Word
Number of words to transmit or receive per sending
The value is : 1 ≤ W_NB ≤ 7
The value has to be the same than the W_NB of the corresponding function block
used in the other central unit.

Function block description

ABB France Page C-115 1SBC006099R1001 C - 03/07

ex : if W_NB=6 in the master then W_NB=6 in the slave.
 In the master, OW xx,01 to OW xx,06 are used for the transmission of words.
 OW xx,00 and IW xx,07 are reserved for the handshake.
 OW xx,07 is free and available for direct control of the slave I/O for example.

AD Word
Address of the first variable of the data area. Only the offset address is requested.

The Segment is 0 for 30 & 50 series and 30C2H for a 90 serie
A 90 serie with 8 kinstructions memory can not use this function block.
The segment (30C2H) has to be modified in the code with the user library.

Please refer to the CPU respective documentation to find the hexadecimal addresse
of variable,.

S_OK Binary
This bit is set when the slave central unit is ready to receive data area from the CPU
master.
It can be used by the master CPU to start a new transmit of data area

END Binary
This bit is set when the data area is completly transmitted from the master CPU.
This bit is reset by the master CPU

_

CAUTION

The data are sent every three cycle times between the master and the slave.

The value of W_NB in the master has to be the same than W_NB in the slave.

OW xx,00 to OW xx,07 and IW xx,00 to IW xx,07 are used following the function
block used and the value of W_NB.

The data exchange is an exchange of words or double words. In the case of the 30
serie & 50 serie, the data area can be a bit area.

Several slaves can be used for the data exchange.

This function block used 431 words in the user program memory.

Function block description

ABB France Page C-116 1SBC006099R1001 C - 03/07

5 Communication functions

Communication
functions

serie
from pages C-116 to C-154

Ctler 40 50 90 30

AINIT Initialisation of the ARCnet controller x
APOLL Transfer of the data package to the

ARCnet controller
 x

AREC /
ARECitem

ARCnet data package receiving x

ASEND /
ASEND+

ARCnet data package sending x

MODBUS MODBUS master x x x
MODMASTK MODBUS master for several interfaces x x 94
REC / EMAS
and RECvars

Receiving of ASCII characters and HEX
values through a serail interface

 x x x x

SEND / DRUCK Sending of ASCII characters and HEX
values through a serail interface

 x x x x

SINIT Initialization and configuration of the
serial interfaces

 x x x x

AINIT INITIALIZATION OF THE ARCNET CONTROLLER

FBD IL

!BA
AINIT

0

0/1
TO
DONE
ERR
NODE
STAT
DIAG
TOS
TOND
TOJN
LEV
RECO

AINIT
0/1
TO

STAT

DONE
ERR

NODE

TOJN

DIAG
TOS

TOND

RECO
LEV

PARAMETERS
0/1 BINARY %I, %M, %O, %K, %S Initialization of the ARCnet
 controller with 0!1 edge
TO WORD %IW, %MW, %OW, %KW Timeout in ms when sending
 data packages
DONE BINARY %O, %M Initialization terminated
ERR BINARY %O, %M Error has occurred
NODE WORD %OW, %MW Own node number (station

Function block description

ABB France Page C-117 1SBC006099R1001 C - 03/07

 address)
STAT WORD %OW, %MW Status register of the ARCnet
 controller
DIAG WORD %OW, %MW Diagnosis register of the
 ARCnet controller
TOS BINARY %O, %M Timeout has occurred during
 send operation
TOND WORD %OW, %MW Node number of lost data
 package after timeout
TOJN WORD %OW, %MW Job number of lost data
 package after timeout
LEV WORD %OW, %MW Level of the send buffer
RECO BINARY %O, %M Network reconfiguration is
 running (after loss of token)

The outputs STAT, DIAG, TOS, TOND, TOJN, LEV and RECO are updated after a
successful initialization with each block call.

DESCRIPTION
ARCnet communication function block.

The function block AINIT initializes the ARCnet controller in the following way :
- Interrupt after reception of a data package
- Only short packages (a short package = 256 bytes)
- Data packages to all stations (broadcasts)

Important note :
If a PLC is used with an ARCnet interface, a certain section of the PLC TURBO
program memory No. 2 is reserved for ARCnet.
If programs with more than 2 k instructions are executed, the system–dependent
capacity utilization can possibly be increased by reason of the reduced TURBO
memory No. 2 when changes are made to a running program.

There are no problems if
- the capacity utilization is less than 80 % before making changes to a running
program or if
- the program length is less than 2 k instructions.

0/1 BINARY
A 0-1 edge at the input 0/1 causes a single initialization of the ARCnet controller. As
long as the initialization has not been terminated (DONE = 0), a new 0-1 edge at the
input 0/1 is ignored.

TO WORD
The timeout waiting time for sending data packages is specified in ms at the input
TO. If a data package cannot be sent within this period, the sending operation of this
data package is aborted and the package is lost. The output TOS indicates the loss
of the package.

Function block description

ABB France Page C-118 1SBC006099R1001 C - 03/07

DONE BINARY
The output DONE indicates that the initialization has been terminated. This output
has always to be considered together with the output ERR.
The following applies :
DONE = 1 and ERR = 0 : The initialization has been terminated.
 No error has occurred.
DONE = 1 and ERR = 1 : An error has occurred during initialization.
 The ARCnet controller has not responded within a
 period of 100 ms.

ERR BINARY
The output ERR indicates that the ARCnet controller has not responded after an
initialization command within a period of 100 ms. This output has always to be
considered together with the output DONE.
If an error has occurred, the following applies :
DONE = 1 and ERR = 1.

NODE WORD
The output NODE indicates the node number (station address) of its own after a
successful initialization.

STAT WORD
The output STAT indicates the content of the status register of the ARCnet controller
after a successful initialization.

DIAG WORD
The output DIAG indicates the content of the diagnosis register of the ARCnet
controller after a successful initialization.

TOS BINARY
The output TOS indicates that the sending of a data package was not feasible within
the timeout period (input TO) and that the data package is lost. Both the node
number and the job number of the lost data package are available at the outputs
TOND and TOJN, respectively.

TOND WORD
The output TOND indicates the node number of the lost data package after the
timeout period has elapsed.

TOJN WORD
The output TOJN indicates the job number of the lost data package after the timeout
period has elapsed.

LEV WORD
The output LEV indicates the level of the sending buffer after a successful
initialization.

RECO BINARY
The output RECO indicates that the network is reconfiguring itself (RECO = 1) after a
loss of token. The transition from RECO = 1 to 0 means that the reconfiguring

Function block description

ABB France Page C-119 1SBC006099R1001 C - 03/07

procedure has been terminated.
The outputs STAT, DIAG, TOS, TOND, TOJN, LEV and RECO are updated after a
successful initialization with each block call.

APOLL TRANSFER DATA PACKAGES TO THE ARCNET
CONTROLLER

FBD IL

CAL APOLLAPOLL

DESCRIPTION
ARCnet communication function block.

The function block APOLL is intended for the following two tasks :
- It hands over a data package from the buffer storage to the ARCnet controller in
order to send it off. The data packages are stored in the buffer storage by the
function block ASEND.
- It monitors whether or not this data package is sent off within the timeout period
configured in the function block AINIT.

If the data package cannot be sent off by the ARCnet controller within the configured
timeout period, the function block aborts the sending procedure. The data package is
lost then. The loss of the data package is indicated by the output TOS of the AINIT
block with the next block call.

If several APOLL blocks are configured in the user program, also several data
packages can be sent off within one program cycle.

The ARCnet controller must have been initialized by the function block AINIT before a
data package can be handed over from the storage buffer to it by the function block
APOLL.

Important note :
If a PLC is used with an ARCnet interface, a certain section of the PLC TURBO
program memory No. 2 is reserved for ARCnet.
If programs with more than 2 k instructions are executed, the system–dependent
capacity utilization can possibly be increased by reason of the reduced TURBO
memory No. 2 when changes are made to a running program.
There are no problems, if
- the capacity utilization is less than 80 % before making changes to a running
program or if
- the program length is less than 2 k instructions.

Function block description

ABB France Page C-120 1SBC006099R1001 C - 03/07

AREC RECEIVE ARCNET DATA PACKAGES

FBD IL

!BA
AREC

0

#JOB
UJOB
N
#D
#J
#L
MW
JR

AREC
#JOB

item
UJOB

ARECitem
N
#D
#J
#L
MW

JR item

PARAMETERS
#JOB DIRECT #, #H Total number of jobs configured
 CONSTANT in the block
UJOB BINARY %O, %M Unknown job received

N WORD %IW, %MW, %OW, %KW Node number (station address)
 of the sender
#D DIRECT #, #H DIN identification
 CONSTANT
#J DIRECT #, #H Job number
 CONSTANT
#L DIRECT #, #H Number of words of the user
 CONSTANT data to be received
MW WORD %IW, %MW, %OW, %KW First word variable, as of the
 received user data are stored
JR BINARY %O, %M Job received

In FBD : The item input can be duplicable. Each item input is directly linked to a
ARECitem function block that corresponds to 1 data package.
In IL : N, #D, #J, #L, MW, JR can be duplicated all together by pack of 6 parameters.

DESCRIPTION
ARCnet communication function block.

The AREC function block has always to be used with the ARECitem function block.
The ARCnet controller must have been initialized by the function block AINIT before
using the function block AREC.

The operating system reads the received data packages from the ARCnet controller
interrupt-controlled and stores them into a storage buffer. The size of the storage
buffer is 31 data packages.
The block reads the whole storage buffer contents and assigns the data packages to
the configured jobs in the block.

Function block description

ABB France Page C-121 1SBC006099R1001 C - 03/07

With the same job the receiver gets user data which belong together logically. For
unmistakable identification of a job the following parameters are necessary :
 Node number of the sender,
 DIN identification and
 Job number.

The parameter values of the received data packages are compared to the parameter
values of the configured jobs. If both values are equal, the user data of the data
package beginning from the word variable MW are stored continuously and the
output JR is set to 1. If several data packages are equal, the function block only
evaluates that data package which has been received last (the latest data package).
If no data package from the storage buffer can be assigned to a configured job, the
output belonging to this configured job is set to 0 (JR = 0).
The output UJOB indicates that a data package existing in the storage buffer could
not be assigned to a job.
A user program must not contain more than one block call of AREC.

Important note :
If a PLC is used with an ARCnet interface, a certain section of the PLC TURBO
program memory No. 2 is reserved for ARCnet.
If programs with more than 2 k instructions are executed, the system–dependent
capacity utilization can possibly be increased by reason of the reduced TURBO
memory No. 2 when changes are made to a running program.
There are no problems, if - the capacity utilization is less than 80 % before
 making changes to a running program or if
 - the program length is less than 2 k instructions.

#JOB DIRECT CONSTANT
The total number of jobs configured in this function block is assigned to the input
#JOB.
The following is valid : 1 < #JOB

UJOB BINARY
Output UJOB indicates that a data package was stored in the storage buffer which
could not be assigned to any job.
The following applies :
UJOB = 1 : unknown job received
UJOB = 0 : no unknown job received

N WORD
The node number (station address) of the sender is specified for the configured job at
input N.
The following is valid : 0 < N0...Nn-1 < 255

#D DIRECT CONSTANT
The DIN identification is specified for the configured job at input #D.
The following is valid : 0 < #D < 127
not allowed : 111 (6FH)

Function block description

ABB France Page C-122 1SBC006099R1001 C - 03/07

#J DIRECT CONSTANT
The job number is specified for the configured job at input #J.
The following is valid : -32767 < #J < +32767

#L DIRECT CONSTANT
The number of user data words is specified for the configured job at input #L.
The following is valid : 0 < #L < 125

MW WORD
The starting word flag of the user data is specified for the configured job at input MW.

JR BINARY
Output JR (job received) indicates that a data package from the storage buffer has
been assigned to this job. The user data of the data package are stored continuously
beginning from the word variable MW.
The following applies :
JR = 1 : job received
JR = 0 : no job received

Sender Receiver CP

0 1 2 FFHFEHFDHFCHFBHFAHF9H

DN LB HB
JNJN

LB LBHB HB
NW1 NW1 NW2 NW2

Structure of the ARCnet data package (short package = 256 bytes)
The ARCnet data package consists in :
- 3 bytes of control data : sender, receiver, CP (continuous pointer)
- max. 253 bytes of user data consisting in :

1 byte for DIN identification + 2 bytes for job number + 125 words for user data

Position

Example of a configured job : Sender : Station address of the sender (05H)
N : %KW 01,00 = 5 Receiver : Station address of the receiver
#D : #127 (7FH) CP : Continuous pointer, contains the
#J : #10 (0AH) position (F9H) of the first user data byte
#L : #2 DN : DIN identification (7FH)
MW : %MW 10,00 = 258 (102H) LB JN : Low byte job number (0AH)

%MW 10,01 = 772 (304H) HB JN : High byte job number (00H)
LB NW1 : Low byte user data word 1 (02H)
HB NW1 : High byte user data word 1 (01H)
LB NW2 : Low byte user data word 2 (04H)
HB NW2 : High byte user data word 2 (03H)

Function block description

ABB France Page C-123 1SBC006099R1001 C - 03/07

ASEND SEND ARCNET DATA PACKAGES

ASEND
#JOB
EN
#n

!BA 0
ASEND

#JOB
EN
#n
N
#D
#J
#L
MW
ST

EN
#n
N
N
N
#D
#J
#L
MW
ST

EN
#n
N
N
#D
#J
#L
MW
ST

N
#D
#J
#L
MW

ST

ASEND+

EN
#n
N
#D
#J
#L
MW

ST

ASEND+

EN
#n
N
#D
#J
#L
MW

ST

:

:

:

FBD IL

:

:

:

PARAMETERS
#JOB DIRECT #, #H Total number of jobs configured
 CONSTANT in the block
EN BINARY %I, %M, %O, %K, %S Enable : Send job
#n DIRECT #, #H Number of receivers of the data
 CONSTANT package
N WORD %IW, %MW, %OW, %KW Node number (station address)
 of the receiver. The input can
 be duplicated.

Function block description

ABB France Page C-124 1SBC006099R1001 C - 03/07

#D DIRECT #, #H DIN identification
 CONSTANT
#J DIRECT #, #H Job number
 CONSTANT
#L DIRECT #, #H Number of user data words to
 CONSTANT be sent
MW WORD %IW, %MW, %OW, %KW First word variable of the user
 data words
ST BINARY %O, %M Job has been stored in the
 storage buffer

The inputs EN, #n, N, #D, #J, #L and MW and the output ST are the parameters, that
define a job. These parameters therefore appear both in the ASEND block and in the
ASEND+ extension block.

DESCRIPTION
ARCnet communication function block.

The ASEND function block is intended for sending off jobs (data packages) via the
ARCnet network. The configured jobs are stored in a buffer storage. From here, they
are transferred to the ARCnet controller for sending off. The transport from the buffer
storage to the ARCnet controller is managed by the APOLL function block. The
transport is also carried out by the operating system in the idle period between two
PLC cycles.
The maximum size of the storage buffer is 31 data packages.
The output ST indicates that the configured job has been stored in the storage buffer.

Important note
A user program must not contain more than one block call of ASEND. If more than
one job have to be sent off, the ASEND block must be extended by the ASEND+
block. For each further job, one ASEND+ must be configured in the FBD directly
following ASEND.
ASEND+ is only an extension block for ASEND, but not autonomous. For that
reason, all used ASEND+ blocks must be configured directly following an ASEND
block or then following each other. Under no circumstances may other CEs be
inserted between ASEND and ASEND+ or ASEND+ and a following ASEND+
respectively.
For the same reason, the output ST may not be connected by a line with another CE.
A variable must always be defined at the output ST.
ASEND+ blocks only exist in FBD. During the translation, the ASEND block and all
the following ASEND+ are combined into one ASEND-IL function block.
The ARCnet controller must have been initialized by the function block AINIT before
data packages can be stored in the storage buffer by the function block ASEND.

Important note :
If a PLC is used with an ARCnet interface, a certain section of the PLC TURBO
program memory No. 2 is reserved for ARCnet.
If programs with more than 2 k instructions are executed, the system–dependent
capacity utilization can possibly be increased by reason of the reduced TURBO

Function block description

ABB France Page C-125 1SBC006099R1001 C - 03/07

memory No. 2 when changes are made to a running program.
There are no problems, if - the capacity utilization is less than 80 % before
 making changes to a running program or if
 - the program length is less than 2 k instructions.

#JOB DIRECT CONSTANT
The total number of jobs configured in the ASEND and ASEND+ function blocks is
specified at the input #JOB.
The following is valid : 1 < #JOB

EN BINARY
Dependent on the enable input EN, the configured job is stored as a data package in
the storage buffer and sent off then.
The following applies :
EN = 0 : The configured job is not stored in the storage buffer and
 thus not sent off.
EN = 0-1 edge : The configured job is stored as a data package in the
 storage buffer and sent off then.
EN = 1 : The configured job is stored in the storage buffer and sent
 off, only if the user data of the job have changed.

#n DIRECT CONSTANT
The number of receivers for the configured job is specified at the input #n. The node
numbers of the receivers are configured at the inputs N, where : 1 < #n < 15

N WORD
If the same job has to be sent to several receivers, the node numbers (station
addresses) of the receivers are defined at the inputs N.
N0 : Node number = 0 :
If the node number is ”0” at the input N0, the job is sent to all stations (Broadcast).
N1...Nn-1 : Node number = 0 :
If the node number is ”0” at the inputs N1...Nn-1, no broadcast is sent.
If one of the receivers is not able to receive data, the data package is lost for this
receiver.
The following applies : 0 < N < 255

#D DIRECT CONSTANT
The DIN identification is specified for the configured job at input #D. The value 111
(6FH) is not allowed here, because it is reserved for programming and test
telegrams.
The following applies : 0 < #D < 127 not allowed : 111 (6FH)

#J DIRECT CONSTANT
The job number is specified for the configured job at input #J.
The following applies : -32767 < #J < +32767

#L DIRECT CONSTANT
The number of user data words is specified for the configured job at input #L.
The following applies : 0 < #L < 125

Function block description

ABB France Page C-126 1SBC006099R1001 C - 03/07

MW WORD
The starting word flag of the word flag area to be sent off is specified at the input
MW. The data of this flag area are sent off as user data in this job.

ST BINARY
The output ST (status) indicates that the configured job has been stored in the
storage buffer.
The following applies :
ST = 0 : The configured job has not been stored in the storage buffer.
ST = 1 : The configured job has been stored in the storage buffer.

Note
A variable must be specified at the output ST, i.e. the output may not be connected
by a line with another CE.

Sender Receiver CP

0 1 2 FFHFEHFDHFCHFBHFAHF9H

DN LB HB
JNJN

LB LBHB HB
NW1 NW1 NW2 NW2

Structure of the ARCnet data package (short package = 256 bytes)
The ARCnet data package consists in :
- 3 bytes of control data : sender, receiver, CP (continuous pointer)
- max. 253 bytes of user data consisting in :

1 byte for DIN identification + 2 bytes for job number + 125 words for user data

Position

Example of a configured job : Sender : Station address of the sender (05H)
N : %KW 01,00 = 5 Receiver : Station address of the receiver
#D : #127 (7FH) CP : Continuous pointer, contains the
#J : #10 (0AH) position (F9H) of the first user data byte
#L : #2 DN : DIN identification (7FH)
MW : %MW 10,00 = 258 (102H) LB JN : Low byte job number (0AH)

%MW 10,01 = 772 (304H) HB JN : High byte job number (00H)
LB NW1 :Low byte user data word 1 (02H)
HB NW1 : High byte user data word 1 (01H)
LB NW2 :Low byte user data word 2 (04H)
HB NW2 : High byte user data word 2 (03H)

Function block description

ABB France Page C-127 1SBC006099R1001 C - 03/07

MODBUS MODBUS MASTER

FREI
SLAV
FCT
TIME
ADDR
NB

RDY
ERR
ERN

MODBUS

DATA

FBD IL

CAL MODBUS (FREI,SLAV,FCT,TIME,ADDR,
NB,DATA,RDY,ERR,ERN)

PARAMETERS
FREI BINARY %I,%O,%M,%K,%S Enable signal for one
 communication (rising edge)
SLAV WORD %IW,%OW,%MW,%KW Slave number
FCT WORD %IW,%OW,%MW,%KW Function code
TIME WORD %IW,%OW,%MW,%KW Time–out for MODBUS
 communication
ADDR WORD %IW,%OW,%MW,%KW Address in the slave
NB WORD %IW,%OW,%MW,%KW Number of data to send or to
 read
DATA WORD %IW,%OW,%MW,%KW Data to send to the slave or to
 BINARY %I,%O,%M write with the data received
 from a slave MODBUS
RDY BINARY %O,%M Ready, communication in
 progress
ERR BINARY %O,%M Communication error
ERN WORD %OW,%MW Communication error, detail of
 error

DESCRIPTION
MODBUS master communication function block

The central unit is a master on a MODBUS network and can communicate with other
products with MODBUS protocol.
The function MODBUS MASTER in the central unit is valided by :
- system constant KW 00,06 = 100
- connection between pins 7 and 6 on the connector of the serial interface

Several function blocks MODBUS can be used in one user program.

Function block description

ABB France Page C-128 1SBC006099R1001 C - 03/07

The MODBUS protocol is a master/slave protocol. The master sends a frame to a
slave and waits for the answer (a time–out is defined). Binary or numeric data can be
read or written in a slave.

The area of data in the master is chosen by the address of the first variable. The size
of area is necessary for sending or receiving. Reading or writing data are done
automatically from these areas.

FREI BINARY
A rising edge at the FREI input leads to an output of a request to a slave MODBUS,
provided that the block is ready to do this (RDY = 1).
If a rising edge appears at the FREI input although the RDY output is equal to 0, i.e.
the block is not ready for a new MODBUS communication, the rising edge will be
ignored. Therefore, no new MODBUS communication can be started as long as the
RDY output is 0.

SLAV WORD
Address of the slave which receives the request.
Value : 0 < ADDR < 255
In case of address 0 (ADDR = 0), all slaves on the MODBUS network will read the
frame.

FCT WORD
The function depends on the type of parameters and if it is reading or writing.
Value : 1 (01H): reading n bits
 2 (02H): reading n bits
 3 (03H): reading n words
 4 (04H): reading n words
 5 (05H): writing one bit
 6 (06H): writing one word
 7 (07H): fast reading of 8 bits
 8 (08H): Diagnosis/initialization
 15 (0FH): writing n bits
 16 (10H): writing n words
The other function codes are not supported by by the central units 30serie, 40 serie
and 50 serie. In case of a wrong function code, an error 1 is generated in the word
ERN.

TIME WORD
Time–out for the communication (maximum time for an answer of the slave
MODBUS).
The value is given in milliseconds.
Cycle time (KD 00,00) < TIME < 32767
In case of a time–out, the output ERN provides the value of 9.

ADDR WORD
Address of data in the slave memory to read or write.

NB WORD
Number of data to read or write in the slave.

Function block description

ABB France Page C-129 1SBC006099R1001 C - 03/07

This number defines also the size of the data area in the master to send to the slave
or to receive from the slave.

DATA WORD, BINARY
DATA defines the first variable of the data area in the master. The size of this area
depends on the NB parameter.
Different cases are possible according to the function code and the operand :
Reading : ADDR DATA result
 word word idem
 bit bit idem
 bit word same as the function block PACK
 word bit The first bit of the word is ranged in the first bit of the
 group number.
 Example : data = M 00,07 : The first bit of the read
 word will be written in M 00,00.
Writing : ADDR DATA result
 word word idem
 bit bit idem
 bit word same as the function block PACK
 word bit same as the function block UNPACK

RDY BINARY
The output RDY (ready) indicates whether a MODBUS communication is in progress
or not. As long as a communication is in progress, the output RDY is equal to 0. The
function block can only be used if RDY = 1.

ERR BINARY
The output ERR indicates an error occurred during communication. The word output
ERN indicates the details of the error.
If ERR = 1 -> error,
 ERR = 0 -> no error or communication in progress.
The error is clear after one cycle time.

ERN WORD
Details of error :
 0 : no error
 1 : unknown function code
 2 : address error
 3 : data error
 9 : time–out
 10 : checksum error
The error is clear after one cycle time.

Function block description

ABB France Page C-130 1SBC006099R1001 C - 03/07

MODMASTK MODBUS master several interfaces

FBD/LD IL

MODMASTK
FREI
COM

ERR
RDY

ERN

CAL MODMASTK(FREI,
COM, SLAV, FCT, TIME,
ADDR, NB, DATA, RDY,
ERR, ERN)

SLAV
FCT
TIME
ADDR
NB
DATA

PARAMETERS
FREI BINARY %I,%O,%M,%K,%S Enable signal for one

communication (rising edge)
COM WORD %IW,%OW,%MW,%KW Communication interface

(always=2)
SLAV WORD %IW,%OW,%MW,%KW Slave number
FCT WORD %IW,%OW,%MW,%KW Function code
TIME WORD %IW,%OW,%MW,%KW Time–out for MODBUS

communication
ADDR WORD %IW,%OW,%MW,%KW Address in the slave
NB WORD %IW,%OW,%MW,%KW Number of data to send or to

read
DATA WORD

BINARY
%IW,%OW,%MW,%KW,
%I,%O,%M

Data to send to the slave or to
write with the data received
from a slave MODBUS

RDY BINARY %O,%M Ready, communication in
progress

ERR BINARY %O,%M Communication error
ERN WORD %OW,%MW Communication error, detail of

error

DESCRIPTION
MODMASTK master communication function block

The central unit is a master on a MODBUS network and can communicate with other
products with MODBUS protocol.
The function MODMASTK in the central unit is valided by :
- system constant KW 00,06 = 100

Function block description

ABB France Page C-131 1SBC006099R1001 C - 03/07

The MODBUS protocol is a master/slave protocol. The master sends a frame to a
slave and waits for the answer (a time–out is defined). Binary or numeric data can be
read or written in a slave.

The area of data in the master is chosen by the address of the first variable. The size
of area is necessary for sending or receiving. Reading or writing data are done
automatically from these areas.

FREI BINARY
A rising edge at the FREI input leads to an output of a request to a slave MODBUS,
provided that the block is ready to do this (RDY = 1).
If a rising edge appears at the FREI input although the RDY output is equal to 0, i.e.
the block is not ready for a new MODBUS communication, the rising edge will be
ignored. Therefore, no new MODBUS communication can be started as long as the
RDY output is 0.

COM WORD
This parameter is always set to 2

SLAV WORD
Address of the slave which receives the request.
Value : 1 < ADDR < 254

FCT WORD
The function depends on the type of parameters and if it is reading or writing.
Value : 1 : reading n bits
 2 : reading n bits
 3 : reading n words
 4 : reading n words
 5 : writing one bit
 6 : writing one word
 7 : fast reading
 15 : writing n bits
 16 : writing n words

TIME WORD
Time–out for the communication (maximum time for an answer of the slave
MODBUS).
The value is given in milliseconds.
Cycle time (KD 00,00) < TIME < 32767
In case of a time–out, the output ERN provides the value of 9.and ERR is 1

ADDR WORD
Address of data in the slave memory to read or write.

NB WORD
Number of data to read or write in the slave.
This number defines also the size of the data area in the master to send to the slave
or to receive from the slave. NB=1….96

Function block description

ABB France Page C-132 1SBC006099R1001 C - 03/07

DATA WORD, BINARY
DATA defines the first variable of the data area in the master. The size of this area
depends on the NB parameter.

RDY BINARY
The output RDY (ready) indicates whether a MODBUS communication is in progress
or not. As long as a communication is in progress, the output RDY is equal to 0. The
function block can only be used if RDY = 1.

ERR BINARY
The output ERR indicates an error occurred during communication. The word output
ERN indicates the details of the error.
If ERR = 1 -> error,
 ERR = 0 -> no error or communication in progress.
The error is clear after one cycle time.

ERN WORD
Details of error :
 0 : no error
 1 : unknown function code
 2 : address error
 3 : data error
 9 : time–out
 10 : checksum error
The error is clear after one cycle time.

SEND SENDING OF ASCII CHARACTERS AND HEX VALUES
THROUGH A SERIAL INTERFACE

FBD IL

SEND
FREI
SSK
TXNR
TX RDY

!BA
DRUCK

0

FREI
TXNR
SSK

TX
RDY#"Name

#"Name
#1
#"Text1
....

PARAMETERS
FREI BINARY %O, %I, %S, %M Enable signal for output of one
 text (0->1-edge)

Function block description

ABB France Page C-133 1SBC006099R1001 C - 03/07

SSK WORD %OW, %IW, %MW, %KW Serial interface identification
TXNR WORD %OW, %IW, %MW, %KW Number of the text to be output
TX TXT texts Texts/operands
 capable of duplication
RDY BINARY %O, %I, %M Ready
#"Name TXT texts Comment name (in FBD)

DESCRIPTION
ASCII communication fonction block.

A CS31 central unit can send ASCII messages through its RS232 serial interface with
the SEND function block.
Each message has an identification number and can be composed of ASCII texts and
operands values. The texts and operand identifiers to be output are stored in the user
program in the PLC directly by the SEND block. The numerical values to be output
are conditioned for a diversity of representations by specifying a format identifier.

IMPORTANT NOTE : Initialization of the serial interface
Before using the SEND block, the serial interface used has to be initalized with the
SINIT block.

Communication between several SEND blocks and the same serial interface
Several SEND blocks can use the same serial interface. If the serial interface is
engaged by one of the SEND blocks, the other SEND blocks automatically wait until it
is free again. The priority access to the serial interface when several SEND blocks
simultaneously have access to the same interface, corresponds to the sequence in
which the SEND blocks are called in the user program : the first SEND block located
at the beginning of the user program is given access first. The processing sequence
must be planned by an appropriate mutual interlocking of the SEND blocks.

Communication by a SEND and REC block with the same serial interface
A SEND block and a REC block (receiving of ASCII messages) can use the same
serial interface without any special precaution.

FREI BINARY
If the block is ready (RDY = 1) and a 0 -> 1 edge appears at the FREI input, the text
identified at the input TXNR is sent through the serial interface specified at the SSK
input.

If a 0 -> 1 edge appears at the FREI input although the RDY output is equal to 0 (i.e.
the block is not ready yet for a new transfer), the 0 -> 1 edge is ignored. Therefore,
no new text transfer is started as long as the RDY signal is 0.

SSK WORD
Central units can have one or two RS232 serial interface. The number of the interface
through which the text is to be output is specified at the SSK input :
 SSK = 1 for COM1
 SSK = 2 for COM2

Function block description

ABB France Page C-134 1SBC006099R1001 C - 03/07

TXNR WORD
The number of the text to be output is specified at the TXNR input : 1≤ TXNR ≤ 99

The number of the text to be output must be present at the TXNR input until the block
indicates the end of text transfer with a 1 signal at its RDY output.

RDY BINARY
In the program cycle in which the block is called for the first time, and during the time
when a text is output, RDY is equal to 0. As long as RDY is equal to 0, no new text
output can be activated and all 0 -> 1 edge present at the FREI input are ignored and
lost.

After the first call of the block or after termination of a text output, RDY is equal to 1
and the block is ready again for output of a new text.

FREI RDY TXNR SSK MEANING
0/1 edge 1 2 1 The text with the number 2 is

output through interface 1
0/1 edge 0 2 1 0/1 edge is ignored because

the block is not ready
no 0/1 edge x x x No output of a new text

=> The RDY signal can be used for example at the FREI input to activate a new text
transfer.

TX ALL
In IL :
Texts and operands to be output are directly written at the TX inputs. The way to
write the messages is described here below.

In FBD :
Text and operands to be sent are written in a comment window. Several comment
windows can be created and each comment window has a "Name" that corresponds
to the "Name" written at the TX inputs.

A comment window is called by the button in the tool bar. You have to drag the
mouse to select the rectangle area where the text must be written.
Comment may be inserted anywhere in the program.

One comment window can be composed of several messages.
The name of the comment window is NOT sent with the text and operands.
The way to write the messages is described here below and an example is given at
the end.

- Storage of texts in the central unit :
Quantity : 1...99 messages (in one or several comment windows in FBD)
Length : Up to 256 characters (owing to the send buffer length = 256)

 Serie 90 Serie 40 & 50

Function block description

ABB France Page C-135 1SBC006099R1001 C - 03/07

- Each text character counts as 1 character 1 character
- Each format identifier counts as 3 characters
- Each bit operand counts as 1 character 1 character
- Each word operand counts as 2 characters 1 to 6 characters *
- Each double word operand counts as 4 characters 10 to 11 characters *

* depends on the format

When the program is started, the PLC checks the texts to determine whether or not
the maximum length is exceeded.

- Syntax of texts
A text for the SEND block consists of :
- The text number
- One or several subtexts (optional)
- Operands with format identifier (optional)

#n #" Subtext

Format ident if ier Operand

#n : Number of the text to be entered as a direct constant (1...99).

#” : Start identifier for text input.

Subtext : All ASCII characters (from hexadecimal code 00 up to 7F).
 The character ASCII <NUL> is an exception for central units serei 90.
 This character is used as a prefix for the format identifier in the send
 buffer.

Operand : Binary, word or double word operands whose values are output
 depending on the display format.

Format identifier : The PLC is capable of presenting the numerical values to be output

on a screen or a printer in diverse ways. The format identifier specifies
the type of the operand and the display format of its value. This is
planned directly before the operand to be output and consists of three
digits. The 1st digit from the left specifies the operand type. There are 3
operand types :
 Binary : 1
 Word : 2
 Double word : 3
Numbers 2 and 3 define the display format.

Examples :

Function block description

ABB France Page C-136 1SBC006099R1001 C - 03/07

- Format identifier 103
 Digit 1 : 1 : Binary operand
 Digits 2 and 3 : 03 : Display format 03 (see table)

-Format identifier 204
 Digit 1 : 2 : Word operand
 Digits 2 and 3 : 04 : Display format 04 (see table)

-Format identifier 341
 Digit 1 : 3 : Double word operand
 Digits 2 and 3 : 41 : Display format 41 (see table)

- Possible display formats
All possible display formats are listed in the following table.
For series 40 & 50 :
 - identifiers applicable to word data types : 01 to 16, 21 to 26, 33 to 36,
 42 to 51, and 99
 - identifiers applicable to double word data types : 05 to 16 and 41 to 62
For serie 90 : With the exception of the special indentifiers 98 and 99, all identifiers
 are applicable to the word and double word data types.

There are formats
- with leading zeros and
- with leading zeros substituted by blanks which are indicated in the table here below
by -.

Format
identifier

in series
40 & 50

in serie 90 Numerical
example

ASCII output

01 x x 0012345678 8
02 xx xx 78
03 xxx xxx 678
04 xxxx xxxx 5678
05 xxxxx xxxxx 45678

06 xxxx,x xxxx,x 1102215 0221,5
07 xxx,xx xxx,xx 022,15
08 xx,xxx xx,xxx 02,215
09 x,xxxx x,xxxx 0,2215
10 ,xxxxx ,xxxxx ,02215

11 +/- xxxxx +/- xxxxx 00331 +00331
12 +/- xxxx,x +/- xxxx,x +0033,1
13 +/- xxx,xx +/- xxx,xx +003,31
14 +/- xx,xxx +/- xx,xxx +00,331
15 +/- x,xxxx +/- x,xxxx +0,0331
16 +/- ,xxxxx +/- ,xxxxx +,00331

17 x 00234 ----4
18 xx ---34
19 xxx --234

Function block description

ABB France Page C-137 1SBC006099R1001 C - 03/07

Format
identifier

in series
40 & 50

in serie 90 Numerical
example

ASCII output

20 xxxx --234
21 xxxxx xxxxx --234

22 xxxx,x xxxx,x 00347 --347
23 xxx,xx xxx,xx --3,47
24 xx,xxx xx,xxx --,347
25 x,xxxx x,xxxx -,0347
26 ,xxxxx ,xxxxx ,00347
27 +/- xxxxx +--347
28 +/- xxxx,x +--34,7

33 +/-xxx,xx 00347 +--3,47
34 +/-xx,xxx +--,347
35 +/-x,xxxx +-,0347
36 +/-,xxxxx +,00347

37 xxxxxx 0012345678 345678
38 xxxxxxx 2345678
39 xxxxxxxx 12345678
40 xxxxxxxxx 012345678
41 xxxxxxxxxx xxxxxxxxxx 0012345678

42 xxxxxxxxx,x xxxxxxxxx,x 0011223344 001122334,4
43 xxxxxxxx,xx xxxxxxxx,xx 00112233,44
44 xxxxxxx,xxx xxxxxxx,xxx 0011223,344
45 xxxxxx,xxxx xxxxxx,xxxx 001122,3344
46 xxxxx,xxxxx xxxxx,xxxxx 00112,23344
47 xxxx,xxxxxx xxxx,xxxxxx 0011,223344
48 xxx,xxxxxxx xxx,xxxxxxx 001,1223344
49 xx,xxxxxxxx xx,xxxxxxxx 00,11223344
50 x,xxxxxxxxx x,xxxxxxxxx 0,011223344
51 ,xxxxxxxxxx ,xxxxxxxxxx ,0011223344

52 +/- xxxxxxxxxx +/- xxxxxxxxxx 0055667788 +0055667788
53 +/- xxxxxxxxx,x +/- xxxxxxxxx,x +005566778,8
54 +/- xxxxxxxx,xx +/- xxxxxxxx,xx +00556677,88
55 +/- xxxxxxx,xxx +/- xxxxxxx,xxx +0055667,788
56 +/- xxxxxx,xxxx +/- xxxxxx,xxxx +005566,7788
57 +/- xxxxx,xxxxx +/- xxxxx,xxxxx +00556,67788
58 +/- xxxx,xxxxxx +/- xxxx,xxxxxx +0055,667788
59 +/- xxx,xxxxxxx +/- xxx,xxxxxxx +005,5667788
60 +/- xx,xxxxxxxx +/- xx,xxxxxxxx +00,55667788
61 +/- x,xxxxxxxxx +/- x,xxxxxxxxx +0,055667788
62 +/- ,xxxxxxxxxx +/- ,xxxxxxxxxx +,0055667788

63 x 0087654321 ---------1
64 xx --------21
65 xxx -------332

Function block description

ABB France Page C-138 1SBC006099R1001 C - 03/07

Format
identifier

in series
40 & 50

in serie 90 Numerical
example

ASCII output

66 xxxx ------4321
67 xxxxx -----54321
68 xxxxxx ----654321
69 xxxxxxx ---7654321
70 xxxxxxxx --87654321
71 xxxxxxxxx --87654321
72 xxxxxxxxxx --87654321

73 xxxxxxxxx,x 0012345678 --1234567,8
74 xxxxxxxx,xx --123456,78
75 xxxxxxx,xxx --12345,678
76 xxxxxx,xxxx --1234,5678
77 xxxxx,xxxxx --123,45678
78 xxxx,xxxxxx --12,345678
79 xxx,xxxxxxx --1,2345678
80 xx,xxxxxxxx --,12345678
81 x,xxxxxxxxx -,012345678
82 ,xxxxxxxxxx ,0012345678
83 +/- xxxxxxxxxx +--12345678
84 +/- xxxxxxxxx,x +--1234567,8

Special format : Output of a word operand HEX value :

The value of a word operand is output directly as a hexadecimal value. Therefore, the
value is not converted to ASCII before output.
98 Only the LOW BYTE (8 bits) of the word operand is output
99 The LOW BYTE of the word operand is output first, followed by its HIGH
 BYTE
Important : This special format is only permissible for the “WORD” data type.
 Permissible format : 298 and 299
 Inadmissible format : 198, 199, 398 and 399

- Input of texts
The following parts of the overall message are treated as independent operands :
- the text number e.g. # 1
- a subtext e.g. #” Text1
- a format identifier e.g. # 203
- an operand e.g. %MW 002,03
- a further subtext e.g. #” Text2

Input of special characters for screen or printer control :

Control characters such as “line feed” <LF> or “carriage return” <CR> are needed to
arrange the message when output to a screen or printer. These special characters
can be placed anywhere within a subtext. In the programming system, these special
characters are entered by means of :
 \Numerical value of the character

Function block description

ABB France Page C-139 1SBC006099R1001 C - 03/07

The numerical value of the character is specified as a three-digit decimal number.

Example :

The following output is to be made on a printer :
 First line
 Blank line
 Second line
To do this, the following text must be planned :
 First line <CR> <LF> <LF> second line
The following applies :
 <CR> = 013
 <LF> = 010
The text input in the programming system is as follows :
 #”First line\013\010\010second line

Notes :
- The characters with the ASCII code >20H (=32D) must be entered with the
keyboard. As an example, the character ”!” can be entered with the keyboard, and
not as \033.
- Characters, which are not special characters and which can not be entered with the
keyboard, can be generated in the following way :
Press and hold down the <ALT> key, now type the numerical code (decimal code) on
the numerical keypad of the keyboard, then release the <ALT> key.
- The character with the ASCII code 255 is reserved for internal use of the
programming software and must not be used otherwise.

Function block description

ABB France Page C-140 1SBC006099R1001 C - 03/07

- Example :

FBD IL

LD %M 000,00
AND %O 00,00
ST %M 238,00

!BA 0
DRUCK

%M 238,00
%MW 000,00
%MW 000,01
%O 00,00
#1
#"\010\013The machine is ready.
#2
#"\010\013The machine is not ready.
#3
#"\010\013It is
#202
%MW 001,01
#"m and temperature is
#203
%MW 001,00
#"°C.

%O 00,00

SEND

FREI
SSK
TXNR
TX0
TX1

RDY

Text 1 : The machine is ready.
Text 2 : The machine is not ready.
Text 3 : Level is (%MW 001,01)m and temperature is (%MW 001,00)°C.

Note : Don’t forget the SINIT function block to initialize the serial port

%MW 000,00
%MW 000,01
#"Com. 1
#"Com. 2

%M 000,00
%O 00,00

#"Com. 1
#1
#"\010\013The machine is ready.
#2
#"\010\013The machine is not ready.

#"Com. 2
#3
#"\010\013Level is
#202
%MW 001,01
#"m and temperature is
#203
%MW 001,00
#"°C.

&

Function block description

ABB France Page C-141 1SBC006099R1001 C - 03/07

REC RECEIVING OF ASCII CHARACTERS AND HEX VALUES
THROUGH A SERIAL INTERFACE

FBD IL

!BA
EMAS

0REC

QUIT
SSK

VAR

TEXT

RDY
TELN

MEUN
QUIT
SSK
#ANU
MEUN

MW
TEXT

RDY
TELN

RECvars

MW VAR

#"Name
#1
#"Text 1
...

#"Name

PARAMETERS
QUIT BINARY %O, %E, %M, %S, %K Reception of telegrams not
 enabled.
SSK WORD %OW, %IW, %MW, %KW Serial interface identification
#ANU DIRECT #, #H Number of VAR for user
 CONSTANT information
TEXT TXT texts Comparison telegram;
 capable of duplication
MEUN BINARY %O, %M Data invalid
RDY BINARY %O, %M Ready : telegram received
TELN WORD %OW, %MW Number of the comparison
 telegram with which the
 received one agrees
MW WORD %OW, %MW User data;
 capable of duplication
#"Name TXT Text Comment name (in FBD)

DESCRIPTION
ASCII communication function block.

A CS31 central unit can receive ASCII messages through its RS232 serial interface
with the REC function block. The REC function block is always linked to the RECvars
function block.

The REC function block :
- receives telegrams through a serial interface of the PLC

Function block description

ABB France Page C-142 1SBC006099R1001 C - 03/07

- compares these telegrams to comparison telegrams stored in the user program
- and, if these agree, provides the user data of the telegram received at the block’s
outputs.

The received telegrams are fetched from the serial interface by an interface driver
and are provided in a BUFFER for further processing by REC. The driver recognizes
the end of the telegram by the end of telegram character. This end of telegram
character is planned in the SINIT block.

IMPORTANT NOTE : Initialization of the serial interface
Before using the REC block, the serial interface used has to be initalized with the
SINIT block.

Communication between several REC blocks and the same serial interface
- REC blocks of a user program which access the same serial interface must be
interlocked so that only ever one REC block is active. If this is not done, telegrams
may be processed by the wrong REC and declared invalid.
- If both user program 1 and also user program 2 contain REC blocks which access
the same serial interface, they must be interlocked so that only ever one REC block is
active. If this is not done, telegrams may be processed by the wrong REC and
declared invalid.
A telegram loss can be avoided by interlocking of the REC blocks. Interlocking must
be planned so that only the REC block is enabled for which the telegram arriving
through the interface is intended.

Communication by an REC block and a SEND block with the same serial
interface
An REC and a SEND block can use the same serial interface without special
precautions having to be taken.

QUIT BINARY
The input QUIT controls reception of telegrams and also serves the purpose of
acknowledgement in the event of an error occurring.
QUIT = 0 : Reception of telegrams enabled.
QUIT = 1 : Reception of telegrams not enabled. Acknowledgment after
 reception of an invalid telegram.
If agreement with none of the stored comparison telegrams is ascertained on
comparison of a received telegram, the REC automatically assumes the “error” state.
In this case, REC no longer processes any new telegrams until the error is
acknowledged with a 1 signal at the input QUIT and reception of telegrams is enabled
again (next cycle) with a 0 signal at the input QUIT.

SSK WORD
The number of the interface through which the block receives its telegrams is
specified at the SSK input (interface identifier).
The following applies :
COM1 : number = 1
COM2 : number = 2

Function block description

ABB France Page C-143 1SBC006099R1001 C - 03/07

#ANU DIRECT CONSTANT
The number of outputs MW at which the block provides the received user information
is specified at the input #ANU (number of user information items). This is specified as
a direct constant(only used in Instruction List).

MEUN BINARY
The output MEUN (flag invalid) indicates whether or not the data at the outputs MW
is valid or invalid.
If a telegram is received and processed properly, the data at the outputs MW is
declared valid. The data at the outputs MW is declared invalid if the received
telegram does not agree with any of the stored comparison telegrams or if the
received telegram cannot be processed properly.
MEUN = 0 -> Data at the outputs MW is valid
MEUN = 1 -> Data at the outputs MW is invalid

RDY BINARY
The output RDY (ready) indicates that a telegram has been received and processed.
The output RDY does not provide any information as to whether or not a valid or
invalid telegram has been received.
RDY = 0 -> Still no telegram has been received
RDY = 1 -> A telegram has been received and processed

QUIT MEUN RDY Meaning
The EMAS is disabled by QUIT = 1. In doing so, the outputs MEUN and RDY are
permanently set to 0.

EMAS is enabled for reception, but still no telegram has been received and eva
luated.

EMAS has received a valid telegram and is ready to receive a new telegram.

EMAS has received an invalid telegram. An acknowledgement at the QUIT input
is necessary in order to be able to receive a new telegram.
QUIT: 0->1

Acknowledgement after reception of an invalid telegram. After acknowledge
ment, the EMAS is enabled again by QUIT = 0

1 0 0

0

1

1

00

1

0

0

0

0

1

0->1

Brief overview of the block's parameters:
QUIT
RDY
MEUN

TELN WORD
If a valid telegram is received, the number of the affiliated comparison telegram is
output through the output TELN (telegram number).

MW WORD
The output MW can be duplicated. The user data communicated in the telegram
currently received is output through the MW parameters. This user data may consist
of numerical values or any characters. This depends on which kind of dummy
parameters have been planned in the comparison telegram. The user data of a
telegram is stored beginning with the first MW parameter and in the sequence in

Function block description

ABB France Page C-144 1SBC006099R1001 C - 03/07

which they are planned in the comparison telegram. As many outputs MW must be
provided as are sufficient for the telegram with the most user data.

TEXT ALL
In IL :
The comparison telegrams to be stored in the PLC program are specified at the
inputs TEXT. The block is capable of processing from 1 to 99 telegrams. One
telegram occupies 2 inputs, each telegram number being specified at one input and
the actual telegram text being specified at the next one. The exact syntax and
handling of the comparison telegrams are described here below.

In FBD :
Text and operands to be stored are written in a comment window. Several comment
windows can be created and each comment window has a "Name" that corresponds
to the "Name" written at the TX inputs.

A comment window is called by the button in the tool bar. You have to drag the
mouse to select the rectangle area where the text must be written.
Comment may be inserted anywhere in the program.

One comment window can be composed of several messages.
The name of the comment window is NOT stored with the text and operands.
The way to write the messages is described here below and an example is given at
the end.

DETAILED DESCRIPTION OF COMPARISON TELEGRAMS
1...99 comparison telegrams are stored directly after the REC block.

The comparison telegrams serve to identify
- the current telegrams received
- and the user data contained in the telegrams received

Each stored comparison telegram has a telegram number to identify it and may
comprise up to 255 characters.

The comparison telegrams consist of :
- ASCII characters serving only to identify the telegram received,
- Dummy parameters for the user information to be received and to be output through
the block’s outputs.
As regards the dummy parameters for the user information, REC function block
distinguishes between dummy parameters for digits and dummy parameters for
characters.
Dummy parameter for digits : # (1 # per digit)
Dummy param. for characters : * (1 * per character/byte)

Dummy parameter for digits :
For each dummy digit parameter (#) of the comparison telegram, REC expects
precisely one ASCII coded decimal digit in the telegram to be received. Up to 5
dummy digits constitute one dummy parameter group. Such a group of dummy digits
represents the numerical value of a decimal number comprising up to 5 digits.

Function block description

ABB France Page C-145 1SBC006099R1001 C - 03/07

No dummy parameter is specified for the decimal number’s sign because REC takes
it into account automatically. The REC allocates one user information output to each
numerical value belonging to a dummy parameter group.

E.g. : Decimal number Dummy parameters
 1234 ####
 +1234 ####
 -1234 ####

The REC block checks the received decimal number in relation to its significant
range. Only numbers within the +32767 range can be processed in the PLC. If the
received decimal number exceeds the significant range, the REC will automatically
insert the maximum respective limit. The limit for a positive number is +32767 and the
limit is -32767 for a negative number.

Dummy parameter for characters :
For each dummy character (*) of the comparison telegram, REC expects any one
character/byte in the telegram to be received. These may comprise ASCII characters
of letters, but also all other hex values from 0...FF.
The length of a dummy character group is up to 255. If this were the case, the
complete comparison telegram would consist of dummy characters only.
REC allocates the characters/bytes received without change and successively to its
user information outputs MW.

Syntax diagram : Structure of comparison telegrams

#n #" *

#

TEXT

#n : Successive telegram number (direct constant 1...99)

#” : Start identifier for text input

* : Dummy parameter for character/byte

: Dummy parameter for digits

TEXT : All ASCII characters 01 to FF except * and #

Function block description

ABB France Page C-146 1SBC006099R1001 C - 03/07

Input of comparison telegrams
- Each comparison telegram consists of :
 the telegram number
 the telegram text
The telegram number and the telegram text are two separate operands. This is why
the telegram number and the telegram text occupy separate inputs in the FBD
symbol of the REC block. Therefore, two inputs are needed for one comparison
telegram.

Example :
First TEXT Input : #1 (No. of the first comparison telegram)
Second TEXT Input : #”PRINT### IDENTIFIER**** (Text of the first comparison
 telegram)

- Apart from the ASCII characters for * and #, all ASCII characters are possible in the
telegram text.

- When entering special ASCII characters such as “start of line” <CR>, the following
must be observed : special characters are entered by :
 \Numerical value of the character
The character’s numerical value is specified as a three-digit decimal number.

Example :
The following telegram text is to be compared : Temperature <CR> boiler 1
The following applies : <CR> = 013
The text input in the programming system is as follows :
 #”temperature\013boiler 1

Note :
- The characters with the ASCII code >20H or >32D must be entered with the
keyboard. As an example, the character ”!” must be entered with the keyboard, and
not as \033.
- Characters, which are no special characters and which also could not be entered
with the keyboard, can be generated in the following way :
Press and hold down the <ALT> key, now type the numerical code (decimal code) on
the numeric keypad of the keyboard, then release the <ALT> key.
- The character with the ASCII code 255 is reserved for internal use of the
programming software and must not be used otherwise.

Function block description

ABB France Page C-147 1SBC006099R1001 C - 03/07

RECEIVING / PROCESSING TELEGRAMS
Receiving telegrams are controlled by the QUIT input which also acknowledge
transmission errors.

The REC compares character by character a received telegram to the comparison
telegrams stored. In doing so, agreement between the dummy parameters in the
comparison telegram and the affiliated current characters in the received telegram is
checked.

Important : For REC, the telegram end identifier indicates the end of the telegram to
be received. This is why the telegram end identifier must not occur within a telegram.
This also applies to user characters received on the basis of a dummy parameter (#
or *).

Agreement
If the REC ascertains agreement between the received telegram and one of its
comparison telegrams, the following applies to the outputs :
MEUN = 0, because it has been possible to receive and process the telegram
 properly
RDY = 1, because a telegram has been received and processed
TELN = Number of the relevant comparison telegram
MW = Current user data from the telegram received

The coherent digits defined by a dummy digit group in the comparison telegram are
read out of the received telegram, are combined in one numerical value and this is
output to one word operand (user information output). Text characters marked by
dummy text characters (*) in the comparison text are read out of the received
telegram and each single character/byte is output without change to a word operand
(user information output).

The user information is allocated to the outputs MW in the same sequence as the
user information occurs in the currently received telegram (see also examples).

The maximum number of user information word operands to be output is specified at
the input #ANU. The maximum number results from the telegram with the most user
information word operands to be reserved (up to 256 word operands, in which case
the telegram would consist of user information only).

Special case :
If more user information is planned in a comparison telegram than user information
outputs are available on the block, i.e. specified at the input #ANU, the received user
data is output through the user information outputs until the end of the outputs has
been reached. The remaining user data received will not be output.

The following applies in this error case :
MEUN = 1, because it has not been possible to process the telegram properly
RDY = 1, because a telegram has been received and processed
TELN = Text No. of the relevant comparison telegram
MW = The part of the current user data from the received telegram for which
 the number of planned user information outputs suffices.

Function block description

ABB France Page C-148 1SBC006099R1001 C - 03/07

No agreement
The received telegram agrees with none of the stored comparison telegrams.
The following then applies to the outputs :
MEUN = 1, because the received telegram is invalid
RDY = 1, because a telegram has been received and processing of it has been
 terminated
The REC is now in the “ERROR” state. In this case, REC does not process any new
telegram until the error is acknowledged with a 1 signal at the QUIT input and the
reception of telegrams is enabled again (next cycle) with a 0 signal at the QUIT input.

Acknowledgement of the error
Set QUIT = 1 and then, in the next cycle QUIT = 0.
After reception of telegrams has been enabled, it may happen that still no telegram is
available for reception or that a telegram has not yet been received and evaluated
completely. In this case, the outputs are set as follows
• MEUN = 1 and
• RDY = 0
until a telegram has been received and processed completely.

EXAMPLE OF A COMPARISON TELEGRAMS

Text 1 : RO104
Text 2 : DO##”#”##

 Special case : terminate text input and restart
If the text character (”) is used and a dummy parameter for digits (#)
follows this text character, the input must be terminated after the
text character (”). A subsequent text or dummy parameter begins
with the input identifier of a new text input (#”).

Text 3 : CO##****
Text 4 : *****###**

Note : The texts designated TEXT1, TEXT2 and TEXT3 in the example are
permanently planned texts which REC doesn’t output to user information outputs.
They serve exclusively to identify an arriving telegram.
Any sequence of texts and dummy parameters for characters and digits is possible.

Function block description

ABB France Page C-149 1SBC006099R1001 C - 03/07

FBD IL

VAR

TEXT

TELN

REC

QUIT
SSK

RDY
MEUN !BA

EMAS
0

%M 000.01
%KW 001.00
#1
%O 62.00
%O 62.01
%MW 001.00
%MW 000.00
%MW 000.01
%MW 000.02
%MW 000.03
%MW 000.04
%MW 000.05
%MW 000.06
%MW 000.07
#1
#"RO104
#2
#"DO##"#"###
#3
#"CO##****
#4
#"*****###**

RECvar

MW
MW
MW
MW
MW
MW
MW
MW

VAR

#"Text
#1
#"RO104
#2
#"DO##"#"###
#3
#"CO##****
#4
#"*****###**

#"Text

Note : don’t forget the SINIT function block to initialize the serial port

%M 000.01
%KW 001.00

%MW 000.00
%MW 000.01
%MW 000.02
%MW 000.03
%MW 000.04
%MW 000.05
%MW 000.06
%MW 000.07

%O 62.00
%O 62.01

%MW 001.00

Example of acknowledgment with the QUIT parameter :

&

jump1:

=%O 62.00
%O 62.01

=%K 000.00 %M 000.01

jump1

=%K 000.01 %M 000.01

The following telegrams have been received and evaluated :
Example 1
RO104<CR>
The number 1 is output through the TELN output.
The MW0...MWn parameters are not written because no user information is planned.
As the received telegram has been evaluated and agrees with a comparison
telegram, the following applies :
MEUN = 0
RDY = 1
TELN = 1

Function block description

ABB France Page C-150 1SBC006099R1001 C - 03/07

Example 2
DO+12”457”<CR>
The number 2 is output through the TELN output.
The value 12 is present at the MW0 parameter as the contents of a word flag.
The value 457 is present at the MW1 parameter as the contents of a word flag.
As the received telegram has been evaluated and agrees with a comparison
telegram, the following applies :
MEUN = 0
RDY = 1
TELN = 2
MW0 = 12
MW1 = 457

Example 3
CO-11AUTO<CR>
The number 3 is output through the TELN output.
-11 is present at the MW0 parameter as the contents of a word flag.
41H (A in ASCII) is present at the MW1 parameter as the contents of a word flag.
55H (U in ASCII) is present at the MW2 parameter as the contents of a word flag.
54H (T in ASCII) is present at the MW3 parameter as the contents of a word flag.
4FH (O in ASCII) is present at the MW4 parameter as the contents of a word flag.
As the received telegram has been evaluated and agrees with a comparison
telegram, the following applies :
MEUN = 0
RDY = 1
TELN = 3
MW0 = -11
MW1 = A
MW2 = U
MW3 = T
MW4 = O

Example 4
TEMPO120KM<CR>
The number 4 is output through the TELN output.
54H (T in ASCII) is present at the MW0 parameter as the contents of a word flag.
45H (E in ASCII) is present at the MW1 parameter as the contents of a word flag.
4DH (M in ASCII) is present at the MW2 parameter as the contents of a word flag.
50H (P in ASCII) is present at the MW3 parameter as the contents of a word flag.
4FH (O in ASCII) is present at the MW4 parameter as the contents of a word flag.
The value 120 is present at the MW5 parameter as the contents of a word flag.
4BH (K in ASCII) is present at the MW6 parameter as the contents of a word flag.
4DH (M in ASCII) is present at the MW7 parameter as the contents of a word flag.
As the received telegram has been evaluated and agrees with a comparison
telegram, the following applies :
MEUN = 0
RDY = 1
TELN = 4

Function block description

ABB France Page C-151 1SBC006099R1001 C - 03/07

MW0 = T
MW1 = E
MW2 = M
MW3 = P
MW4 = O
MW5 = 120
MW6 = K
MW7 = M

Example 5
XY25OTTO<CR>
The received telegram has been evaluated, but agrees with none of the comparison
telegrams.
Therefore the following applies :
MEUN = 1
RDY = 1
TELN = is not allocated
Reception of further telegrams is blocked until reception of the invalid telegram is
acknowledged at the QUIT input.

SINIT INITIALIZATION AND CONFIGURATION OF THE SERIAL
INTERFACES

FBD IL

SINIT

FREI
SSK
BAUD
STOP

CAL SINIT (FREI,SSK,BAUD,STOP,ZL,PTY,
 E/O,ECHO,SBRK,FEND,ENDS,
 ENDE)

ZL
PTY
E/O
ECHO
SBRK
FEND
ENDS
ENDE

PARAMETERS
FREI BINARY %O, %I, %S, %M, %K Enable processing of the block,
 0 -> 1 edge
SSK WORD %OW, %IW, %MW, %KW Interface identifier (1 or 2)
BAUD WORD %OW, %IW, %MW, %KW Baud rate; 300 ... 9600 Baud
STOP WORD %OW, %IW, %MW, %KW Number of stop bits; input has
 no effect
ZL WORD %OW, %IW, %MW, %KW Character length, 7 or 8 data
 bits per character
PTY BINARY %O, %I, %S, %M, %K Parity, enable/disable
E/O BINARY %O, %I, %S, %M, %K Parity even/odd

Function block description

ABB France Page C-152 1SBC006099R1001 C - 03/07

ECHO BINARY %O, %I, %S, %M, %K Echo, on/off
SBRK BINARY %O, %I, %S, %M, %K Send break character
FEND BINARY %O, %I, %S, %M, %K Enable end of text character for
 transmitting direction
ENDS WORD %OW, %IW, %MW, %KW End of text character for
 transmitting direction
ENDE WORD %OW, %IW, %MW, %KW End of text character for
 receiving direction

DESCRIPTION
Serial interface initialization function block.

The serial interface COM1 is available to the user. In case of 07 KT 92 and 07
KT 93, COM2 is additionally available. These interfaces can be operated by the PLC
program (e.g. with the DRUCK and EMAS blocks).

Before using one of these interfaces, the interface must be initialized. The function
block SINIT is available for this purpose.

The function block SINIT is processed once with every 0 -> 1 edge at the FREI input.
It initializes the serial interface specified at the SSK input (COM1, COM2).

FREI BINARY
The block is run through once when a 0->1 edge is specified at the FREI input. As
the result of this, the serial interface whose number is specified at the SSK input is
initialized and the interface is then operable.

SSK WORD
The number of the interface to be initialized is specified at the input SSK.
The following applies :
COM1 : number = 1
COM2 : number = 2

BAUD WORD
The value for the baud rate is specified at the BAUD input.
Baudrate : 300 ... 9600 Baud

STOP WORD
The number of stop bits is set to 1 and can not be modified. The value for the number
of stop bits specified at the input STOP has no significance.

ZL WORD
The input ZL specifies the required character length. The character length signifies
the number of data bits per character.
7 or 8 data bits per character are possible.

PTY BINARY
The input PTY specifies whether a character is transferred with or without a parity bit.
PTY = 0 -> Transfer without parity bit

Function block description

ABB France Page C-153 1SBC006099R1001 C - 03/07

PTY = 1 -> Transfer with parity bit

E/O BINARY
The input E/O specifies whether an even or odd parity bit is required.
E/O = 0 -> Odd parity bit
E/O = 1 -> Even parity bit

ECHO BINARY
The input ECHO specifies whether the characters received through the applicable
interface are to be reflected (echoed) by the PLC. In this way, the sender of a
character, for example, can determine whether or not it has arrived correctly in the
PLC.
ECHO = 0 -> No echo, character is not reflected
ECHO = 1 -> Echo, character is reflected

SBRK BINARY
The state of the transmit line TxD can be influenced at the input SBRK (send break
character).
SBRK = 0 -> Normal state of the transmit line TxD for transfer of characters
SBRK = 1 -> Transmit line TxD set to “0”

FEND BINARY
The input FEND specifies whether or not the end of text character planned at input
ENDS is output at the same time (enable end character).
FEND = 0 -> End of text character in transmitting direction is not output
FEND = 1 -> End of text character in transmitting direction is output

ENDS WORD
A freely selectable end of text character for the transmitting direction can be specified
at the ENDS input. This end character is then appended automatically to every text
(telegram) which the DRUCK block sends to the outside world through the serial
interface. However, a precondition is that input FEND is enabled.
The end of text character is specified as a numeric value.

Example : 3 or 03H signifies <ETX>
 4 or 04H signifies <EOT>
 13 or 0DH signifies <CR>
 10 or OAH signifies <LF>
 32 or 20H signifies <SP>
 ...

ENDE WORD
A freely selectable end of text character for the receiving direction can be specified at
the ENDE input. When a telegram is received through the serial interface, the PLC
recognizes the end of the telegram by virtue of this end character. The end character
is specified in the same way as in the case of the ENDS input.

Function block description

ABB France Page C-154 1SBC006099R1001 C - 03/07

6 Regulation functions

Regulation
functions

serie
from pages C-154 to C-174

Ctler 40 50 90 30

DT1 Differentiator with delay of the 1st order x
INTK Integrator (extended) x
PI Proportional-integral controller x x x x
PIDT1 PIDT1 controller x x x
PT1 PT1 element x

DT1 DIFFERENTIATOR WITH DELAY OF THE 1ST ORDER

FBD/LD IL

DT1
x
KP
T1/T y

CAL DT1 (x,KP,T1/T,y)

PARAMETERS
x WORD %IW, %OW, %MW, %KW Controlled variable
KP WORD %IW, %OW, %MW, %KW Proportional coefficient,
 specified as a percentage
T1/T WORD %IW, %OW, %MW, %KW Time constant scaled to cycle
 time
y WORD %OW, %MW Manipulated variable

DESCRIPTION
The controlled variable x is multiplied by the proportional coefficient KP. The
proportional coefficient is specified as a percentage. If the controlled variable no
longer changes, the manipulated variable y moves towards the value 0 in an
exponentiel function. The time constant T1 specifies the time when the step response
has dropped to approximately 37% of its initial value. The value has dropped below
1% after 5*T1.

Transfer function : F(s)
KP * s * T1
s * T1 1

=
+

Function block description

ABB France Page C-155 1SBC006099R1001 C - 03/07

x

t

1

y

t

KP

37%

T1

Transfer function:

x WORD
The operand for the controlled variable (input value for the DT1 function) is specified
at the input x.

KP WORD
The proportional coefficient is specified at the input KP. This value is specified as a
percentage and can be positive or negative.
Example : 1 = 1 Percent
 55 = 55 Percent
 100 = 100 Percent
 1000 = 1000 Percent
 -100 = -100 Percent
100 percent means that the input x is not influenced by the proportional coefficient.

T1/T WORD
The time constant of the DT1 function is specified at the input T1/T.To do this, the
time constant T1 must be scaled to the PLC cycle time T.
The following applies to T1/TZ : 10 < T1/TZ < 32767 -> T1 > 10 * TZ
If a negative value is specified for T1/T, then the PLC automatically sets T1/T to the
maximum positive value +32767.

y WORD
The manipulated variable (output value of the DT1 function) is output through the
output y.

Function block description

ABB France Page C-156 1SBC006099R1001 C - 03/07

INTK INTEGRATOR (EXTENDED)

FBD/LD IL

CAL INTK (x,TI/T,R,STOP,S,INIT,K,
 OG,UG,y,y=OG,y=UG)INTK

x
K
TI/T
OG
UG
STOP
S
INIT
R y

y=UG
y=OG

PARAMETERS
x WORD %IW, %OW, %MW, %KW Controlled variable
K WORD %IW, %OW, %MW, %KW Proportional coefficient, output
 as a percentage
TI/T WORD %IW, %OW, %MW, %KW Integration time scaled to the
 cycle time
OG WORD %IW, %OW, %MW, %KW High limit for the manipulated
 variable y
UG WORD %IW, %OW, %MW, %KW Low limit for the manipulated
 variable y
STOP BINARY %I, %O, %M, %S, %K Integrator stop
S BINARY %I, %O, %M, %S, %K Set output to INIT value
INIT WORD %IW, %OW, %MW, %KW Initial value
R BINARY %I, %O, %M, %S, %K Reset output y to the value 0
y=OG BINARY %O, %M Output y has reached top limit
y=UG BINARY %O, %M Output y has reached low limit
y WORD %OW, %MW Manipulated variable

DESCRIPTION
This block generates the integral of the controlled variable x multiplied by the
proportinal coefficient K.

The integrator’s output y can be manipulated as follows :
• It can be set to the value 0 by a 1 signal at the input R (reset)
• It can be latched to the current value by a 1 signal at the input STOP
• It can be set to the initial value at the INIT input by a 1 signal at the input S (set)
• It can be limited to a maximum value specified at the input OG (high limit)
• It can be limited to a minimum value specified at the input UG (low limit)

Function block description

ABB France Page C-157 1SBC006099R1001 C - 03/07

Transfer function :

F (S) =
K

S * T

x

t

1

y

OG

t

INIT
TI

UG

K

x WORD
The operand for the controlled variable is specified at the input x.

K WORD
The proportional coefficient is specified at the input K. It serves to weight the
controlled variable at the input x. Weighting is achieved by multiplying the controlled
variable by the proportional coefficient.
The proportional coefficient is specified as a percentage.

Example : 1 = 1 Percent
 55 = 55 Percent
 100 = 100 Percent
 1000 = 1000 Percent
 -100 = -100 Percent

Function block description

ABB France Page C-158 1SBC006099R1001 C - 03/07

• 1 percent means that the block multiplies the value at input x by the factor 0.01
• 100 percent means that the block multiplies the value at input x by the factor 1
• 1000 percent means that the block multiplies the value at input x by the factor 10

TI/T WORD
The integration time is specified at the input TI/T. It must be scaled to the cycle time.
During the time TI the output y of the integrator changes by the value K * x.
Value range : 0 < TI/T < 328
• If values which are beyond the admissible value range are specified, the PLC uses
the value 328.
• A large integration time (TI) can be achieved by choosing a great cycle time, too. If
the block is used within a run number block, the cycle time of the run number block is
valid for block INTK and not the cycle time (%KD 0,0) of the PLC program.

OG WORD
The manipulated variable y can be limited to a value range. The high limit for the
manipulated variable y is specified at the input OG.

UG WORD
The manipulated variable y can be limited to a value range. The low limit for the
manipulated variable y is specified at the input UG.

STOP BINARY *)
Integration can be stopped with the STOP input.
STOP = 0 -> integration is not stopped
STOP = 1 -> integration is stopped, i.e. the output y no longer changes.

S BINARY *)
By means of the input S, the manipulated variable y can be set to the initial value
specified at the input INIT. Integration then again begins as from the initial value.
S = 0 -> No setting
S = 1 -> Output y is set to the specified initial value

INIT WORD
The initial value to which the output y must be set when required is specified at the
input INIT.

R BINARY *)
With the input R, the output y can be reset to the value 0. Integration then again
begins as from the value 0.

*) Priority sequence for the inputs STOP, S and R : R Highest priority
 STOP
 S Lowest priority

y=OG BINARY
Whether the value at the output y has reached the specified top limit is signalled at
the output y=OG. Integration is stopped automatically when the limit is reached.
 y=OG = 0 -> y has not reached the limit
y=OG = 1 -> y has reached the limit

Function block description

ABB France Page C-159 1SBC006099R1001 C - 03/07

y=UG BINARY
Whether the value at the output y has reached, the specified lower limit is signalled at
the output y=UG. Integration is stopped automatically when the limit is reached.
y=UG = 0 -> y has not reached the limit
y=UG = 1 -> y has reached the limit

y WORD
The manipulated variable (output value of the integrator) is output through the output
y.

PI PROPORTIONAL-INTEGRAL-CONTROLLER

FBD IL

CAL PI (w,x,KP,TN/T,INIT,S,R,
OG,UG,y,y=OG,y=UG)

PI

w
x
KP
TN/T
OG
UG
S
INIT
R y

y=UG
y=OG

PARAMETERS
w WORD %IW, %OW, %MW, %KW Command variable (setpoint)
x WORD %IW, %OW, %MW, %KW Controlled variable (actual
 value)
KP WORD %IW, %OW, %MW, %KW Proportional coefficient;
 specified as a %
TN/T WORD %IW, %OW, %MW, %KW Integral action time scaled to
 the PLC cycle time
OG WORD %IW, %OW, %MW, %KW High limit for the manipulated
 variable y
UG WORD %IW, %OW, %MW, %KW Low limit for the manipulated
 variable y
S BINARY %I, %O, %M, %S, %K Enabling for setting the
 manipulated variable y to the
 initial value INIT
INIT WORD %IW, %OW, %MW, %KW Initial value for the manipulated
 variable y
R BINARY %I, %O, %M, %S, %K Reset of the manipulated
 variable y to the value 0
y=OG BINARY %O, %M High limit has been reached
y=UG BINARY %O, %M Low limit has been reached

Function block description

ABB France Page C-160 1SBC006099R1001 C - 03/07

y WORD %OW, %MW Output for the manipulated
 variable y

DESCRIPTION
The PI controller changes the value at its output y (manipulated variable) until the
value at the input x (controlled variable) is equal to the value at the input w (command
variable).

Control algorithm : Simple rectangle rule

 Y
KP
100

*
w x
TN/ T

YI(z 1)
KP
100

* (w x)=
−

+ − + −

 Where :YI(z-1) is the integral component from the previous
 program cycle

Transfer function : F(s) KP * (1
1

s * TN
)= +

Function block description

ABB France Page C-161 1SBC006099R1001 C - 03/07

XD= w -x

t

1

Y

OG

INIT TN

S

t

1

KP

t

INIT

t

Integr.comp.(t1)= INIT-KP * XD

Integr.component

t1

t1

t1

t1

t1

Integr.comp. limited
because Y = OG

PI controller : Surge-free transition from the specified initial value to control
operation

Function block description

ABB France Page C-162 1SBC006099R1001 C - 03/07

XD= w -x

t

1

Y

OG

t

INIT
TN

S

t

1

KP

t

KP(t1)

INIT

t

t1

Y1 Y1 = INIT + KP *

KP* XD

t1

t1

t1

t1

Integr.comp.(t1)= INIT

Integral
component

PI controller : Surging transition from the specified initial value to control operation

w WORD

Function block description

ABB France Page C-163 1SBC006099R1001 C - 03/07

The command variable (setpoint) is specified at the input w.

x WORD
The controlled variable (actual value) is specified at the input x.

KP WORD
The proportional coefficient is specified at the input KP. This value is specified as a
percentage and may be positive or negative.
Example : 1 = 1 Percent
 55 = 55 Percent
 100 = 100 Percent
 1000 = 1000 Percent
 -500 = -500 Percent
• 1 percent means that the block multiplies the system deviation by the factor 0.01
(see also control algoritm)
• 100 percent means that the block multiplies the system deviation by the factor 1
(see also control algoritm)
• 1000 percent means that the block multiplies the system deviation by the factor 10
(see also control algoritm)
Generally, proportional coefficients of more than 1000% are not meaningful in control
systems.

TN/T WORD
The integral action time TN is scaled to the PLC cycle time T and is specified at the
input TN/T.
Value range : 0 < TN/T < 328
• If values which are beyond the admissible value range are specified, the PLC uses
the value 328.
• A large integral action time TN can be achieved by choosing a great cycle time T,
too. If the block is used within a run number block, the cycle time of the run number
block is valid for block PI and not the cycle time (%KD 0,0) of the PLC program.

Limiting the manipulated variable y
OG WORD
UG WORD
The output y (manipulated variable) of the controller can be limited
- To a maximum value by specifying a limit at the input OG (high limit);
- To a minimum value by specifying a limit at the input UG (low limit)
The high and low limits also apply to the controller’s internal I component. That is to
say, the I component can only assume values between the high and low limits. If the
manipulated variable y reaches one of the two limits, the controller’s I component is
no longer altered. This prevents the I component from running amock in the event of
limiting of the controller output y, assuming meaningless values from the point of view
of control and, in certain circumstances, not returning to the operating range until
after a very long time. This response of a controller is also referred to as a “special
anti-reset windup measure”.

Setting and resetting the controller
S BINARY
INIT WORD

Function block description

ABB France Page C-164 1SBC006099R1001 C - 03/07

R BINARY
Setting the controller to an initial value
- The output y of the controller is set to the initial value specified at the INIT input by
means of a 1 signal at the input S (set).
- A 1 signal at the input R (reset) is equivalent to specifying the initial value 0 (see
above).

Surge-free setting/resetting
- The output y of the controller is set to the initial value specified at the input INIT by
means of a 1 signal at the binary input S (set).
- A 1 signal at the input R (reset) is equivalent to specifying the initial value 0.

In doing so, adjustment to the initial value takes place internally in the controller. This
adjustment is a shift of the controller output from the momentary value to the required
initial value. Now, the controller continues operating from this initial value precisely as
it would have done at the old operating point before the shift, i.e. without surges. The
controller’s I component is defined so that the sum of the P component and the I
component just results in the initial value.

Advantage of surge-free operation :
- Control as from the new initial value is devoid of surges.

Disadvantage of surge-free operation :
- The following equation applies : I_component = INIT - P_component
In certain circumstances, the I component is set to high values and may take very
long before this “wrong” I component from the point of view of control is dissipated
again.

Surging setting/resetting
- The output y of the controller is set to the initial value specified at the INIT input by
means of a 1 signal at the input S (set).
- A 1 signal at the input R (reset) is equivalent to specifying the initial value 0.

In the event of surging setting or resetting of the controller the I component is set
equal to the initial value. To do this, the P component must be suppressed during
setting.
Where : I component = INIT
Surging setting to an initial value is achieved by the following measure during setting:
- Specifying the value 0 at the input KP.
This measure renders the P component inactive. The controller output y assumes the
initial value during the set cycle.

The P component is enabled again after the set cycle. From the initial value, the
controller output y jumps according to the P component of the controller.

Advantage of surging setting :
- The I component is not set to “wrong” values from the point of view of control.

Disadvantage of surging setting :
- No freedom from surging

Function block description

ABB France Page C-165 1SBC006099R1001 C - 03/07

y WORD
The controller’s manipulated variable y is output through the output y.

y=OG BINARY
The output y=OG signals whether or not the value at the output y has exceeded the
specified high limit.
y=OG = 0 limit has not been reached.
y=OG = 1 limit has been reached.

y=UG BINARY
The output y=UG signals whether or not the value at the output y has reached the
specified low limit.
y=UG = 0 limit has not been reached.
y=UG = 1 limit has been reached.

PIDT1 PIDT1 CONTROLLER

FBD IL

D-FR
OG
UG
S
INIT
R y

y=OG
y=UG

CAL PIDT1 (w,x,KP,TN/T,TV/T,T1/T
 D-FR,INIT,S,R,OG,UG,y
 y=OG,y=UG)x

KP
TN/T
TV/T
T1/T

w
PIDT1

PARAMETERS
w WORD %IW, %OW, %MW, %KW Command variable (setpoint)
x WORD %IW, %OW, %MW, %KW Controlled variable (actual
 value)
KP WORD %IW, %OW, %MW, %KW Proportional coefficient,
 specified as a percentage
TN/T WORD %IW, %OW, %MW, %KW Integral action time scaled to
 the PLC cycle time
TV/T WORD %IW, %OW, %MW, %KW Derivative action time scaled to
 the PLC cycle time
T1/T WORD %IW, %OW, %MW, %KW Returning time scaled to the
 PLC cycle time
D-FR BINARY %I, %O, %M, %K Enable DT1 component
OG WORD %IW, %OW, %MW, %KW High limit for the manipulated
 variable y
UG WORD %IW, %OW, %MW, %KW Low limit for the manipulated

Function block description

ABB France Page C-166 1SBC006099R1001 C - 03/07

 variable y
S BINARY %I, %O, %M, %S, %K Enable for setting to initial
 value INIT
INIT WORD %IW, %OW, %MW, %KW Initial value for the manipulated
 variable y
R BINARY %I, %O, %M, %S, %K Reset the manipulated variable
 y to the value 0
y=OG BINARY %O, %M High value has been reached
y=UG BINARY %O, %M Low value has been reached
y WORD %OW, %MW Output for manipulated variable
 y

DESCRIPTION
The PI controller changes its output y (manipulated variable) until the input x
(controlled variable) is equal to the input w (command variable).

Transfer function : F(s) KP * (1
1

s * TN
s * TV

1 (s * T1)
)= + +

+

Control algorithm : simple rectangle rule :

() () () ()()y
KP*XD

100
KP
100

*
XD

TN/ TZ
YI z 1

T1/ TZ
1 T1/ TZ

* YDT1z 1
1

T1/ TZ
*
TV
TZ

*
KP
100

* XD XD z 1= + + − +
+

− + − −⎛
⎝⎜

⎞
⎠⎟

where :
 YI(z-1) : integral portion from the previous program cycle
 YDT1(z-1) : differential portion from the previous program cycle
 XD(z-1) : control system difference from the previous program cycle

Function block description

ABB France Page C-167 1SBC006099R1001 C - 03/07

t

t

t

t

t

t

Integr.comp.(t1)+KP*XD

Integral compon.DT1 Comp.

P Comp

TN

Integr.comp.(t1)=INIT-KP*XD*(1+ TV__
T1

)

t1

t1

t1

t1

t1

t1

Integr.compon. limi-
ted because Y=OG

XD=w-x

S

1

D-FR

1

INIT

KP

KP(T1)

Y
OG

INIT

1

PIDT1 controller : Surge-free transition from the specified intitial value to control
mode

Function block description

ABB France Page C-168 1SBC006099R1001 C - 03/07

t

t

t

t

t

Y1 = INIT + KP * XD

t

Y2 = Y1 + KP *
TV__
T1 * XD

t1

Integral comp.
DT1 Comp.

P Comp.

TN

t1

t1

t1

Integr.component(t1) = INIT

t1

t1

Integr. comp. limi-
ted because Y=OG

XD=w-x

1

Y
OG

INIT

S

1

D-FR

1

INIT

Y1

KP

KP(T1)

Y2

PIDT1 controller : Surging transition from the specified initial value to control
mode

Function block description

ABB France Page C-169 1SBC006099R1001 C - 03/07

w WORD
The command variable (setpoint) is specified at the input w.

x WORD
The controlled variable (actual value) is specified at the input x.

KP WORD
The proportional coefficient is specified at the input KP. This value is specified as a
percentage and may be positive or negative.
Example : 1 = 1 Percent
 55 = 55 Percent
 100 = 100 Percent
 1000 = 1000 Percent
 -500 = -500 Percent
• 1 percent means that the block multiplies the system deviation by the factor 0.01
(see also control algoritm)
• 100 percent means that the block multiplies the system deviation by the factor 1
(see also control algoritm)
• 1000 percent means that the block multiplies the system deviation by the factor 10
(see also control algoritm)
Generally, proportional coefficients of more than 1000% are not meaningful in control
systems.

TN/T WORD
The integral action time TN is scaled to the PLC cycle time T and is specified at the
input TN/T.
Value range : 0 < TN/T < 328
• If values which are beyond the admissible value range are specified, the PLC uses
the value 328.
• A large integral action time TN can be achieved by choosing a great cycle time T,
too. If the block is used within a run number block, the cycle time of the run number
block is valid for block PIDT1 and not the cycle time (%KD 0,0) of the PLC program.

TV/T WORD
The derivative action time TV is scaled to the PLC cycle time T and is specified at the
input TV/T(0 < TV/T < 32767).

T1/T WORD
The returning time T1 is scaled to the PLC cycle time T and is specified at the input
T1/T(0 < T1/T < 32767). The returning time is the time in which the DT1 component
has decreased to approximately 37% of its initial value.
Inadmissible time parameters :
Every time value is set to the maximum positive value 32767 if the time value at the
input is erroneously specified as less than or equal to “0”.

D-FR WORD
The DT1 component of the controller can be connected or deactivated by means of
the D-FR input.
D-FR = 0 The DT1 component is deactivated -> pure PI controller
D-FR = 1 The DT1 component is connected -> PIDT1 controller

Function block description

ABB France Page C-170 1SBC006099R1001 C - 03/07

In the following cases, from the control point of view it is often disturbing and not
meaningful for the DT1 component to be active :
- During activations
- In the event of large system deviations
- When setting the controller to a specified initial value
- When resetting the controller to the value 0

The command and controlled variables can be compared outside of the controller.
Depending on this comparison, the DT1 component can be activated or deactivated
specifically by way of the D-FR input.

For example, activation can be restricted to ensuring that the system deviation is
within a required bandwidth. That is to say, the DT1 component is only active if the
controlled variable fluctuates around the setpoint within a specific bandwidth. The
DT1 component is deactivated if the controlled variable leaves this tolerance band.

Limiting the maniulated variable y
OG WORD
UG WORD
The output y (manipulated variable) of the controller can be limited
- To a maximum value by specifying a limit at the input OG (high limit);
- To a minimum value by specifying a limit at the input UG (low limit)
The high and low limits also apply to the controller’s internal I component. That is to
say, the I component can only assume values between the high and low limits. If the
manipulated variable y reaches one of the two limits, the controller’s I component is
no longer altered.

This prevents the I component from running amock in the event of limiting of the
controller output y, assuming meaningless values from the point of view of control
and, in certain circumstances, not returning to the operating range until after a very
long time. This response of a controller is also referred to as a “special anti-reset
windup measure (ARW)”.

Setting and resetting the controller
S BINARY
INIT WORD
R BINARY
Setting the controller to an initial value
- The output y of the controller is set to the initial value specified at the INIT input by
means of a 1 signal at the input S (set).
- A 1 signal at the input R (reset) is equivalent to specifying the initial value 0 (see
above).

Surge-free setting/resetting
- The output y of the controller is set to the initial value specified at the input INIT by
means of a 1 signal at the binary input S (set).
- A 1 signal at the input R (reset) is equivalent to specifying the initial value 0.
In doing so, adjustment to the initial value takes place internally in the controller. This
adjustment is a shift of the controller output from the momentary value to the required

Function block description

ABB France Page C-171 1SBC006099R1001 C - 03/07

initial value. Now, the controller continues operating from this initial value precisely as
it would have done at the old operating point before the shift, i.e. without surges. The
controller’s I component is defined so that the sum of the P component, I component
and DT1 component just results in the initial value.

Advantage of surge-free operation :
- Control as from the new initial value is devoid of surges.

Disadvantage of surge-free operation :
- The following equation applies :
 I component = INIT - P component - DT1 component
In certain circumstances, the I component is set to high values and may take very
long before this “wrong” I component from the point of view of control is dissipated
again.

Surging setting/resetting
- The output y of the controller is set to the initial value specified at the INIT input by
means of a 1 signal at the input S (set).
- A 1 signal at the input R (reset) is equivalent to specifying the initial value 0.
- In the event of surging setting or resetting of the controller, the I component is set
equal to the initial value. To do this, the P and DT1 components must be suppressed
during setting.
Where : I component = INIT

Surging setting to an initial value is achieved by the following measures during setting
:
- Deactivation of the DT1 component via the D-FR control input and
- Specifying the value 0 at the input KP.
These measures render the P component and the DT1 component inactive during
setting of the controller.
The controller output assumes the initial value during the set cycle.
The P and DT1 components are enabled again after the set cycle. From the initial
value, the controller output y jumps according to the P and DT1 components of the
controller.

Advantage of surging setting :
- The I component is not set to “wrong” values from the point of view of control.

Disadvantage of surging setting :
- No freedom from surging

y WORD
The controller’s manipulated variable y is output through the output y.

y=OG BINARY
The output y=OG signals whether or not the value at the output y has reached the
specified high limit.
y=OG = 0 limit has not been reached.
y=OG = 1 limit has been reached.

Function block description

ABB France Page C-172 1SBC006099R1001 C - 03/07

y=UG BINARY
The output y=UG signals whether or not the value at the output y has reached the
specified low limit.
y=UG = 0 limit has not been reached.
y=UG = 1 limit has been reached.

PT1 PT1 ELEMENT

FBD/LD IL

PT1
x
T1/T y

CAL PT1 (x,T1/T,y)

PARAMETERS
x WORD %IW, %OW, %MW, %KW Controlled variable
T1/T WORD %IW, %OW, %MW, %KW Time constant
y WORD %OW, %MW Manipulated variable

DESCRIPTION
This function block realizes a delay element of the first order.

Transfer function :

F =

1
1 + T1 * S

Function block description

ABB France Page C-173 1SBC006099R1001 C - 03/07

x

t

1

y

t

1

T1

Transfer funktion:

x WORD
The controlled variable is specified at the input x.

T1/T WORD
The delay time T1 is specified at the input T1/T. At the same time, the delay time T1
must be scaled to the cycle time T.
T1/T > 0 must apply
If a negative time value is specified erroneously, the PLC automatically sets the value
32767 for T1/T.

y WORD
The result of the delay element (manipulated variable) is output through the output y.

Function block description

ABB France Page C-174 1SBC006099R1001 C - 03/07

7 Format conversion functions

Format
conversion
functions

serie

from pages C-174 to C-200

Ctler 40 50 90 30

BCDDUAL /
BCDBIN

BCD to binary conversion x x x x

BCDDUALD /
BCDDW

BCD to binary conversion, double word x

DUALBCD /
BINBCD

Binary to BCD conversion x x x x

DUABCDD /
DWBCD

Binary to BCD conversion, double word x

DWW Double word to word conversion x x x x
PACK4 Pack 4 binary variables in a word x x x x
PACK8 Pack 8 binary variables in a word x x x x
PACK16 Pack 16 binary variables in a word x x x x
PACKD4 Pack 4 binary variables in a double word x
PACKD8 Pack 8 binary variables in a double word x
PACKD16 Pack 16 binary variables in a double

word
 x

PACKD24 Pack 24 binary variables in a double
word

 x

PACKD32 Pack 32 binary variables in a double
word

 x

UNPACK4 Unpacking a word into 4 binary variables x x x x
UNPACK8 Unpacking a word into 8 binary variables x x x x
UNPACK16 Unpacking a word into 16 binary

variables
 x x x x

UNPACKD4 Unpacking a double word into 4 binary
variables

 x

UNPACKD8 Unpacking a double word into 8 binary
variables

 x

UNPACKD16 Unpacking a double word into 16 binary
variables

 x

UNPACKD24 Unpacking a double word into 24 binary
variables

 x

UNPACKD32 Unpacking a double word into 32 binary
variables

 x

WDW Word to double word conversion x x x x

Function block description

ABB France Page C-175 1SBC006099R1001 C - 03/07

BCDDUAL BCD TO BINARY CONVERSION

FBD IL

BCDDUAL
CAL BCDDUAL(BCD,DUAL)
or
!BA0
BCDBIN
BCD
DUAL

BCD DUAL

PARAMETERS
BCD WORD %IW, %MW, %OW, %KW BCD-coded number
DUAL WORD %OW,%MW Binary number

DESCRIPTION
The positive BCD coded number at the input BCD is converted to a binary number
and is allocated to the operand at the DUAL output.

Definition :
The significance of the digits in a BCD coded number and a hexadecimal number is
defined as follows :

BCD-NUMBER HEXDEC-NUMBER

Z4 Z3 Z2 Z1 Z4 Z3 Z2 Z1

15 11 7 3 0 BIT 15 11 7 3 0

Numerical value:

Z1
Z2
Z3
Z4

Numerical value:

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256
4096

*
*
*
*

*
*
*
*

0 < Zi < 9 0 < Zi < F

Note :
At the BCD input, the block additionally also accepts digits to which the following
applies : 0 < Zi < F

Function block description

ABB France Page C-176 1SBC006099R1001 C - 03/07

Example 1
BCD NUMBER HEXDEC NUMBER

1 2 3 4 0 4 D 2

15 11 7 3 0 BIT 15 11 7 3 0

Z1
Z2
Z3
Z4

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256

=
=
=
=

4
30

200
1000

 1234+ 1234+

=
=
=
=

2
208

1024
--

4
3
2
1

=
=
=
=

=
=
=
=

2
13

4

*
*
*
*

*
*
*
*

Example 2

BCD NUMBER HEXDEC NUMBER

A 2 F 4 2 8 7 2

15 11 7 3 0 BIT 15 11 7 3 0

 10354+ 10354+

Z1
Z2
Z3
Z4

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256

=
=
=
=

4
150
200

10000

=
=
=
=

2
112

2048

4
15
2

10

=
=
=
=

=
=
=
=

2
7
8
2 4096 8192

*
*
*
*

*
*
*
*

Representation of a negative BCD number
A negative BCD number can be represented in the PLC by separate representation
of the value and the sign. In doing so, the value of the BCD number is stored in a
word variable and the information about the sign is stored in a binary variable.

Function block description

ABB France Page C-177 1SBC006099R1001 C - 03/07

Example :
Representation of the BCD number -7 :
 %MW 02,00 = 7 Value of the number, BCD coded
 %M 01,00 = 1 Sign of the number • Positive : 0
 • Negative : 1

BCDDUAL
BCDDUAL

Value
%MW 02,00

=

AWT
0/1
0

1 %MW 02,01

Sign
%M 01,00

Signed binary number

positive BINARY

neg. BINARY

Example:
Conversion of a negative BCD number to a negative binary number

BCDDUALD BCD TO BINARY CONVERSION, DOUBLE WORD

FBD IL

BCDDUALD

CAL BCDDUALD(BCD,DUAL)
or
!BA0
BCDDW
BCD
DUAL

BCD DUAL

PARAMETERS
BCD DOUBLE WORD %MD, %KD BCD coded number
DUAL DOUBLE WORD %MD Binary number

DESCRIPTION
The positive BCD coded number at the input BCD is converted to a binary number
and is allocated to the operand at the DUAL output.

Function block description

ABB France Page C-178 1SBC006099R1001 C - 03/07

Definition
The significance of the digits in a BCD coded number and a hexadecimal number is
defined as follows :

BINARY NUMBER HEXDEC NUMBER

31 15 0 BIT 31 15 0

Numerical value:

Z1
Z2
Z3
Z4

Numerical value:

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256
4096

*
*
*
*

*
*
*
*

Z5
Z6
Z7
Z8

*
*
*
*

10000
100000
1000000
10000000

Z5
Z6
Z7
Z8

*
*
*
*

65536
1048576
16777216
268435456

Z8 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z8 Z7 Z6 Z5 Z4 Z3 Z2 Z1

0 < Zi < 9 0 < Zi < F
Note :
The block also accepts digits at the BCD input to which the following applies :
 0 < Zi < F

Representation of a negative BCD number
See function block BCDDUAL

Conversion of a negative BCD number to a negative binary number
See function block BCDDUAL

BCD NUMBER HEXDEC NUMBER

Z1
Z2
Z3
Z4

1
10
100
1000

=
=
=
=

8

 12345678+ 12345678+

8 =
=
=
=

*
*
*
*

31 15 0 BIT 31 15 0

1 2 3 4 5 6 7 8 0 0 B C 6 1 4 E

Z5
Z6
Z7
Z8

=
=
=
=

7
6
5
4
3
2
1

*
*
*
*

10000
100000
1000000
10000000

=
=
=
=

70
600

5000
40000

300000
2000000

10000000

Z1
Z2
Z3
Z4

1
16
256
4096

=
=
=
=

1414 =
=
=
=

*
*
*
*

Z5
Z6
Z7
Z8

=
=
=
=

4
1
6

12
11

*
*
*
*

65536
1048576
16777216
268435456

=
=
=
=

64
256

24576
786432

11534336

BCD NUMBER HEXDEC NUMBER

Z1
Z2
Z3
Z4

1
10
100
1000

=
=
=
=

4

 21350354+ 21350354+

4 =
=
=
=

*
*
*
*

31 15 0 BIT 31 15 0

1 B 3 4 A 2 F 4 0 1 4 5 C 7 D 2

Z5
Z6
Z7
Z8

=
=
=
=

15
2
10
4
3
11
1

*
*
*
*

10000
100000
1000000
10000000

=
=
=
=

150
200

10000
40000

300000
11000000
10000000

Z1
Z2
Z3
Z4

1
16
256
4096

=
=
=
=

22 =
=
=
=

*
*
*
*

Z5
Z6
Z7
Z8

=
=
=
=

13
7

12
5
4

*
*
*
*

65536
1048576
16777216
268435456

=
=
=
=

208
1792

49152
327680

4194304
1 16777216

Example 1: Example 2:

0
0 0 0

0
0

Function block description

ABB France Page C-179 1SBC006099R1001 C - 03/07

DUALBCD BINARY TO BCD CONVERSION

FBD IL

DUALBCD
CAL DUALBCD (DUAL,BCD)
or
!BA0
BINBCD
DUAL
BCD

DUAL BCD

PARAMETERS
DUAL WORD %IW, %MW, %OW, %KW Binary number
BCD WORD %OW,%MW BCD coded number

DESCRIPTION
The binary number at the DUAL input is converted to a BCD coded number and is
allocated to the operand at the output BCD.

The binary number is represented in 16 bits and must lie within the range
0 < DUAL < 270FH (corresponding to BCD 9999). The BCD number is limited to
9999 if it lies outside this range. The BCD number is stored in a 16-bit word.

Definition :
The significance of the digits in a hexidecimal number and a BCD coded number is
defined as follows :

BCD NUMBERHEXDEC NUMBER

Z4 Z3 Z2 Z1Z4 Z3 Z2 Z1

15 11 7 3 0BIT15 11 7 3 0

Numerical value:

Z1
Z2
Z3
Z4

Numerical value:

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256
4096

*
*
*
*

*
*
*
*

0 < Zi < F 0 < Zi < 9

Function block description

ABB France Page C-180 1SBC006099R1001 C - 03/07

Example :

BCD NUIMBERHEXDEC NUMBER

1 2 3 40 4 D 2

15 11 7 3 0BIT15 11 7 3 0

Z1
Z2
Z3
Z4

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256

=
=
=
=

4
30

200
1000

 1234+ 1234+

=
=
=
=

2
208

1024
0

4
3
2
1

=
=
=
=

=
=
=
=

2
13

4

*
*
*

*
*
*

* *4096 0

Conversion of a negative binary number to a BCD number
A negative binary number with an amount less than 270FH can be converted to a
BCD number, whereby the value and the sign of the BCD number are each stored in
one flag.

Example : Converting positive and negative binary numbers

BETRBinary number
%MW 03,00

Binary number <>

DUALBCD
%M 03,01
BCD number

%M 01,00

1: negative
0: positive

BCD number

amount

Converting a binary number with an amount higher than 270FH
Binary numbers with an amount higher than 270FH are first of all converted to a
double word (function block WDW). They are then converted from BINARY to BCD
by means of the DUALBCDD function block.

Example

WDW DUALBCDD
%MW 03,00 %MD 03,00

The same procedure as above applies if a sign has to be taken into account.

Function block description

ABB France Page C-181 1SBC006099R1001 C - 03/07

DUALBCDD BINARY TO BCD CONVERSION, DOUBLE WORD

FBD IL

DUALBCDD

CAL DUALBCDD(DUAL,BCD)
or
!BA0
DWBCD
DUAL
BCD

DUAL BCD

PARAMETERS
DUAL DOUBLE WORD %MD, %KD Binary number
BCD DOUBLE WORD %MD BCD coded number

DESCRIPTION
The binary number at the input DUAL is converted to a BCD coded number and is
allocated to the operand at the output BCD.

The binary number is represented in 32 bits and must lie within the range
0 < DUAL < 5F5E0FFH (corresponding to BCD 99 999 999).
if the BCD number lies outside of this range, it is limited to 99 999 999. The BCD
number is stored in a 32-bit word.

Definition
The significance of the digits in a hexadecimal number and a BCD coded number is
defined as follows :

BCD NUMBERHEXDEC NUMBER

31 15 0 BIT 31 15 0

Numerical value:

Z1
Z2
Z3
Z4

Numerical value:

Z1
Z2
Z3
Z4

1
10
100
1000

1
16
256
4096

*
*
*
*

*
*
*
*

Z5
Z6
Z7
Z8

*
*
*
*

10000
100000
1000000
10000000

Z5
Z6
Z7
Z8

*
*
*
*

65536
1048576
16777216
268435456

Z8 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z8 Z7 Z6 Z5 Z4 Z3 Z2 Z1

0 < Zi < F 0 < Zi < 9

Function block description

ABB France Page C-182 1SBC006099R1001 C - 03/07

BCD NUMBERHEXDEC NUMBER

Z1
Z2
Z3
Z4

1
10
100
1000

=
=
=
=

8

 12345678+ 12345678+

8 =
=
=
=

*
*
*
*

31 15 0BIT31 15 0

1 2 3 4 5 6 7 80 0 B C 6 1 4 E

Z5
Z6
Z7
Z8

=
=
=
=

7
6
5
4
3
2
1

*
*
*
*

10000
100000
1000000
10000000

=
=
=
=

70
600

5000
40000

300000
2000000

10000000

1
2
3
4

1
16
256
4096

=
=
=
=

1414 =
=
=
=

*
*
*
*

5
6
7
8

=
=
=
=

4
1
6

12
11

*
*
*
*

65536
1048576
16777216
268435456

=
=
=
=

64
256

24576
786432

11534336

Example:

0
0

0
0

Converting a negative binary number to a BCD number
See function block DUALBCD

DWW DOUBLE WORD TO WORD CONVERSION
FBD/LD IL

DWW

Q

CAL DWW (E1,A1,Q)

E1 A1

PARAMETERS
E1 DOUBLE %MD, %KD Double word variable to be
 WORD converted
A1 WORD %OW, %MW Result of conversion, word
 variable
Q BINARY %O, %M Result limited

DESCRIPTION
The value of the double word operand at the input E1 is converted to a word variable
and the result is allocated to the word operand at the output A1.

The result is limited to the maximum or minimum number range.
 Max. number range : +32 767 (7FFFH)
 Min. number range : -32 767 (8001H)

Function block description

ABB France Page C-183 1SBC006099R1001 C - 03/07

If limiting has taken place, a 1 signal is allocated to the binary operand at the output
Q. If no limiting has taken place, a 0 signal is allocated to the binary operand at the
output Q.

If the value of the operand at the input E1 lies outside of the permissible number
range (value 8000 0000H), the converted value is set to -32 767 (8001H).

PACK4 PACK 4 BINARY VARIABLES IN A WORD

FBD IL

PACK4
B0
B1 WORD

CAL PACK4 (B0,B1,B2,B3,WORD)

B2
B3

PARAMETERS
B0...B3 BINARY %I, %M, %O, %K, %S The 4 binary variables to be
 packed;
WORD WORD %OW, %MW Word variable

DESCRIPTION
This function block packs 4 binary variables in one word variable.

B0-B3 BINARY
The binary variables to be packed are specified at the inputs B0...B3.

WORD WORD
The value of each binary variable at the inputs B0...B3 is loaded into the
corresponding bit (bit 0 ... bit 3) of the variable at the output WORD.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
B2 -> bit 2 of the output variable
B3 -> bit 3 of the output variable

Note : The bits 4 to 15 of the output variable are occupied with the value 0.

Function block description

ABB France Page C-184 1SBC006099R1001 C - 03/07

PACK8 PACK 8 BINARY VARIABLES IN A WORD

FBD IL

PACK8

WORD

CAL PACK8 (B0,B1,B2,B3,B4,B5,B6,B7,WORD)

B0
B1
B2
B3
B4
B5
B6
B7

PARAMETERS
B0...B7 BINARY %I, %M, %O, %K, %S The 8 binary variables to be
 packed;
WORD WORD %OW, %MW Word variable

DESCRIPTION
This function block packs 8 binary variables in one word variable.

B0-B3 BINARY
The binary variables to be packed are specified at the inputs B0...B7.

WORD WORD
The value of each binary variable at the inputs B0...B7 is loaded into the
corresponding bit (bit 0 ... bit 7) of the variable at the output WORD.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
. . . .
B7 -> bit 7 of the output variable

Note : The bits 8 to 15 of the output variable are occupied with the value 0.

Function block description

ABB France Page C-185 1SBC006099R1001 C - 03/07

PACK16 PACK 16 BINARY VARIABLES IN A WORD

FBD IL

PACK16

WORD

CAL PACK16 (B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,
B10,B11,B12,B13,B14,B15,WORD)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

PARAMETERS
B0...B15 BINARY %I, %M, %O, %K, %S The 16 binary variables to be
 packed;
WORD WORD %OW, %MW Word variable

DESCRIPTION
This function block packs 16 binary variables in one word variable.

B0-B3 BINARY
The binary variables to be packed are specified at the inputs B0...B15.

WORD WORD
The value of each binary variable at the inputs B0...B15 is loaded into the
corresponding bit (bit 0 ... bit 15) of the variable at the output WORD.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
. . . .
B15 -> bit 15 of the output variable

Function block description

ABB France Page C-186 1SBC006099R1001 C - 03/07

PACKD4 PACK 4 BINARY VARIABLES IN A DOUBLE WORD

FBD IL

PACKD4
B0
B1 DW

CAL PACKD4 (B0,B1,B2,B3,DW)

B2
B3

PARAMETERS
B0...B3 BINARY %I, %M, %O, %K, %S The 4 binary variables to be
 packed;
DW DOUBLE %MD Double word variable
 WORD

DESCRIPTION
This function block packs 4 binary variables in one double word variable.

B0-B3 BINARY
The binary variables to be packed are specified at the inputs B0...B3.

DW DOUBLE WORD
The value of each binary variable at the inputs B0...B3 is loaded into the
corresponding bit (bit 0 ... bit 3) of the variable at the output DW.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
B2 -> bit 2 of the output variable
B3 -> bit 3 of the output variable

Note : The bits 4 to 31 of the output variable are occupied with the value 0.

Function block description

ABB France Page C-187 1SBC006099R1001 C - 03/07

PACKD8 PACK 8 BINARY VARIABLES IN A DOUBLE WORD

FBD IL

PACKD8

DW

CAL PACKD8 (B0,B1,B2,B3,B4,B5,B6,B7,DW)

B0
B1
B2
B3
B4
B5
B6
B7

PARAMETERS
B0...B7 BINARY %I, %M, %O, %K, %S The 8 binary variables to be
 packed;
DW DOUBLE %MD Double word variable
 WORD

DESCRIPTION
This function block packs 8 binary variables in one double word variable.

B0-B7 BINARY
The binary variables to be packed are specified at the inputs B0...B7.

DW DOUBLE WORD
The value of each binary variable at the inputs B0...B7 is loaded into the
corresponding bit (bit 0 ... bit 7) of the variable at the output DW.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
. . . .
B7 -> bit 7 of the output variable

Note : The bits 8 to 31 of the output variable are occupied with the value 0.

Function block description

ABB France Page C-188 1SBC006099R1001 C - 03/07

PACKD16 PACK 16 BINARY VARIABLES IN A DOUBLE WORD

FBD IL

PACKD16

DW

CAL PACKD16 (B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,
B10,B11,B12,B13,B14,B15,DW)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

PARAMETERS
B0...B15 BINARY %I, %M, %O, %K, %S The 16 binary variables to be
 packed;
DW DOUBLE %MD Double word variable
 WORD

DESCRIPTION
This function block packs 16 binary variables in one double word variable.

B0-B15 BINARY
The binary variables to be packed are specified at the inputs B0...B15.

DW DOUBLE WORD
The value of each binary variable at the inputs B0...B15 is loaded into the
corresponding bit (bit 0 ... bit 15) of the variable at the output DW.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
. . . .
B15 -> bit 15 of the output variable

Note : The bits 16 to 31 of the output variable are occupied with the value 0.

Function block description

ABB France Page C-189 1SBC006099R1001 C - 03/07

PACKD24 PACK 24 BINARY VARIABLES IN A DOUBLE WORD

FBD IL

PACKD24

DW

CAL PACKD24 (B0,B1,B2,B3,B4,B5,B6,B7,B8
,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,
B19,B20,B21,B22,B23,DW)B0

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23

PARAMETERS
B0...B23 BINARY %I, %M, %O, %K, %S The 24 binary variables to be
 packed;
DW DOUBLE %MD Double word variable
 WORD

DESCRIPTION
This function block packs 24 binary variables in one double word variable.

B0-B23 BINARY
The binary variables to be packed are specified at the inputs B0...B23.

DW DOUBLE WORD
The value of each binary variable at the inputs B0...B23 is loaded into the
corresponding bit (bit 0 ... bit 23) of the variable at the output DW.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable

Function block description

ABB France Page C-190 1SBC006099R1001 C - 03/07

. . . .
B23 -> bit 23 of the output variable

Note : The bits 24 to 31 of the output variable are occupied with the value 0.

PACKD32 PACK 32 BINARY VARIABLES IN A WORD

FBD IL

PACKD32

DW

CAL PACKD32 (B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,
B11,B12,B13,B14,B15,B16,B17,B18,
B19,B20,B21,B22,B23,B24,B25,B26,
B27,B28,B29,B30,B31,DW)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

PARAMETERS
B0...B31 BINARY %I, %M, %O, %K, %S The 32 binary variables to be
 packed;
DW DOUBLE %MD Double word variable
 WORD

DESCRIPTION
This function block packs 32 binary variables in one double word variable.

Function block description

ABB France Page C-191 1SBC006099R1001 C - 03/07

B0-B31 BINARY
The binary variables to be packed are specified at the inputs B0...B31.

DW DOUBLE WORD
The value of each binary variable at the inputs B0...B31 is loaded into the
corresponding bit (bit 0 ... bit 31) of the variable at the output DW.

Affiliations
B0 -> bit 0 of the output variable
B1 -> bit 1 of the output variable
. . . .
B31 -> bit 31 of the output variable

UNPACK4 UNPACKING A WORD INTO 4 BINARY VARIABLES

FBD IL

UNPACK4
WORD

B0

CAL UNPACK4 (WORD,B0,B1,B2,B3)

B1
B2
B3

PARAMETERS
WORD WORD %IW, %OW, %MW, %KW Word variable to be unpacked
B0...B3 BINARY %O, %M The 4 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the word variable at the input WORD. The bit 0 to bit 4 of
the input variable is allocated to the corresponding output B0...B3.

WORD WORD
The variable to be unpacked is specified at the input WORD. Each bit (bit 0...bit 3) of
this input variable is allocated to the affiliated output variable (B0...B3).

B0-B3 BINARY
The affiliated bits of the variable at the input WORD are allocated to the binary
outputs B0...B3.

Affiliation
Input variable Bit0 -> B0

Function block description

ABB France Page C-192 1SBC006099R1001 C - 03/07

Input variable Bit1 -> B1
Input variable Bit2 -> B2
Input variable Bit3 -> B3

UNPACK8 UNPACKING A WORD INTO 8 BINARY VARIABLES

FBD IL

UNPACK8
WORD

CAL UNPACK8 (WORD,B0,B1,B2,B3,B4,B5,B6,B7)

B0
B1
B2
B3
B4
B5
B6
B7

PARAMETERS
WORD WORD %IW, %OW, %MW, %KW Word variable to be unpacked
B0...B7 BINARY %O, %M The 8 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the word variable at the input WORD. The bit 0 to bit 7 of
the input variable is allocated to the corresponding output B0...B7.

WORD WORD
The variable to be unpacked is specified at the input WORD. Each bit (bit 0...bit 7) of
this input variable is allocated to the affiliated output variable (B0...B7).

B0-B7 BINARY
The affiliated bits of the variable at the input WORD are allocated to the binary
outputs B0...B7.

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
. . .
Input variable Bit7 -> B7

Function block description

ABB France Page C-193 1SBC006099R1001 C - 03/07

UNPACK16 UNPACKING A WORD INTO 16 BINARY VARIABLES

FBD IL

UNPACK16
WORD

CAL UNPACK16 (WORD,B0,B1,B2,B3,B4,B5,B6,B7,
 B8,B9,B10,B11,B12,B13,B14,B15)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9

B10
B11
B12
B13
B14
B15

PARAMETERS
WORD WORD %IW, %OW, %MW, %KW Word variable to be unpacked
B0...B15 BINARY %O, %M The 16 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the word variable at the input WORD. The bit 0 to bit 15
of the input variable is allocated to the corresponding output B0...B15.

WORD WORD
The variable to be unpacked is specified at the input WORD. Each bit (bit 0...bit 15)
of this input variable is allocated to the affiliated output variable (B0...B15).

B0-B15 BINARY
The affiliated bits of the variable at the input WORD are allocated to the binary
outputs B0...B15.

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
. . .
Input variable Bit15 -> B15

Function block description

ABB France Page C-194 1SBC006099R1001 C - 03/07

UNPACKD4 UNPACKING A DOUBLE WORD INTO 4 BINARY
VARIABLES

FBD IL

UNPACKD4
DW

B0

CAL UNPACKD4 (DW,B0,B1,B2,B3)

B1
B2
B3

PARAMETERS
DW DOUBLE %MD Double word variable to be
 WORD unpacked
B0...B3 BINARY %O, %M The 4 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the double word variable at the input DW. The bit 0 to bit
4 of the input variable is allocated to the corresponding output B0...B3.

DW DOUBLE WORD
The variable to be unpacked is specified at the input DW. Each bit (bit 0...bit 3) of this
input variable is allocated to the affiliated output variable (B0...B3).

B0-B3 BINARY
The affiliated bits of the variable at the input DW are allocated to the binary outputs
B0...B3.

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
Input variable Bit2 -> B2
Input variable Bit3 -> B3

Function block description

ABB France Page C-195 1SBC006099R1001 C - 03/07

UNPACKD8 UNPACKING A DOUBLE WORD INTO 8 BINARY
VARIABLES

FBD IL

UNPACKD8
DW

CAL UNPACKD8 (DW,B0,B1,B2,B3,B4,B5,B6,B7)

B0
B1
B2
B3
B4
B5
B6
B7

PARAMETERS
DW DOUBLE %MD Double word variable to be
 WORD unpacked
B0...B7 BINARY %O, %M The 8 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the double word variable at the input DW. The bit 0 to bit
7 of the input variable is allocated to the corresponding output B0...B7.

DW DOUBLE WORD
The variable to be unpacked is specified at the input DW. Each bit (bit 0...bit 7) of this
input variable is allocated to the affiliated output variable (B0...B7).

B0-B7 BINARY
The affiliated bits of the variable at the input DW are allocated to the binary outputs
B0...B7.

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
. . .
Input variable Bit7 -> B7

Function block description

ABB France Page C-196 1SBC006099R1001 C - 03/07

UNPACKD16 UNPACKING A DOUBLE WORD INTO 16 BINARY
VARIABLES

FBD IL

UNPACKD16

 DW

CAL UNPACKD16 (DW,B0,B1,B2,B3,B4,B5,B6,B7,
 B8,B9,B10,B11,B12,B13,B14,B15)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9

B10
B11
B12
B13
B14
B15

PARAMETERS
DW DOUBLE %MD Double word variable to be
 WORD unpacked
B0...B15 BINARY %O, %M The 16 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the word variable at the input DW. The bit 0 to bit 15 of
the input variable is allocated to the corresponding output B0...B15.

DW DOUBLE WORD
The variable to be unpacked is specified at the input DW. Each bit (bit 0...bit 15) of
this input variable is allocated to the affiliated output variable (B0...B15).

B0-B15 BINARY
The affiliated bits of the variable at the input DW are allocated to the binary outputs
B0...B15.

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
. . .
Input variable Bit15 -> B15

Function block description

ABB France Page C-197 1SBC006099R1001 C - 03/07

UNPACKD24 UNPACKING A DOUBLE WORD INTO 24 BINARY
VARIABLES

FBD IL

UNPACKD24

 DW

CAL UNPACKD24 (DW,B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,
 B10,B11,B12,B13,B14,B15,B16,B17,
 B18,B19,B20,B21,B22,B23)

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9

B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23

PARAMETERS
DW DOUBLE %MD Double word variable to be
 WORD unpacked
B0...B23 BINARY %O, %M The 24 binary output variables
 unpacked

DESCRIPTION
This function block unpacks the word variable at the input DW. The bit 0 to bit 23 of
the input variable is allocated to the corresponding output B0...B23.

DW DOUBLE WORD
The variable to be unpacked is specified at the input DW. Each bit (bit 0...bit 23) of
this input variable is allocated to the affiliated output variable (B0...B23).

B0-B23 BINARY
The affiliated bits of the variable at the input DW are allocated to the binary outputs
B0...B23.

Function block description

ABB France Page C-198 1SBC006099R1001 C - 03/07

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
. . .
Input variable Bit23 -> B23

UNPACKD32 UNPACKING A DOUBLE WORD INTO 32 BINARY
VARIABLES

FBD IL

UNPACKD32

 DW

CAL UNPACKD32 (DW,B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,
 B10,B11,B12,B13,B14,B15,B16,B17,
 B18,B19,B20,B21,B22,B23,B24,B25,
 B26,B27,B28,B29,B30,B31)B0

B1
B2
B3
B4
B5
B6
B7
B8
B9

B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

PARAMETERS
DW DOUBLE %MD Double word variable to be
 WORD unpacked
B0...B31 BINARY %O, %M The 32 binary output variables
 unpacked

Function block description

ABB France Page C-199 1SBC006099R1001 C - 03/07

DESCRIPTION
This function block unpacks the word variable at the input DW. The bit 0 to bit 31 of
the input variable is allocated to the corresponding output B0...B31.

DW DOUBLE WORD
The variable to be unpacked is specified at the input DW. Each bit (bit 0...bit 31) of
this input variable is allocated to the affiliated output variable (B0...B31).

B0-B31 BINARY
The affiliated bits of the variable at the input DW are allocated to the binary outputs
B0...B31.

Affiliation
Input variable Bit0 -> B0
Input variable Bit1 -> B1
. . .
Input variable Bit31 -> B31

WDW WORD TO DOUBLE WORD CONVERSION

FBD/LD IL

WDW CAL WDW (E1,A1)

E1 A1

PARAMETERS
E1 WORD %IW, %OW, %MW, %KW Word quantity to be converted
A1 DOUBLE %MD Result of conversion, double
 WORD word quantity

DESCRIPTION
The value of the word operand at the input E1 is converted to a double word quantity
and the result is allocated to the double word operand at the output A1.

Value range for E1 : 8000H < E1 < 7FFFH
 -32768 < E1 < 32767

Function block description

ABB France Page C-200 1SBC006099R1001 C - 03/07

8 Standard double word functions

8.1 Comparison functions, double word

Comparison
functions,
double word

serie

from pages C-200 to C-203

Ctler 40 50 90 30

<D / VKLD Less than, double word x x x
=?D / VGLD Equal, double word x x x
>D / VGRD Greater than, double word x x x

<D LESS THAN, DOUBLE WORD

FBD IL

<D

Z1<

Z2 Q

!BA0
VKLD
Z1<
Z2
Q

PARAMETERS
Z1> DOUBLE

WORD
%MD, %KD Value to be compared

Z2 DOUBLE
WORD

%MD, %KD Comparison value

Q BINARY %O, %M Result of the comparison

DESCRIPTION
The value of the operand at the input Z1< is compared to the value of the operand at
the input Z2.
The state 1 is allocated to the operand at the output Q if the value at Z1< is less than
the one at Z2. The state 0 is allocated to Q if Z1< is equal to or greater than Z2.

Number range
Integer double word (32 Bit)
• low limit : 8000 0000H -2 147 483 648
• high limit : 7FFF FFFFH +2 147 483 647

Function block description

ABB France Page C-201 1SBC006099R1001 C - 03/07

=?D EQUAL, DOUBLE WORD

FBD IL

=?D
Z1=?
Z2 Q

!BA0
VGLD
Z1=?
Z2
Q

PARAMETES
Z1=? DOUBLE WORD %MD, %KD Value to be compared
Z2 DOUBLE WORD %MD, %KD Comparison value
Q BINARY %O, %M Result of the comparison

DESCRIPTION
The value of the operand at the input Z1=? is compared to the value of the operand
at the input Z2. If the vaule at Z1=? is identical to the one at Z2, the state 1 is
allocated to the operand at the output Q. The state 0 is allocated to Q if Z1=? is
unequal to Z2.

Number range
Integer double word (32 Bit)
• low limit : 8000 0000H -2 147 483 648
• high limit : 7FFF FFFFH +2 147 483 647

>D GREATER THAN, DOUBLE WORD

FBD IL

>D
Z1>
Z2 Q

!BA0
VGRD
Z1>
Z2
Q

PARAMETERS
Z1> DOUBLE WORD %MD, %KD Value to be compared
Z2 DOUBLE WORD %MD, %KD Comparison value
Q BINARY %O, %M Result of the comparison

Function block description

ABB France Page C-202 1SBC006099R1001 C - 03/07

DESCRIPTION
The value of the operand at the input Z1> is compared to the value of the operand at
the input Z2.
The state 1 is allocated to the operand at the output Q if the value at Z1> is greater
than the one at Z2. The state 0 is allocated to Q if Z1> is equal to or less than Z2.

Number range
Integer double word (32 Bit)
• low limit : 8000 0000H -2 147 483 648
• high limit : 7FFF FFFFH +2 147 483 647

Function block description

ABB France Page C-203 1SBC006099R1001 C - 03/07

8.2 Arithmetic functions, double word

Arithmetic
functions,
double word

serie

from pages C-203 to C-212

Ctler 40 50 90 30

+D / ADDD Addition, double word x x x
-D / SUBD Subtraction, double word x x x
*D / MULD Multiplication, double word x x x
:D / DIVD Division, double word x x x
=D / ZUWD Allocation, double word x x x
BETRD Absolute value generator, double word x
MUL2ND Double word multiplication by 2 to the

power of N
 x

NEGD Negation, double word x
SQRT Square root x x x

+D ADDITION DOUBLE WORD

FBD IL

+D
E1
E2 A1

Q

!BA0
ADDD
E1
E2
A1
Q

PARAMETERS
E1 DOUBLE WORD %MD, %KD Summand 1
E2 DOUBLE WORD %MD, %KD Summand 2
A1 DOUBLE WORD %MD Total
Q BINARY %O, %M Total, limited

DESCRIPTION
The value of the operand at the input E1 is added to the value of the operand at the
input E2 and the result is allocated to the operand at the output A1.

The result is limited to the maximum or minimum value of the number range. If
limiting has taken place, a 1 signal is allocated to the binary operand at the output Q.
If no limiting has taken place, a 0 signal is allocated to the binary operand at the
output Q.

Number range
Integer, double word (32 bits).

Function block description

ABB France Page C-204 1SBC006099R1001 C - 03/07

The following particularly applies here to the inputs E1 and E2 :
• Low limit : 8000 0000H - 2 147 483 648
• High limit : 7FFF FFFFH +2 147 483 647

The following applies to the output A1 :
• Low limit : 8000 0001H -2 147 483 647
• High limit : 7FFF FFFFH +2 147 483 647

-D SUBTRACTION, DOUBLE WORD

FBD IL

-D
E1
E2 A1

Q

!BA0
SUBD
E1
E2
A1
Q

PARAMETERS
E1 DOUBLE WORD %MD, %KD Minuend
E2 DOUBLE WORD %MD, %KD Subtrahend
A1 DOUBLE WORD %MD Result (difference)
Q BINARY %O, %M Result, limited

DESCRIPTION
The value of the operand at the input E2 is subtracted from the value of the operand
at the input E1 and the result is allocated to the operand at the output A1.

The result is limited to the maximum or minimum value of the number range.
If limiting has taken place, a 1 signal is allocated to the binary operand at the output
Q. If no limiting has taken place, a 0 signal is allocated to the binary operand at the
output Q.

The value of the operand at the input E2 is checked before subtraction to determine
whether or not it lies outside of the permissible number range (8000 0000H). If this is
the case, calculation is done with the value -2 147 483 647 (8000 0001H) instead of
this inadmissible value.

Number range
Integer double word (32 bits).

The following especially applies here to the input E1 :
• Low limit : 8000 0000H - 2 147 483 648.
• High limit : 7FFF FFFFH + 2 147 483 647

Function block description

ABB France Page C-205 1SBC006099R1001 C - 03/07

The following applies to the input E2 and to output A1 :
• Low limit : 8000 0001H - 2 147 483 647
• High limit : 7FFF FFFFH + 2 147 483 647
• Inadmissible value : 8000 0000H

*D MULTIPLICATION, DOUBLE WORD

FBD IL

*D
E1
E2 A1

Q

!BA0
MULD
E1
E2
A1
Q

PARAMETERS
E1 DOUBLE WORD %MD, %KD Multiplicand
E2 DOUBLE WORD %MD, %KD Multiplier
A1 DOUBLE WORD %MD Result (Product)
Q BINARY %O, %M Result limited

DESCRIPTION
The value of the operand at the input E1 is multiplied by the value of the operand at
the input E2 and the result is allocated to the operand at the output A1.

The result is limited to the maximum or minimum value of the number range.
If limiting has taken place, a 1 signal is allocated to the binary operand at the output
Q. If no limiting has taken place, a 0 signal is allocated to the binary operand at the
output Q.

Number range
Integer double word (32 Bits)

The following specially applies here to inputs E1 and E2 :
• Low limit : 8000 0000H -2 147 483 648
• High limit : 7FFF FFFFH +2 147 483 647

The following applies to the output A1 :
• Low limit : 8000 0001H -2 147 483 647
• High limit : 7FFF FFFFH +2 147 483 647

Function block description

ABB France Page C-206 1SBC006099R1001 C - 03/07

:D DIVISION, DOUBLE WORD

FBD IL

:D
E1
E2

Q

A1
REST

!BA0
DIVD
E1
E2
A1
REST
Q

PARAMETERS
E1 DOUBLE WORD %MD, %KD Dividend
E2 DOUBLE WORD %MD, %KD Divisor
A1 DOUBLE WORD %MD Result (quotient)
REST DOUBLE WORD %MD Rest
Q BINARY %O, %M Result limited

DESCRIPTION
The value of the operand at the input E1 is divided by the value of the operand at the
input E2 and the result is allocated to the operand at the output A1, the remainder
being allocated to the operand at the output REST.

If a remainder is produced, the result will always be rounded down.

If the result lies outside of the permissible number range, it will be limited to the
maximum or minimum value of the number range.
If limiting has taken place, a 1 signal is allocated to the binary operand at the output
Q and the value 0 is allocated to the output REST. If no limiting has taken place, a 0
signal is allocated to the binary operand at the output Q.

Division by “zero” is therfore also signalled at the binary output Q.

Remainder handling
If division results in a remainder, this is available at the double word output REST.
The result of division is always rounded down if a remainder occurs.
Example : 3 : 3 = 1 Remainder 0
 4 : 3 = 1 Remainder 1
 5 : 3 = 1 Remainder 2
 6 : 3 = 2 Remainder 0

As the remainder is available at the output REST, the user can compare this to the
divisor and can round the result at the output A1 to suit his own requirements.
Example : Remainder > divisor/2 -> round up the result at A1.

Function block description

ABB France Page C-207 1SBC006099R1001 C - 03/07

Division by ”zero”
If the divisor has the value “zero”, the positive or negative limit of the number range is
allocated to the output A1.
The following applies to division by “zero” :
A1 = -2 147 483 647 (8000 0001H) if the dividend is negative.
A1 = +2 147 483 647 (7FFF FFFFH) if the dividend is positive.
REST = 0 Output for the remainder
Q = 1 Output to signal that the value at the output A1 has been limited

Invalid result value
If the invalid value 8000 0000H is the result of division, this will be corrected to the
permissible limit 8000 0001H (-2 147 483 647), the binary output Q will be set to the
value 1 and the output REST will be set to the value 0.

Number range
Integer double word (32 bits)

Here, the following particularly applies to the inputs E1 and E2 :
• Low limit : 8000 0000H -2 147 483 648
• High limit : 7FFF FFFFH +2 147 483 647

The following applies to the outputs A1 and REST :
• Low limit : 8000 0001H -2 147 483 647
• High limit : 7FFF FFFFH +2 147 483 647

Caution : the limit of E2 for 40&50 serie is –32767, +32767

=D ALLOCATION, DOUBLE WORD

FBD IL

=D
E1 A1

!BA0
ZUWD
E1
A1

PARAMETERS
E1 DOUBLE WORD %MD, %KD Source
A1 DOUBLE WORD %MD Target

Function block description

ABB France Page C-208 1SBC006099R1001 C - 03/07

DESCRIPTION
The value of the operand at the input E1 is allocated to the operand at the output A1.

If the inadmissible value 8000 0000H should appear at the input for any particular
reason, the permissible value 8000 0001H (-2 147 483 647) will be allocated to the
output A1. Therefore, the inadmissible value will be corrected.

Number range
Integer double word (32 bits)

• Low limit : 8000 0001H -2 147 483 647
• High limit : 7FFF FFFFH +2 147 483 647
• Inadmissible value : 8000 0000H ---

BETRD ABSOLUTE VALUE GENERATOR, DOUBLE WORD

FBD IL

BETRD

E1 A1

CAL BETRD (E1,A1)

PARAMETERS
E1 DOUBLE WORD %MD, %KD Input value
A1 DOUBLE WORD %MD Absolute value of the input
 value

DESCRIPTION
The absolute value of the operand at the input E1 is generated and the result is
allocated to the operand at the output A1.

If, for any particular reason, the invalid value 8000 0000H (-2 147 483 648) is present
at the input E1, the value 7FFF FFFFH (+2 147 483 697) is allocated to the output
A1. Therefore, the invalid value 8000 0000H is first of all corrected to the valid value
8000 0001H and only then the absolute value is generated.

Number range
Integer double word (32 bits)
• low limit : 8000 0001H -2 147 483 647
• high limit : 7FFF FFFFH +2 147 483 647
• invalid value : 8000 0000H ---

Function block description

ABB France Page C-209 1SBC006099R1001 C - 03/07

MUL2ND DOUBLE WORD MULTIPLICATION BY 2 TO THE POWER
OF N

FBD IL

MUL2ND
E1
N A1

CAL MUL2ND (E1,N,A1)

PARAMETERS
E1 DOUBLE %MD, %KD Input operand
 WORD
N WORD %IW, %OW, %MW, %KW Quantity
A1 DOUBLE %MD Result
 WORD

DESCRIPTION
The value of the operand at the input E1 is shifted N times and bit-by-bit.
If the value at the input N is positive, shifting takes place to the left. For each shift by
1 bit position, this corresponds to multiplying the current value by 2.
If the value at the input N is negative, shifting takes place to the right. For each shift,
this corresponds to division of the current value by 2.
The result is allocated to the operand at the output A1.

Meaningful range for N : -30 < N < +30
If N = 0, the value at the input E1 is passed directly to the output A1.

Sign of the value at the input E1 :
The sign of the value E1 is not influenced by the shift operation. That is to say, the
sign of the output value is always identical to that of the input value.

Left shifting (Multiplication) :
When the value at the input is shifted to the left, the bit 0 released in each case is
filled up with 0. The sign bit (bit 31) is not changed because setting to the limit of the
number range takes place beforehand.

Limiting of the value at the output A1 during left shifting :

• The following applies to positive values at the input E1 :
If bit 30 is assigned a “1” and if shift operations still have to be carried out as the
result of the value at the input N, these will no longer be executed. Instead, the output
will be set to the limit of the postivie number range. That is to say, the limit has been
reached in any case at the latest after shifting 30 times.
Output A1 = +2 147 483 647 (7FFF FFFFH).

Function block description

ABB France Page C-210 1SBC006099R1001 C - 03/07

• The following applies to negative values at the input E1 :
If bit 30 is assigned a “0” and if shift operations still have to be carried out as the
result of the value at the input N, these will no longer be executed. Instead, the output
will be set to the limit of the postivie number range. That is to say, the limit has been
reached in any case at the latest after shifting 30 times.
Output A1 = -2 147 483 647 (8000 0001H).

Shifting to the right (division) :
When shifting to the right, each bit is moved to the right by one position. At the same
time, the sign bit (bit 31) always retains its value. The bit released (bit 30) is filled up
with the value of the sign bit in each case.

Limiting of the value at the output when shifting to the right :

• The following applies to positive values at the input :
If now only bit 0 has a “1” and if shift operations still have to be executed as the result
of the value at the input N, the output will be set to the value 0. That is to say, the
value 0 is reached in any case at the latest after shifting 30 times.
Output A1 = 0.

• The following applies to negative values at the input E1 :
If bits 0...31 have a “1” as the result of shifting, the limit (-1) has been reached.
Further shifts have no effect. That is to say, the value -1 has been reached in any
case at the latest after shifting 31 times.
Output A1 = -1 (FFFF FFFFH).

Examples
1. Input value E1 = 58350926 (37A5D4EH)
 Exponent N = 4 --> 4 * Left shift

0011

31 0 Bit

37A5D4EH

37A5D4E0H
(9336148160111 1010 0101 1101 0100 1110 0000

0000 0011 0111 1010 0101 1101 0100 1110

2. Input value E1 = 326786382 (137A5D4EH)
 Exponent N = - 4 --> 4 * Right shift

0000

31 0 Bit

137A5D4EH

0137A5D4H
(204241480001 0011 0111 1010 0101 1101 0100

0001 0011 0111 1010 0101 1101 0100 1110

Function block description

ABB France Page C-211 1SBC006099R1001 C - 03/07

3. Input value E1 = -326786382 (EC85A2B2H)
 Exponent N = - 4 --> 4 * Right shift

1111

31 0 Bit

EC85A2B2H

FEC85A2BH
(-1110 1100 1000 0101 1010 0010 1011

1110 1100 1000 0101 1010 0010 1011 0010

NEGD NEGATION, DOUBLE WORD

FBD IL

NEGD
E1 A1

CAL NEGD (E1,A1)

PARAMETERS
E1 DOUBLE WORD %MD, %KD Input value
A1 DOUBLE WORD %MD Negated value

DESCRIPTION
The value of the operand at the input E1 is negated and the result is allocated to the
operand at the output A1.

If the inadmissible value 8000 0000H (-2 147 483 648) is present at the input E1, the
value 7FFF FFFFH (+2 147 483 647) is allocated to the output A1. Therefore, the
inadmissible value is replaced by the admissible value 8000 0001H (-2 147 483 647)
before negation.

Number range
Integer double word (32 Bit).

• Low limit : 8000 0001H -2 147 483 647
• High limit : 7FFF FFFFH +2 147 483 647
• Inadmissible value : 8000 0000H

SQRT SQUARE ROOT

Please refer to the description of the SQRT function block from the chapter :
"2.5. Arithmetic functions, word".

Function block description

ABB France Page C-212 1SBC006099R1001 C - 03/07

8.3 Logical functions, double word

Logical
functions,
double word

serie

from pages C-212 to C-216

Ctler 40 50 90 30

DWAND AND combination, double word x x x
DWOR OR combination, double word x x x
DWXOR Exclusive OR combination, double word x x x
MASKED Mask, double word x
SHIFT Shift block x

DWAND AND COMBINATION, DOUBLE WORD

FBD IL

DWAND
E1
E2 A1

CAL DWAND (E1,E2,A1)

PARAMETERS
E1 DOUBLE WORD %MD, %KD Operand 1
E2 DOUBLE WORD %MD, %KD Operand 2
A1 DOUBLE WORD %MD Result of the AND combination

DESCRIPTION
This function block generates the bit-by-bit AND combination of the operands present
at the inputs E1 and E2. The result is allocated to the operand at the output A1.

1.0.0.0 0.0.1.1 0.0.1.0 0.1.1.0

1.0.0.1 0.1.1.0 0.0.1.0 1.1.1.1

1.0.0.0 0.0.1.0 0.0.1.0 0.1.1.0

E1

E2

A1

1.0.1.0 1.1.0.0 0.0.1.1 0.1.0.1

1.1.1.1 0.0.0.0 0.1.1.0 1.1.0.0

1.0.1.0 0.0.0.0 0.0.1.0 0.1.0.0

Example

Function block description

ABB France Page C-213 1SBC006099R1001 C - 03/07

DWOR OR COMBINATION, DOUBLE WORD

FBD IL

DWOR

E1
E2 A1

CAL DWOR (E1,E2,A1)

PARAMETERS
E1 DOUBLE WORD %MD, %KD Operand 1
E2 DOUBLE WORD %MD, %KD Operand 2
A1 DOUBLE WORD %MD Result of the OR combination

DESCRIPTION
This function block generates the bit-by-bit OR combination of the operands present
at the inputs E1 and E2. The result is allocated to the operand at the output A1.

1.0.0.0 0.0.1.1 0.0.1.0 0.1.1.0

1.0.0.1 0.1.1.0 0.0.1.0 1.1.1.1

1.0.0.1 0.1.1.1 0.0.1.0 1.1.1.1

E1

E2

A1

1.0.1.0 1.1.0.0 0.0.1.1 0.1.0.1

1.1.1.1 0.0.0.0 0.1.1.0 1.1.0.0

1.1.1.1 1.1.0.0 0.1.1.1 1.1.0.1

Example

DWXOR EXCLUSIVE OR COMBINATION, DOUBLE WORD

FBD IL

DWXOR
E1
E2 A1

CAL DWXOR (E1,E2,A1)

Function block description

ABB France Page C-214 1SBC006099R1001 C - 03/07

PARAMETERS
E1 DOUBLE WORD %MD, %KD Operand 1
E2 DOUBLE WORD %MD, %KD Operand 2
A1 DOUBLE WORD %MD Result of the XOR combination

DESCRIPTION
This function block generates the bit-by-bit XOR combination of the operands present
at the inputs E1 and E2. The result is allocated to the operand at the output A1.

1.0.0.0 0.0.1.1 0.0.1.0 0.1.1.0

1.0.0.1 0.1.1.0 0.0.1.0 1.1.1.1

0.0.0.1 0.1.0.1 0.0.0.0 1.0.0.1

E1

E2

A1

1.0.1.0 1.1.0.0 0.0.1.1 0.1.0.1

1.1.1.1 0.0.0.0 0.1.1.0 1.1.0.0

0.1.0.1 1.1.0.0 0.1.0.1 1.0.0.1

Example

MASKED MASK, DOUBLE WORD

FBD/LD IL

MASKED
E1
MASK

KEIN
ALLE

CAL MASKED (E1,MASK,ALLE,KEIN)

PARAMETERS
E1 DOUBLE WORD %MD, %KD Input value
MASK DOUBLE WORD %MD, %KD Mask
ALLE BINARY %O, %M All bits agree
KEIN BINARY %O, %M No bit agrees

DESCRIPTION
The individual bits of the operand at the input E1 are compared to the bits of the
operand at the input MASK. The result of the comparison is signalled at the outputs
ALLE and KEIN.

Function block description

ABB France Page C-215 1SBC006099R1001 C - 03/07

If at least all bits, which are set on the operand at the input MASK, are set on the
operand at the input E1, the following applies to the outputs : ALLE = 1
 KEIN = 0
If none of the bits, which are set on the operand at the input MASK, are set on the
operand at the input E1, the following applies to the outputs : ALLE = 0
 KEIN = 1
If only some of the bits, which are set on the operand at the input MASK, are set on
the operand at the input E1, the following applies to the outputs : ALLE = 0
 KEIN = 0

E1 X1111XX11XXXX11X

X0000XX00XXXX00X

X1011XX10XXXX11X

MASK 0111100110000110

0111100110000110

0111100110000110

ALLE = 1
KEIN = 0

:
:

Example

E1
MASK

ALLE
KEIN

:
:

E1
MASK

ALLE
KEIN

:
:

= 0
= 1

= 0
= 0

X1XXXXX1XXX1XXXX
0100000100010000

X0XXXXX0XXX0XXXX
0100000100010000

X1XXXXX0XXX1XXXX
0100000100010000

X : These bits may have any values (don’t care).

SHIFT SHIFT BLOCK

Please refer you to the description of the SHIFT function block from the chapter :
"2.6. Logical functions, word".

Function block description

ABB France Page C-216 1SBC006099R1001 C - 03/07

9 High order functions

High order
functions

serie
from pages C-216 to C-291

Ctler 40 50 90 30

ADRWA Address selection x
AMELD Analog value change annonciator x
AMELDD Analog value change annonciator,

double word
 x

ANAI4_20 Read analog value 4...20 mA (07KT92) x
AWM Selection multiplexer x
AWT Selection gate, word x x x x
AWTB Binary selection gate x x x x
AWTD Selection gate, double word x
BEG Limiter x x x x
BEGD Limiter, double word x
BITSU Bit searcher x
BMELD Binary value change annunciator x x x
DMUX Demultiplexer x
DMUXD Demultiplexer, double word x
DWUMC Double word decoder x
FEHSU Error searcher with automatic deletion x
FIFO Stack, first-in / first-out x
FKG Function generator x x x
HLG Ramp function generator x
IDLB Read binary variable, indexed x x x
IDLm / IDL Read word variable, indexed x x x x
IDSB Write binary variable, indexed x x x
IDSm / IDS Write word variable, indexed x x x x
INITS Initialize memory area in the operand

memory with zero
 x

INITV Initialize variables x
LDT Illumination pushbutton control x
LIFO Stack, last-in / first-out x
LIZU List allocator x x x x
MAX Maximum value generator x x x x
MAXD Maximum value generator, double word x
MAZ Maximum value generator as a function

of time
 x

MAZD Maximum value generator as a function
of time, double word

 x

MIN Minimum value generator x x x x
MIND Minimum value generator, double word x
MUXR Multiplexer with reset x
MUXRD Multiplexer with reset, double word x
NPULSE Pulses generator x x
SFEHSU Error searcher with storage x
UHR Clock x x x x
USM Switchover multiplexer x

Function block description

ABB France Page C-217 1SBC006099R1001 C - 03/07

UST Switchover gate x
USTD Switchover, double word x
USTR Switchover gate with reset x
USTRD Switchover with reset, double word x
WDEC Word decoder x
WUMC Word recoder x

ADRWA ADDRESS SELECTION

FBD IL

ADRWA
E
EC/AT

ADR
E=EC

!BA 0
 ADRWA

E
#n
EC/AT
E=EC
ADR

PARAMETERS
E WORD %IW, %OW, %MW, %KW Input value
#n DIRECT #, #H Quantity EC or AT
 CONSTANT
EC/AT WORD %IW, %OW, %MW, %KW Input code/output table;
 capable of duplication
E=EC BINARY %O, %M Input value = input code
ADR WORD %OW, %MW indirect address

DESCRIPTION
This block generates indirect addresses at the output ADR.

Definition : An indirect address is an operand whose value is the address of another
operand.

E WORD
Input value to be compared with the input codes.

EC/AT WORD
The input EC/AT can be duplicated. The input codes for the comparison with the
input E are specified at the inputs EC/AT0...EC/ATn-1 The output table of operands
whose indirect addresses are to be generated are specified at the inputs EC/ATn ...
EC/AT2n-1.

The block compares the value at the input E successively against the values at the
inputs EC/AT0 ... EC/ATn-1. The comparison is restarted each time the block is
called, i.e. it begins with the input EC/AT0.

Function block description

ABB France Page C-218 1SBC006099R1001 C - 03/07

If the value at the input E agrees with one of the values at the inputs
EC/AT0...EC/ATn-1:
- The output E=EC is set to 1 (hit),
- The allocated operand is selected from the inputs EC/ATn ... EC/AT2n-1

If the value at the input E does not agree with one of the values at the inputs
EC/AT0...EC/ATn-1:
- The output E=EC is set to 0 (no hit)
- no operand is selected from the output table EC/ATn ... EC/AT2n-1 and accordingly
no indirect address is generated either.

Convention for allocation between EC/AT0...EC/ATn-1 and EC/ATn ... EC/AT2n-1:
 EC/AT0 -> EC/ATn
 EC/AT1 -> EC/ATn+1
 . .
 EC/ATn-1 -> EC/AT2n-1

#n DIRECT CONSTANT
Only used in IL. The number of input codes EC/AT0...EC/ATn-1 is specified at the
input #n. It is specified as a direct constant.

Example: EC/AT0, ..., EC/AT5 are planned
-> input codes = EC/AT0, ..., EC/AT2 and output table = EC/AT0, ..., EC/AT5
-> #n = 3.

E=EC BINARY
The output E=EC indicates whether or not the value at the input E agrees with one of
the values at the inputs EC/AT0...EC/ATn-1.
E=EC = 0 -> No agreement
E=EC = 1 -> The value at the input E agrees with one of the values at the
 inputs EC/AT0...EC/ATn-1.

ADR WORD
The operand specified at the ADR output is the indirect address of the operand
selected from the output table EC/ATn ... EC/AT2n-1. The address of the operand
selected from the output table is therefore allocating as a value to the operand
specified at the ADR output.
If no agreement between the input E and the inputs EC/AT0...EC/ATn-1 is
determined during comparison, no value is allocated to the ADR output. In that case,
the ADR output is not updated.

Reading/writing operands indirectly
The function blocks AWM or USM use the indirect address generated by the block
ADRWA in order to read or write the operand selected with the block ADRWA.
Therefore, the block ADRWA and the block AWM or USM is needed to read or write
operands indirectly. To do this, the operands to be read or written are listed at the

Function block description

ABB France Page C-219 1SBC006099R1001 C - 03/07

inputs EC/ATn ... EC/AT2n-1 of the ADRWA block and the read or write access is
then performed by the AWM or USM block.

Advantages of indirect addressing :
- In suitable applications, the PLC program is simplified substantially, thus reducing
the planning effort.
- Access to any number of operands (multiplex function) is achieved with only one
block (AWM or USM). In this process, the ADRWA block represents a powerful tool
with which the operands to be accessed can be selected in a very flexible manner.

ADRWA
E
EC/AT0
EC/AT1
EC/AT2

ADR
E= EC

Example: Indirect reading of the flag %MW 3,2

EC/AT3
EC/AT4
EC/AT5

AWM

Indirect address
of %MW 3,2

ADR
A

%MW 3,2 is
selected

The value of the
f lag %MW 3,2
read by indirect
addressing and
is output
through the
output A

ADRWA
E
EC/AT0
EC/AT1
EC/AT2

ADR
E= EC

EC/AT3
EC/AT4
EC/AT5

USM

ADRIndirect address
of %MW 4,5

%MW 4,5
selected

Example: Indirect writing of the flag %MW 4,5

%MW 3,1
%MW 3,2
%MW 4,5

%MW 3,1
%MW 3,2
%MW 4,5

E
Value to be
allocated to
%MW 4,5

The value at
the input E is
allocated to
the f lag %MW 4,5
by means
of indirect
addressing

->
Value of
%MW 3,2

->

Function block description

ABB France Page C-220 1SBC006099R1001 C - 03/07

AMELD ANALOG VALUE CHANGE ANNUNCIATOR

FBD IL

AMELD
FREI
R
E

ÄND

NR
A

!BA
AMELD

0

FREI
R
#n
E

ÄND

NR
A

PARAMETERS
FREI BINARY %O, %I, %M, %S, %K Block enabling
R BINARY %O, %I, %M, %S, %K Reset
#n DIRECT #, #H Number of input values
 CONSTANT
E WORD %IW, %OW, %MW, %KW Input values, duplicable
NR WORD %OW, %MW Number of the input value
A WORD %OW, %MW Current input value
ÄND BINARY %O, %M Change detected

DESCRIPTION
This function block monitors the change of the analog values present at the inputs E
(#E0 ... #En-1).

Recognition of a change
Each time the block is processed, the current input values at the inputs E0...En-1 are
successively compared against the historical values (input values from the previous
processing of the block). If a change is recognized at one of the inputs E0...En-1 :
- this is indicated at the ÄND output
- the number of the input where the change was recognized is output through the NR
output
- the changing input value is output through the A output
Each time the block is processed, a change at one input only is recognized. If a
change is recognized, the inputs following the one where the change was previously
discovered are monitored the next time the block is processed.

Initialization of historical values
The first time the block is processed after PLC initialization (FREI = 1) or enabling of
processing after it had been disabled (FREI changes from 0 to 1), all current input
values are assumed once as historical values and all outputs are set to the value 0.
These initialized historical values now represent the starting basis for recognition of
changes.

FREI BINARY

Function block description

ABB France Page C-221 1SBC006099R1001 C - 03/07

Processing of the block is enabled with the FREI input.
FREI = 0 -> Block is not processed
FREI = 1 -> Processing of the block is enabled
If FREI = 0, the outputs of the block are also no longer updated.

R BINARY
The block can be reset with the R input.
R = 0 -> No reset
R = 1 -> Reset of the block
Reset signifies :
- Adoption of the current values at the inputs E0...En-1 as historical values.
- All outputs are set to the value 0

#n DIRECT CONSTANT
ONLY in IL language
The number of values to be monitored at the inputs E0...En-1 is specified at the input
#n. The number is specified as a direct constant.
Range for #n : 1 < #n < 127

E WORD
The input E can be duplicated (E0...En-1).
The operands to be monitored for a change are specified at the inputs E.

NR WORD
The serial number of the input E0...En-1 where a change has been discovered is
output through the output NR.
If no output change is discovered during processing of the block, the number of the
input changing last is still output through the output NR.
The following affiliations apply :
Change discovered at E0 -> NR = 0
Change discovered at E1 -> NR = 1
Change discovered at En-1 -> NR = n-1

A WORD
If a change is discovered at one of the inputs E0...En-1, the changing input value is
allocated to the output A.
If no change is discovered at the inputs E0...En-1 during processing of the block, the
value of the input changing last is still output through the output A.

ÄND BINARY
The output ÄND indicates whether or not a change has been discovered at the inputs
E0...En-1.
ÄND = 0 -> No change discovered
ÄND = 1 -> Change discovered

Function block description

ABB France Page C-222 1SBC006099R1001 C - 03/07

AMELDD ANALOG VALUE CHANGE ANNUNCIATOR DOUBLE
WORD

FBD IL

AMELDD
FREI
R
E

ÄND

NR
A

!BA
AMELDD

0

FREI
R
#n
E

ÄND

NR
A

PARAMETERS
FREI BINARY %O, %I, %M, %S, %K Block enable
R BINARY %O, %I, %M, %S, %K Reset
#n DIRECT #, #H Number of input values
 CONSTANT
E DOUBLE %MD, %KD Input values; duplicable
 WORD
NR WORD %OW, %MW Number of the input value
A DOUBLE %MD Current input value
 WORD
ÄND BINARY %O, %M Change detected

DESCRIPTION
This function block monitors the change of the analog values present at the inputs E
(#E0 ... #En-1).

Recognition of a change
Each time the block is processed, the current input values at the inputs E0...En-1 are
successively compared against the historical values (input values from the previous
processing of the block). If a change is recognized at one of the inputs E0...En-1 :
- this is indicated at the ÄND output
- the number of the input where the change was recognized is output through the NR
output
- the changing input value is output through the A output
Each time the block is processed, a change at one input only is recognized. If a
change is recognized, the inputs following the one where the change was previously
discovered are monitored the next time the block is processed.

Initialization of historical values
The first time the block is processed after PLC initialization (FREI = 1) or enabling of
processing after it had been disabled (FREI changes from 0 to 1), all current input
values are assumed once as historical values and all outputs are set to the value 0.

Function block description

ABB France Page C-223 1SBC006099R1001 C - 03/07

These initialized historical values now represent the starting basis for re–cognition of
changes.

FREI BINARY
Processing of the block is enabled with the FREI input.
FREI = 0 -> Block is not processed
FREI = 1 -> Processing of the block is enabled
If FREI = 0, the outputs of the block are also no longer updated.

R BINARY
The block can be reset with the R input.
R = 0 -> No reset
R = 1 -> Reset of the block
Reset signifies :
- Adoption of the current values at the inputs E0...En-1 as historical values.
- All outputs are set to the value 0.

#n DIRECT CONSTANT
ONLY used in IL language
The number of values to be monitored at the inputs E0...En-1 are specified at input
#n. Range for #n : 1 < #n < #63

E DOUBLE WORD
The input E can be duplicated (E0...En-1).
The operands to be monitored for a change are specified at the inputs E0...En-1.

NR WORD
The serial number of the input E0...En-1 where a change has been discovered is
output through the output NR.
If no change is discovered during processing of the block the number of the input
changing last is still output through the output NR.
The following affiliations apply :
Change discovered at E0 -> NR = 0
Change discovered at E1 -> NR = 1
Change discovered at En-1 -> NR = n-1

A DOUBLE WORD
If a change is discovered at one of the inputs E0...En-1, the changing input value is
allocated to the output A.
If no change is discovered at the inputs E0...En-1 during processing of the block, the
value of the input changing last is still output through the output A.

ÄND BINARY
The output ÄND indicates whether or not a change has been discovered at the inputs
E0...En-1.
ÄND = 0 -> No change discovered
ÄND = 1 -> Change discovered

Function block description

ABB France Page C-224 1SBC006099R1001 C - 03/07

ANAI4_20 READ ANALOG VALUE 4...20 mA (07 KT 92)

see CE-IL in the

FBD IL

ANAI4_20

EW AW
ERR

software

PARAMETERS
EW WORD %IW, %MW Direct analog input
AW WORD %MW, %OW Word variable, to which the
 result of the evaluation is
 assigned (0...32760 <-> 4...20
 mA)
ERR BINARY %M, %O Output open–circuit monitoring
 (1 = open circuit)

DESCRIPTION
The connection element ANAI4_20 is intended for reading current values of a 4...20
mA range. It is used with the direct analog inputs IW06,00...IW06,03 of the central
unit 07 KT 92. The input range of 4...20 mA is converted into an internal numerical
range of 0...32760. There is also an open–circuit monitoring.

The analog inputs, for which the connection element ANAI4_20 is used, have to be
configured as current inputs. A separate connection element ANAI4_20 is required
for each 4...20 mA current input.

The analog inputs are designed for currents of 0...20 mA. The analog input words
IW06,00...IW06,03 generate values of a 0...32760 range corresponding to 0...20 mA.

The connection element ANAI4_20 transforms the numerical range at EW of
6552...32760 (4...20 mA) into a numerical range of 0...32760 at AW.
One step of the output value AW then amounts to 10 (4,883 mA). An input value at
EW which is lower than 6552 (4 mA) leads to an output value at AW of 0.

EW WORD Direct analog input
The input EW is assigned to the analog input to be read.

AW WORD Analog value in internal representation
The word output AW provides the analog signal converted into the internal numerical
range. In case of an open-circuit, the output is set to 0. The diagram 1 shows the
relationship between the input current at the direct analog input and the output value
at AW.

Function block description

ABB France Page C-225 1SBC006099R1001 C - 03/07

ERR BINARY Open–circuit monitoring
The binary output ERR indicates a signal 1 if the connection element ANAI4_20 has
detected an open–circuit. If the input current of an analog input of the 07 KT 92 is
lower than 3.6 mA, the open–circuit monitoring assumes an open–circuit (see
diagram 2). AW is set to 0, if an open–circuit is detected.

0 4 10 15 20
Input current / mA

0

32760

24570

16380

8190

Numerical
value at AW

0

1Open-circuit
ERR

3.6

0 4 10 15 20
Input current / mA

Diagram 1: Relationship between the input current at the direct analog input and the output value AW

Diagram 2: The output ERR indicates an open-circuit signal if the input current is lower than 3.6 mA

AWM SELECTION MULTIPLEXER

FBD IL

AWM

ADR A

CAL AWM (ADR,A)

PARAMETERS
ADR WORD %IW, %OW, %MW, %KW Indirect address of the operand
 to be read
A WORD %OW, %MW Value of the operand read

DESCRIPTION
This function block reads the value of an operand, using the method of indirect
addressing. The value read is allocated to the output A

Function block description

ABB France Page C-226 1SBC006099R1001 C - 03/07

Note : The AWM block can only be used meaningfully in conjunction with the ADRWA
block.
The value of the operand at the input ADR is interpreted as an address of the
operand to be read (indirect addressing). Therefore, the operand at the input ADR
represents an indirect address together with its value. This indirect address is
generated by the ADRWA function block.

Note : An explanation of the indirect addressing method and the possibilities of using
the AWM function block are described in the section dealing with the ADRWA
function block.

AWT SELECTION GATE, WORD

FBD IL

AWT
0/1
0
1 A1

CAL AWT (0/1,0,1,A1)

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input
0 WORD %IW, %MW, %OW, %KW Word input for 0/1 = 0
1 WORD %IW, %MW, %OW, %KW Word input for 0/1 = 1
A1 WORD %OW, %MW Word output

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the value of the word operand at the input
0 to the word operand at the output A1.

A 1 signal at the binary input 0/1 allocates the value of the word operand at the input
1 to the word operand at the output A1.

AWTB BINARY SELECTION GATE

FBD IL

AWTB
0/1
0
1 A1

CAL AWTB (0/1,0,1,A1)

Function block description

ABB France Page C-227 1SBC006099R1001 C - 03/07

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input
0 BINARY %I, %M, %O, %S, %K Binary input for 0/1 = 0
1 BINARY %I, %M, %O, %S, %K Binary input for 0/1 = 1
A1 BINARY %O, %M Binary output

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the status of the operand at the input 0 to
the operand at the output A1.

A 1 signal at the binary input 0/1 allocates the status of the operand at the input 1 to
the operand at the output A1.

AWTD SELECTION GATE, DOUBLE WORD

FBD IL

AWTD
0/1
0
1 A1

CAL AWTD (0/1,0,1,A1)

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input
0 DOUBLE %MD, %KD Double word input for 0/1 = 0
 WORD
1 DOUBLE %MD, %KD Double word input for 0/1 = 1
 WORD
A1 DOUBLE %MD Double word output
 WORD

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the value of the double word operand at
the input 0 to the double word operand at the output A1.

A 1 signal at the binary input 0/1 allocates the value of the double word operand at
the input 1 to the double word operand at the output A1.

Function block description

ABB France Page C-228 1SBC006099R1001 C - 03/07

BEG LIMITER

FBD IL

BEG
E1
OG
UG A1

CAL BEG (E1,OG,UG,A1)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input value
OG WORD %IW, %MW, %OW, %KW High limit
UG WORD %IW, %MW, %OW, %KW Low limit
A1 WORD %OW, %MW Limited value

DESCRIPTION
The value of the operand at the input E1 is limited to the range between the high and
low limits.
The high limit is specified by the operand at the OG input and the low limit is specified
by the one at the UG input.

The following applies : A1 = UG for E1 < UG
 A1 = E1 for UG < E1 < OG
 A1 = OG for E1 > OG

A1

E1

OG

UG

OG
UG

Function block description

ABB France Page C-229 1SBC006099R1001 C - 03/07

BEGD LIMITER, DOUBLE WORD

FBD IL

BEGD
E1
OG
UG A1

CAL BEGD (E1,OG,UG,A1)

PARAMETERS
E1 DOUBLE WORD %MD, Input value
OG DOUBLE WORD %MD, %KD High limit
UG DOUBLE WORD %MD, %KD Low limit
A1 DOUBLE WORD %MD Limited value

DESCRIPTION
The value of the operand at the input E1 is limited to the range between the high and
low limits.
The high limit is specified by the operand at the OG input and the low limit is specified
by the one at the UG input.

The following applies : A1 = UG for E1 < UG
 A1 = E1 for UG < E1 < OG
 A1 = OG for E1 > OG

A1

E1

OG

UG

OG
UG

Function block description

ABB France Page C-230 1SBC006099R1001 C - 03/07

BITSU BIT SEARCHER

FBD IL

BITSU
R
R/V
#ANZ
ANF
BIT

NR
POS

END

CAL BITSU (R,R/V,#ANZ,ANF,BIT,END,NR,POS)

PARAMETERS
R BINARY %O, %I, %M, %S, %K Reset of the block and new
 search
R/V BINARY %O, %I, %M, %S, %K Search direction, up/down
#ANZ DIRECT #, #H Field length, number of word
 CONSTANT operands
ANF WORD %IW, %OW, %MW, %KW Field start, 1st word operand
BIT WORD %IW, %OW, %MW, %KW Number of set bits to be
 skipped
END BINARY %O, %M Field end reached
NR WORD %OW, %MW Number of the word operand
 containing the set bit
POS WORD %OW, %MW Bit position within the word
 operand

DESCRIPTION
This function block searches through a bit field for a set bit. The bit field consists of
successive word operands. If a set bit is found, this is indicated at the block’s outputs.

The first word operand in the bit field is specified at the input ANF. After the start of
the PLC program (1st program cycle), the block sets all outputs to the value 0 and
immediately begins searching for set bits. Therefore, the search is already active in
the first program cycle. If the block finds a set bit, its position is indicated at the
block’s outputs and the search is ended. The next time the block is called in the next
program cycle, it continues the search, doing so at the bit position directly following
the bit found last. If the end of the bit field is reached during the search, this is
indicated at the output END and a new search can be started again by means of a
reset signal. The new search again begins at the start of the bit field.

R BINARY
The input R serves to reset the block and start a new search from the beginning of
the bit field.
R = 0 -> No reset
R = 1 -> Reset is triggered

Function block description

ABB France Page C-231 1SBC006099R1001 C - 03/07

A 1 signal at the input R resets all of the block’s outputs to the value 0 and results in
immediate starting of a new search from the beginning of the bit field. Therefore, the
new search begins in the same processing cycle in which the block’s outputs are
reset. The search within the reset cycle ends either at the first set bit or, if no bit is
set, at the end of the field. The next time the block is called, the reset input must be
set to 0 so that the block will be able to continue searching through the bit field for set
bits. The reset input is dominant with respect to the other inputs.

R/V BINARY
The searching direction is specified at the input R/V.
R/V = 0 -> Search down : The start of the bit field within the meaning of the search is
 identical with the physical start of the bit field.
R/V = 1 -> Search up : The start of the bit field within the meaning of the search is
 identical with the physical end of the bit field.

#ANZ DIRECT CONSTANT
The number of word operands in which the bit field consists is specified at the input
#ANZ. This is specified as a direct constant.

ANF WORD
The word operand with which the bit field physically begins is specified at the input
ANF. The entire bit field consists in the operand at the input ANF and in the
subsequent operands corresponding to the operand numbering. The total number of
word operands is specified at the input #ANZ.

BIT WORD
The way in which the function block is to indicate the bits set in the bit field is
specified at the input BIT.
BIT = 1 -> Each set bit in the bit field is indicated at the outputs NR and POS.
BIT = 2 -> The first set bit in the bit field is indicated and then only every second set
 bit of the other set bits in the bit field is indicated.
BIT = 3 -> The first set bit in the bit field is indicated and then only every third set
 bit of the other set bits in the bit field is indicated.
BIT = n -> The first set bit in the bit field is indicated and then only every n-th set
 bit of the other set bits in the bit field is indicated.

- Special function : BIT = 0
- If the block finds a set bit, in the next program cycle the search is not automatically
continued at the subsequent bit position. The search is interrupted at this point until
the bit found has assumed the significance 0. During interruption of the search, the
position of the bit found last continues to be indicated at the outputs. If the bit found
last assumes the value 0, the search is continued at the next bit position. If a further
bit is set in the selected search direction, this bit’s position is indicated and the search
is interrupted again. If no more bits are set in the search direction, the position of the
bit found last is indicated. The output END is set to 1.
- If no bits are set after a reset, the block runs through the bit field up to its end and
stops there. The output END is set to one. The outputs NR and POS are set to 0.
- If bits are set after a reset, the block indicates the first set bit in the search direction
and stops at this bit.

Function block description

ABB France Page C-232 1SBC006099R1001 C - 03/07

END BINARY
Whether or not the end of the bit field has been reached during the search is
indicated at the END output.
END = 0 -> End of the bit field not reached
END = 1 -> End of the bit field reached
Search down : The end of the bit field is defined by bit position 15 in the last word
operand of the physical bit field.
Search up : The end of the bit field is defined by bit position 15 in the first word
operand of the physical bit field.
If the bit is set at the last bit position of the field and it is found and indicated during a
search, the output END is not yet set to the value 1. This is not done until the next
processing cycle of the block. Therefore, the prerequisite for setting the output END
is that no set bit has been found during the current search.

NR, POS WORD
If the block finds a set bit in the planned bit field, its position is indicated at the
outputs NR and POS.
Meanings :
NR : Current number of the word operand in which the set bit has been found.
POS : Position of the set bit within the word operand.

Current number of the word operand
NR = 0 -> 1st word operand of the bit field
NR = 1 -> 2nd word operand of the bit field
. . .
. . .
NR = n-1 -> nth word operand of the bit field

The word operands are numbered in the sense of the search.
Therefore, the following applies to down searching :
First word operand -> first word operand of the physical bit field
Last word operand -> last word operand of the physical bit field

Therefore, the following applies to up searching :
First word operand -> last word operand of the physical bit field
Last word operand -> first word operand of the physical bit field

Position of the set bit within the word operand
Numbering within a word operand is from 0...15. At the same time, position 0
corresponds to the least significant bit and position 15 to the most significant bit
within the word operand.
If the end of the field is reached during a search without a set bit having been found,
the position of the bit found last continues to be output through the output NR and the
output POS. This takes place until a new search is compelled from the start of the bit
field by a reset at the input R.
If no bits are set at all within the entire bit field, the outputs assume the following
values at the end of the first search : END = 1
 NR = 0
 POS = 0
This state can be terminated again by a 1 signal at the input R (reset).

Function block description

ABB France Page C-233 1SBC006099R1001 C - 03/07

BMELD BINARY VALUE CHANGE ANNUNCIATOR

FBD IL

BMELD
FREI
R
E

ÄND

NR
A

!BA
BMELD

0

FREI
R
#n
E

ÄND

NR
A

PARAMETERS
FREI BINARY %O, %I, %M, %S, %K Block enable
R BINARY %O, %I, %M, %S, %K Reset
#n DIRECT #, #H Number of input values
 CONSTANT
E BINARY %O, %I, %M, %S, %K Input values; duplicable
NR WORD %OW, %MW Number of the input value
A BINARY %O, %M Current input value
ÄND BINARY %O, %M Change detected

DESCRIPTION
This function block monitors the change of the analog values present at the inputs E
(#E0 ... #En-1).

Detection of a change
Each time the block is processed, the current input values at the inputs E0...En-1 are
compared to the historical values (input values from the previous time the block was
processed). If a change is detected at one of the inputs E0...En-1 :
- this is signalled at the output ÄND
- the number of the input at which the change was discovered is output through the
output NR
- the input value that has changed is output through the output A.
Each time the block is processed, a change at only one input is recognized. When a
change is recognized, the inputs following the input where the change was previously
discovered are monitored the next time the block is processed.

Initialization of historical values
The first time the block is processed after PLC initialization (Frei = 1) or processing is
enabled after it had been disabled (FREI changes from 0 to 1), all current input
values are taken over once as historical values and all outputs are set to the value 0.
These initialized historical values now represent the starting basis for recognition of
changes.

FREI BINARY

Function block description

ABB France Page C-234 1SBC006099R1001 C - 03/07

Processing of the block is enabled with the FREI input.
FREI = 0 -> Block is not processed
FREI = 1 -> Processing of the block is enabled
If FREI = 0, the block’s outputs are also no longer updated.

R BINARY
The block can be reset with the R input.
R = 0 -> No reset
R = 1 -> Reset of the block
Reset signifies :
- Adoption of the current values at the inputs E0...En-1 as historical values.
- All outputs are set to the value 0.

#n DIRECT CONSTANT
ONLY used in IL language
The number of values to be monitored at the inputs E0...En-1 are specified at the #n
input. This is specified as a direct constant.
Range for #n : < #n < 127

E BINARY
The input E is capable of duplication (E0...En-1).
The operands to be monitored for a change are specified at the inputs E0...En-1.

NR WORD
The serial number of the input E0...En-1 where a change has been discovered is
output through the output NR.
If no change is discovered during processing of the block, the number of the input
that changed last continues to be output through the output NR.
The following affiliations apply :
Change discovered at E0 -> NR = 0
Change discovered at E1 -> NR = 1
Change discovered at En-1 -> NR = n-1

A BINARY
If a change is discovered at one of the inputs E0...En-1, the input value that has
changed is allocated to the output A.
If no change is discovered at the inputs E0...En-1 during processing of the block, the
value of the input that has changed last continues to be output through the output A.

ÄND BINARY
The output ÄND indicates whether or not a change has been discovered at the inputs
E0...En-1.
ÄND = 0 -> No change discovered
ÄND = 1 -> Change discovered

Function block description

ABB France Page C-235 1SBC006099R1001 C - 03/07

DMUX DEMULTIPLEXER

FBD IL

!BA 0
DMUX

INDX
#n
E
INOK
A

DMUX

INDX
E

INOK
A

PARAMETERS
INDX WORD %IW, %OW, %MW, %KW Index input
#n DIRECT #, #H Quantity n of word inputs
 CONSTANT E0 ... En-1
E WORD %IW, %OW, %MW, %KW Word input, duplicable
INOK BINARY %O, %M Range monitoring of the index
 input
A WORD %OW, %MW Word output to which one of
 the inputs E0...En-1 is
 switched through.

DESCRIPTION
This function block connects one of the inputs E0...En-1 to the output A depending on
the input INDX.
The value at the input INDX is monitored for validity.
The output A is set to 0 if the word input INDX is not within the valid range.

Relationship between E0...En-1, INDX and A :
The input INDX is used to define which of the inputs E0...En-1 is connected to the
output A.

The following applies :
 INDX = 1 : E0 -> A
 INDX = 2 : E1 -> A
 INDX = 3 : E2 -> A
 : : :
 INDX = n : En-1 -> A
 where : 1 < INDX < n < 32767 (theoretically)
The output A is set to 0 if the input INDX = 0.

INDX WORD
Index input for selection of one of the inputs E0...En-1.
The following applies : 1 < INDX < n (Number of inputs E0...En-1)
Note : INDX = 0 -> Initialization of the output A with 0.

Function block description

ABB France Page C-236 1SBC006099R1001 C - 03/07

#n DIRECT CONSTANT
Only used in IL.
Quantity n of word inputs E0...En-1

E WORD
Input E capable of duplication (E0 ... En-1)
One of the inputs E0 ... En-1 is connected to the output A.

INOK BINARY
Range monitoring for the input INDX
The output INOK indicates whether or not the input INDX is within the valid range.
The outputs INOK and A are set to 0 if the word input INDX is not within the valid
range.

The following applies : INOK = 1 -> INDX in the valid range
 INOK = 0 -> INDX in the invalid range -> A = 0
 Valid range for the index : 1 < INDX < n

A WORD
Output to which one of the inputs E0...En-1 is switched through.
By means of the input INDX, one of the inputs E0...En-1 is selected and its value is
allocated to the output A.
The output A is set to 0 if the word input INDX is not within the valid range.

DMUXD DEMULTIPLEXER DOUBLE WORD

FBD IL

!BA 0
DMUXD

INDX
#n
E
INOK
A

DMUXD

INDX
E A

INOK

PARAMETERS
INDX WORD %IW, %OW, %MW, %KW Index input
#n DIRECT #, #H Quantity n of the double word
 CONSTANT inputs E0 ... En-1
E DOUBLE %MD, %KD Double word inputs E0 ... En-1;
 WORD capable of duplication.
NOK BINARY %O, %M Range monitoring of the index
 input
A DOUBLE %MD Double word output to which

Function block description

ABB France Page C-237 1SBC006099R1001 C - 03/07

 WORD one of the inputs E0 ... En-1 is
 switched through.

DESCRIPTION
This function block connects one of the inputs E0...En-1 to the output A depending on
the input INDX.
The value at the input INDX is checked for validity. The output A is set to 0 if the word
input INDX is not within the valid range.

Relationship between E0 ... En-1, INDX and A :
The input INDX is used to define which of the inputs E0 ... En-1 is connected to the
output A.

The following applies :

 INDX = 1 : E0 -> A
 INDX = 2 : E1 -> A
 INDX = 3 : E2 -> A
 : : : :
 INDX = n : En-1 -> A
 where : 1 < INDX < n < 32767 (theoretically)
Note : The output A is is set to 0 if the input INDX = 0.

INDX WORD
Index input for selection of one of the inputs E0 ... En-1.
The following applies : 1 < INDX < n (number of inputs E0 ... En-1)
Note : INDX = 0 -> Initialization of the output A with 0.

#n DIRECT CONSTANT
Only used in IL.
Quantity n of double word inputs E0 ... En-1.

E DOUBLE WORD
Input E capable of duplication (E0 ... En-1)
One of the n inputs E0 ... En-1 is connected to the output A.

INOK BINARY
Range monitoring for the input INDX
The output INOK indicates whether or not the input INDX is within the valid range.
The outputs INOK and A are set to 0 if the word input INDX is not within the valid
range.

The following applies : INOK = 1 -> INDX within the valid range
 INOK = 0 -> INDX in the invalid range -> A = 0
 Valid range for the index : 1 < INDX < n

A DOUBLE WORD

Function block description

ABB France Page C-238 1SBC006099R1001 C - 03/07

Output to which one of the n inputs E0...En-1 is switched through.
By means of the input INDX, one of the inputs E0...En-1 is selected and its value is
allocated to the output A.
The output A is set to 0 if the input INDX is not within the valid range.

DWUMC DOUBLE WORD RECODER

FBD/LD IL

DWUMC
E
EC/AC

A
E=EC

!BA
DWUMC

0

E
#2*n
EC/AC
E=EC
A

PARAMETES
E DOUBLE %MD, %KD Input
 WORD
#2*n DIRECT #, #H, %KW Quantity n of reference values
 CONSTANT (multiplied by 2)
EC/AC DOUBLE %MD, %KD Reference value / Output code;
 WORD can be duplicated
E=EC BINARY %O, %M Coincidence indication
A DOUBLE %MD Output of the output code’s
 WORD value

DESCRIPTION
This function block compares the value of the operand at the input E to the reference
values of the operands at the inputs EC/AC. If the input E agrees with at least one of
the reference values EC/ACi, the output E=EC is set to 1. The output A receives the
value of the output code EC/ACn+i, which is allocated to the reference value EC/ACi
found.
An operand for the output code EC/ACn+i is allocated to each reference value at the
inputs EC/ACi. Affiliation of EC/ACi to EC/ACn+i is recognizable by the index i.

Note : In IL language, the number of inputs EC/AC must be specified as a direct
constant at the input #2*n.

E DOUBLE WORD
The operand whose value is to be compared to the values of the n reference values
(EC0...ECn-1) is specified at the input E.

#2*n DIRECT CONSTANT (#,#H)
Only used in IL.
The total number (2*n) of the reference values and output codes (EC/AC) is specified

Function block description

ABB France Page C-239 1SBC006099R1001 C - 03/07

at the input #2*n. This is specified as an indirect constant.

EC/AC DOUBLE WORD
The input EC/AC must be duplicated according to the number of reference values
needed. The operands for the reference values are specified at the inputs
EC/AC0...EC/ACn-1. The output codes are specified at the inputs
EC/ACn...AC/AC2n-1.
The value of the operand at the input E1 is compared to the reference values.
The output code EC/ACn+i is output through the output A if the input E agrees with
one of the reference values EC/ACi.
Affiliation between reference values and output codes :
EC/AC0 <-> EC/ACn
EC/AC1 <-> EC/ACn+1
 . .
 . .
EC/ACn-1 <-> EC/ACn+(n-1)

E=EC BINARY
Agreement between the operand value of the input E and one of the reference values
is signalled at the output E=EC.
The following applies: E=EC = 0 -> No agreement
 E=EC = 1 -> Agreement

A DOUBLE WORD
The output code EC/ACn+i is output through the output A if the input E agrees with
one of the reference values EC/ACi.
The following applies: A = 0 -> No agreement
 A = EC/ACn+i -> Agreement

FEHSU ERROR SEARCHER WITH AUTOMATIC DELETION

FBD IL

FEHSU
FREI
R
B

FEHSU
!BA 0

NR
END

R
FREI
#n
B

NR
END

PARAMETERS
FREI BINARY %I, %O, %M, %S, %K Enable search
R BINARY %I, %O, %M, %S, %K Reset
#n DIRECT #, #H Number of binary variables
 CONSTANT
B BINARY %I, %O, %M List of binary variables;

Function block description

ABB France Page C-240 1SBC006099R1001 C - 03/07

 capable of duplication
END BINARY %O, %M List end reached
NR WORD %OW, %MW List number of the variables
 found

DESCRIPTION
This function block searches through a list of binary variables (%I, %O, %M, %S) for
set binary variables. If a set binary variable is found, its serial number referred to the
list is indicated at the input NR. The set binary variable at the input is deleted.

FREI BINARY
The search for a set binary variable is enabled with the FREI input.
FREI = 0 Search is not enabled
FREI = 1 Search is enabled.

The search is continued until
- a set binary variable is found or
- the end of the variable list is reached.
If a binary variable with the value 1 is found in the list, the search is ended, the
variable is deleted and its list number is output through the output NR.
The search is continued again when the block is called again (in the next program
cycle). The binary variable directly following the one found is now examined first.
The search ends at the end of the list if no further set variable is found.
The value 1 is then allocated to the END output and the number of the variable found
last during the search is indicated at the output NR.
If no set variable is found during a search from the start of the list, the search is
automatically repeated from the start of the list when the block is called again. This
takes place until a set variable is found.

R BINARY
By means of the input R, the function block is set to a defined state (reset) in order to
be able to start a search from the start of the variable list.
R = 0 -> No reset of the block
R = 1 -> Reset of the block for preparation of a search from the start of the list

Note : Even when the block is called for the very first time after starting the PLC
program, a reset must first of all be executed in order to create the correct marginal
conditions for the first search.
A reset of the block results in the following :
- Output END = 0
- Output NR = 0
- The next search takes place from the start of the list.

Priority : The input R has higher priority than the input FREI, i. e. no search is
executed as long as there is a 1 signal at the input R.

#n DIRECT CONSTANT
ONLY used in IL language
The number of binary variables planned at the inputs B0...Bn-1 is specified at the

Function block description

ABB France Page C-241 1SBC006099R1001 C - 03/07

input #n. This is specified as a direct constant.

B BINARY
The input B can be duplicated (B0...Bn-1).
The list of binary variables to be examined is specified at the inputs B0...Bn-1. Owing
to the reset mechanism, step operands (%S) and indirect constants (%K) are not
allowed.

END BINARY
END = 0 -> List end not reached
END = 1 -> List end reached without a set binary variable having been found in the
current search

NR WORD
The list number of the binary variable found last is output through the NR output.
The following affiliations apply :

Variable at the input List number

B0
B1
.
.
.
Bn-1

1
2
.
.
.
n

If the end of the list is reached during the search without a set variable having been
found, the number of the variable last found continues to be output through the output
NR.

Searching from the start of the list without a variable being found :
If no set binary variable is found during a search from the start of the list, the state 1
is assigned to the output END when the end of the list is reached and the value 0 is
assigned to the output NR. When the block is called again in the next program cycle,
the search automatically takes place again from the start of the list. Automatic
searching from the start of the list continues until a set binary variable is found once.

Function block description

ABB France Page C-242 1SBC006099R1001 C - 03/07

FIFO STACK, FIRST IN/FIRST OUT

FBD IL

FIFO
B/W
LADE
LESE
R
E

A
FST

L
V

CAL FIFO (R,LADE,LESE,E,B/W,#L,ANF,A,FST,L,V)

#L
ANF

PARAMETERS
B/W BINARY %I, %O, %M, %S, %K Binary/word data
LADE BINARY %I, %O, %M, %S, %K Load FIFO
LESE BINARY %I, %O, %M, %S, %K Read FIFO
R BINARY %I, %O, %M, %S, %K Reset FIFO, 0->1 edge
E BINARY, %I, %O, %M, %S, %K Input of data in the FIFO
 WORD %IW, %OW, %MW, %KW
#L DIRECT #, #H Number of memory locations
 CONSTANT (bytes)
ANF BINARY %I, %O, %M, %K Start of the FIFO in the flag
 WORD %IW, %OW, %MW, %KW area
A BINARY, %O, %M Output of data from the FIFO
 WORD %OW, %MW
FST WORD %OW, %MW Filling level of the FIFO
L BINARY %O, %M FIFO empty
V BINARY %O, %M FIFO full

DESCRIPTION
This function block realizes a stack for binary or word data from which the data
written in first is again read out first (first in/first out).

B/W BINARY
The input BW serves to preselect binary or word processing.
B/W = 0 -> word processing
B/W = 1 -> binary processing
Binary or word processing is defined once and must not be changed during operation
of the FIFO.

LADE BINARY
The value present at the input E is transferred to the next free position of the FIFO by
means of a 1 signal at the LADE input. If the FIFO is “full” and a “load” signal is
present, the new value will not be read in. A new value can only be read if a value
has been read out first. It is then transferred to the first position of the FIFO.

Function block description

ABB France Page C-243 1SBC006099R1001 C - 03/07

LESE BINARY
A 1 signal at the input LESE results in output of the current FIFO value through the
output A. If the FIFO is “empty”, a pending read order is ignored and the value 0 is
output through the output A. The output A is always set to 0 if there is no read order.

LADE and LESE
If load and read orders are present simultaneously, the value to be loaded is
forwarded directly from the input E to the output A. Then the FIFO is empty.
If the FIFO is not empty, the current FIFO value is output and the new load
information is transferred to it.
The FIFO does not change its filling level in this mode. The value output through the
output FST remains constant. If the FIFO is empty, the output L remains 1 and the
output FST is set to 0.

R BINARY
A 0->1 edge at the input R results in the reset of the block. Therefore, values read in
before are no longer available.
The output L assumes the value 1 and the outputs FST and A assume the value 0.

R and LADE
If R and LADE signals are present simultaneously, the reset is performed first and
then directly afterwards the load operation. Therefore, the FIFO is reset and the new
value to be read in is then immediately stored in the FIFO as the first value.

R and LADE and LESE
The value at the input E is forwarded directly to the output A. The output L is set
permanently to 1 and the output FST is set permanently to 0.

E BINARY/WORD
The value to be transferred into the FIFO is specified at the input E.

#L DIRECT CONSTANT
The number of required memory locations (bytes) of the FIFO is specified at the input
A. This quantity is specified as a direct constant and results from the following
formula :
 BINARY data : #L = Number of binary values to be stored
 WORD data : #L = 2 * Quantity of word values to be stored
 E.g. : BINARY data : 3 values -> #L = 3
 WORD data : 3 values -> #L = 6

The FIFO length parameter is subjected to a plausibility check for the value 0 and
also, in word processing mode, for an odd byte parameter. If the parameter specified
at the input #L is incorrect, the FIFO will assume the initial state (as after R).

ANF BINARY/WORD
The FIFO memory start address is specified as a binary or word flag at the input
ANF. The FIFO begins with the specified flag.

A BINARY/WORD
When the FIFO is read, the current value is available at the output A. If no read order

Function block description

ABB France Page C-244 1SBC006099R1001 C - 03/07

is available, the value 0 is output.

FST WORD
The output FST indicates the current filling level of the FIFO at any time. The filling
level is the number of binary or word values stored in the FIFO.

L BINARY
The output L indicates whether or not the FIFO is empty.
L = 0 -> FIFO is not empty
L = 1 -> FIFO is empty

V BINARY
The output V indicates whether or not the FIFO is full.
V = 0 -> FIFO is not full
V = 1 -> FIFO is full
No more values can be read in if the FIFO is full. A value can only be read in once a
value has been read out. This then takes place as from the start of the FIFO.
Example

FBD

IL

FIFO
B/W
LADE
LESE
R
E
#L
ANF

A
FST
L
V

%K

#
%M

%M
%M
%M

%M

00,01
01,01
01,05
01,09
06,04

9
01,10

00,01

12,05
11,07

01,15

%M
%MW
%A
%A

FIFO for 9 binary data, stored as of %M 01,10

FBD

FIFO
B/W
LADE
LESE
R
E
#L
ANF

A
FST
L
V

FIFO for 3 word data, stored as of %MW 10,00

%K

#
%MW

%M
%M
%M

%MW

00,00
01,00
01,01
02,00
03,01

6
10,00

03,00

11,01
11,02

03,01

%MW
%MW
%M
%M

IL

CAL LIFO (%M01,09, %M01,01, %M01,05, %M06,04, %K00,01, #9, %M01,10,
%M12,05, %MW11,07, %A00,01, %A01,15)

CAL LIFO (%M02,00, %M01,00, %M01,01, %MW03,01, %K00,00, #6, %MW10,00,
%MW11,01, %MW11,02, %M03,00, %M03,01)

Function block description

ABB France Page C-245 1SBC006099R1001 C - 03/07

FKG FUNCTION GENERATOR

FBD IL

FKG
x
XC/YC

y

!BA
FKG

0

x
#2*n
XC/YC
y

PARAMETERS
x WORD %IW, %OW, %MW, %KW Input for the x value of the
 polygon
#2*n DIRECT #, #H n : number of interpolation
 CONSTANT points
XC/YC WORD %IW, %OW, %MW, %KW Input for x/y-axis values of the
 interpolation points;
 duplicable
y WORD %OW, %MW Output for the y value of the
 polygon

DESCRIPTION
In an x/y coordinate system, a polygon is defined by n coordinate points X0/Y0...Xn-
1/Yn-1. For each value at the input x, the function block outputs the affiliated y value
of the polygon through the output y.

The following applies to the x-axis coordinates :
 X/Y0 < X/Y1 < X/Y2 ... < X/Yn-1
 2 < n < 32767

This function block make a linear interpolation between the interpolation points. The
resulting polygon representing the relationship between x and y is :

(x - X i-1 * (Y - Y)

X - X

i-1

i-1i

y = + Yi-1
) i

Note : The result of division is always rounded down, i.e. any division remainder
is ignored.

Function block description

ABB France Page C-246 1SBC006099R1001 C - 03/07

The following applies to the range outside of the interpolation points :
y = Y0 for x < X0
y = Yn-1 for x > Xn-1

y

x

(X0/Y0)

(X1/Y1)

(X2/Y2)

(X3/Y3)

(Xn-1/Yn-1)

x WORD
The current x coordinate is specified at the input x. The block then defines the y
coordinate affiliated by the polygon.

#2*n DIRECT CONSTANT
Only used in IL Language
The number of x/y coordinates needed to define the polygon is specified at the input
#2*n. This is specified as a direct constant.
 n = number of interpolation points
 2*n = number of x/y coordinates for n interpolation points

XC/YC WORD
This input has to be duplicated by a multiple of 2 : 2*n
- XC/YC0...XCYCn-1 specify the x coordinates of the n interpolation points.
- XC/YCn...XC/YC2n-1 specify the y coordinates of the n interpolation points.

Affiliation between (Xi,Yi) and XC/YCi :
(Xi,Yi) <-> (XC/YCi,XC/YCn+i)

y WORD
The y coordinate affiliated by the polygon of the specified x coordinate is output
through the output y.

Function block description

ABB France Page C-247 1SBC006099R1001 C - 03/07

HLG RAMP-FUNCTION GENERATOR

FBD IL

CAL HLG (0/1,0 S,1 S,TH/T,TR/T,STOP,S,INIT,R,A1)
HLG
0/1
0 S
1 S
TH/T
TR/T
STOP
S
INIT
R A1

PARAMETERS
0/1 BINARY %I, %O, %M, %S, %K Selection of the setpoint 0 or
 the setpoint 1
0 S WORD %IW, %OW, %MW, %KW Setpoint 0
1 S WORD %IW, %OW, %MW, %KW Setpoint1
TH/T WORD %IW, %OW, %MW, %KW Start up time scaled to the
 cycle time
TR/T WORD %IW, %OW, %MW, %KW Return time scaled to the cycle
 time
STOP BINARY %I, %O, %M, %S, %K Latching of the output at the
 current value
S BINARY %I, %O, %M, %S, %K Setting of the output to the INIT
 value
INIT WORD %IW, %OW, %MW, %KW INIT value to which the output
 can be set
R BINARY %I, %O, %M, %S, %K Reset of the output to the value
 0
A1 WORD %MW, %OW Output

DESCRIPTION
The ramp-function generator serves to provide ramp-shaped adaption of the current
actual value at the output to a specified setpoint.

The value at the output of the HLG is adapted linearly from the current actual value to
the specified setpoint with the slope y’. In doing so, the value at the output precisely
runs through the amount of the setpoint during the time TH or TR. If the value at the
output of the HLG has reached the setpoint, it no longer changes unless a new
setpoint is specified.

Function block description

ABB France Page C-248 1SBC006099R1001 C - 03/07

The slope y’ of the ramp results from the specified time TH (start up time) or TR
(return time) and the amount of the setpoint :

Slope y' =
Setpoint amount

TH or TR

The slope is - positive if setpoint > actual value
 - negative if setpoint < actual value
 - 0 if setpoint = 0
Therefore, the specified setpoint has two functions :
- its amount defines the slope of the ramp together with the specified time TH or TR;
- it represents the value to which the current actual value must be adapted in a ramp
shape.

The user may specify the start up time TH and the return time TR separately. The
direction of the slope is defined on the basis of the setpoint. The direction of the slope
then defines whether or not the running time TH or TR is used.
Slope y’ positive -> TH, i.e. the ramp runs upwards.
Slope y’ negative -> TR, i.e. the ramp runs downwards.

The start up time TH and the return time TR must be scaled to the program cycle
time TZ, i.e. the following must be specified at the corresponding inputs of the block :
- Start up time : TH/TZ
- Return time : TR/TZ
The times are specified in milliseconds.
The following applies to the time constants TH or TR : 0 < TH < 32767
 0 < TR < 32767

Two setpoints can be planned (0 S and 1 S), whereby one of these setpoints is
selected by the binary input 0/1 (setpoint selection). The setpoints may assume the
following values : -32767 < setpoint < +32767

At any time, the output of the ramp-function generator can be
- stopped at the current value
- set to an initial value
- reset (output = 0)
The STOP input has the highest priority and the R input has the lowest.

The values at the inputs of the HLG can be altered at any time in the user program.
In this way, any (non-linear) adaptation to the setpoint can be realized on the basis of
the linear adaptation of the actual value.

Important
Setpoint = 0 means that the slope of the ramp is also 0, i.e. the current actual value
does not change. If it is intended to switch from an actual value unequal to 0 to an
actual value of 0, a setpoint unequal to 0 must be specified and the output of the
ramp-function generator must be limited to 0 by a subsequent limiter. (On
interpolation, the rounding transitions are based on calculation of integral numbers
only).

Function block description

ABB France Page C-249 1SBC006099R1001 C - 03/07

0/1 BINARY
One of the two setpoints is selected with the input 0/1.
0/1 = 0 -> setpoint 0 S
0/1 = 1 -> setpoint 1 S

0 S WORD
The setpoint 0 is specified at the input 0 S.

1 S WORD
The setpoint 1 is specified at the input 1 S.

TH/T WORD
The startup time is specified at the input TH/T. At the same time, the start up time TH
must be scaled to the cycle time T.

TR/T WORD
The start up time is specified at the input TH/T. At the same time, the start up time
TH must be scaled to the cycle time T.

STOP BINARY
The output can be latched to the current value by means of the STOP input.
STOP = 0 -> Output not latched
STOP = 1 -> Output is latched
The STOP input has higher priority than the inputs S and R.

S BINARY
With the input S, the output can be set to the initial value specified at the input INIT.
S = 0 -> Output is not set to initial value.
S = 1 -> Output is set to initial value.

INIT WORD
The initial value to which the output is to be set if required is specified at the input
INIT.

R BINARY
The output can be set to the value 0 with the input R.
R = 0 -> Output is not reset
R = 1 -> Output is reset to the value 0.

A1 WORD
Output of the block.

Function block description

ABB France Page C-250 1SBC006099R1001 C - 03/07

Example 1
The actual value is to be changed from 0 to the setpoint + 500 (setpoint amount 500)
and then from +500 to the setpoint -1000 (setpoint amount 1000).
The start up time is TH and the return time TR.
0 S : 500
1 S : -1000

+ 500

t

(actual value)

- 500

- 1000

TH

TR

TR(*)

Setpoint sw itchover from 0 S -> 1

Output

TR(*) is the actual time until the actual value has reached -1000.
During the time TH or TR, the actual value changes by the amount of the applied
setpoint.

Example 2
The actual value is to be changed from 0 to the setpoint +500 (setpoint amount 500)
and then from +500 to the setpoint 1500 (setpoint amount 1500).
The startup time is TH and the return time TR.
0 S : 500
1 S : 1500

+ 1500

t

(actual value)

+ 500

+ 1000

TH1 TH2(*)

TH2

+ 2000

Setpoint changeover
from 0 S -> 1

Output

Function block description

ABB France Page C-251 1SBC006099R1001 C - 03/07

TR(*) is the actual time until the actual value has reached 1500.
During the time TH or TR, the actual value changes by the amount of the applied
setpoint.

IDLB READ BINARY VARIABLE, INDEXED

FBD IL

IDLB
FREI
INDX
BASI

ZIEL

CAL IDLB (FREI,INDX,BASI,ZIEL)

PARAMETERS
FREI BINARY %I, %O, %M, %K, %S Enable for the block
INDX WORD %IW, %OW, %MW, %KW The index and the basic
 variable result in the source
 variable
BASI BINARY %I, %O, %M, %K Basic variable
ZIEL BINARY %O, %M Target variable

DESCRIPTION
This function block serves the purpose of indexed reading of binary variables.
The source variable to be read is obtained from indexing the basic variable. The
value of the source variable read is allocated to the target variable.

The group and channel numbers of the source flag (source variable) are determined
from the basic flag and the index INDX.
The source flag is : M (G_Basis + A) , (K_Basis + B)
 where : G_Basis : Group number of the basic flag
 K_Basis : Channel number of the basic flag

Formula : A INDX
16

= Remainder B

Group No. of the source flag : Group No. of the basic flag + A
Channel No. of the source flag : Channel No. of the basic flag + B

Example :
Basic variable : M 000,00
INDX = 10
 -> A = 10 : 16 -> A = 0, Remainder B = 10
->Source variable : M (000+A),(00+B) = M (000+0),(00+10) = M 000,10

Function block description

ABB France Page C-252 1SBC006099R1001 C - 03/07

Further examples :
Basic variable INDX Source variable
M 000,00 0 M 000,00
M 000,00 2 M 000,02
M 000,00 16 M 001,00
M 000,02 18 M 001,04
I 00,00 3 I 00,03
I 01,01 5 I 01,06
O 05,05 6 O 05,11

FREI BINARY
Enable block
FREI= 0 -> Block is not processed
FREI= 1 -> The value of the source variable is read and allocated to the
 target variable ZIEL.

INDX WORD
The index value is specified at the input INDX. The source variable (see above for a
calculation) results from the index INDX and the basic variable.
Value range : -16383 < INDX < +16383

BASI BINRAY
The basic variable is specified at the input BASI. The source variable (see above for
a calculation) results from the index INDX and the basic variable.

ZIEL BINARY
The target variable is specified at the output ZIEL. The value of the selected source
variable is allocated to the target variable ZIEL.

IDLm READ WORD VARIABLE, INDEXED

FBD IL

IDLm
FREI
INDX
BASI

ZIEL

CAL IDLm (FREI,INDX,BASI,ZIEL)
or
!BA0
IDL
FREI
INDX
BASI
ZIEL

PARAMETERS
FREI BINARY %I, %O, %M, %K, %S Enable for the block
INDX WORD %IW, %OW, %MW, %KW The index and the basic
 variable result in the source
 variable

Function block description

ABB France Page C-253 1SBC006099R1001 C - 03/07

BASI WORD %IW, %OW, %MW, %KW Basic variable
ZIEL WORD %OW, %MW Target variable

DESCRIPTION
This function block serves the purpose of indexed reading of word variables.
The source variable to be read is obtained from indexing the basic variable. The
value of the source variable read is allocated to the target variable.

The group and channel numbers of the source flag (source variable) are determined
from the basic flag and the index INDX.
The source flag is : MW (G_Basis + A) , (K_Basis + B)
 where : G_Basis : Group number of the basic flag
 K_Basis : Channel number of the basic flag

Formula : A INDX
16

= Remainder B

Group No. of the source flag : Group No. of the basic flag + A
Channel No. of the source flag : Channel No. of the basic flag + B

Example :
Basic variable : MW 000,00
INDX = 10
-> A = 10 : 16 -> A = 0, Remainder B = 10
->Source variable : MW (000+A),(00+B) = MW(000+0),(00+10) = MW 000,10

Further examples :
Basic variable INDX Source variable
MW 000,00 0 MW 000,00
MW 000,00 2 MW 000,02
MW 000,00 16 MW 001,00
MW 000,02 18 MW 001,04
IW 00,00 3 IW 00,03
IW 01,01 5 IW 01,06
OW 05,05 6 OW 05,11

FREI BINARY
Enable block
FREI= 0 -> Block is not processed
FREI= 1 -> The value of the source variable is read and allocated to the
 target variable ZIEL.

INDX WORD
The index value is specified at the input INDX. The source variable (see above for a
calculation) results from the index INDX and the basic variable.
Value range : -16383 < INDX < +16383
If INDX is out of range, the function block is not processed.

Function block description

ABB France Page C-254 1SBC006099R1001 C - 03/07

BASI WORD
The basic variable is specified at the input BASI. The source variable (see above for
a calculation) results from the index INDX and the basic variable.

ZIEL WORD
The target variable is specified at the output ZIEL. The value of the selected source
variable is allocated to the target variable ZIEL.

IDSB WRITE BINARY VARIABLE, INDEXED

FBD IL

IDSB
FREI
QUEL
INDX

BASI

CAL IDSB (FREI,QUEL,INDX,BASI)

PARAMETERS
FREI BINARY %I, %O, %M, %K, %S Enable block
QUEL BINARY %I, %O, %M, %K Source variable
INDX WORD %IW, %OW, %MW, %KW The current target variable
 results from the index and the
 basic variable
BASI BINARY %O, %M Basic variable

DESCRIPTION
This function block serves the purpose of indexed wri–ting of binary variables.
When the block is enabled, the value of the source variable is read and allocated to
the target variable. The target variable is defined by indexing the basic variable.

The group and channel number of the target flag (target variable) are determined on
the basis of the basic flag and the index INDX.
The target flag is called : M (G_Basis+A),(K_Basis+B) where :
 G_Basis : Group number of the basic flag
 K_Basis : Channel number of the basic flag

Formula : A INDX
16

= Remainder B

Group No. of the target flag : Group No. of the basic flag + A
Channel No. of the target flag : Channel No. of the basic flag + B

Example :
Basic variable : M 000,00

Function block description

ABB France Page C-255 1SBC006099R1001 C - 03/07

INDX = 10
-> A = 10 : 16 -> A = 0, Remainder B = 10
-> Target variable : M(000+A), (00+B) = M (000+0),(00+10) = M 000,10

Further examples :
Basic variable INDX Target
M 000,00 0 M 000,00
M 000,00 2 M 000,02
M 000,00 16 M 001,00
M 000,02 18 M 001,04
O 00,00 3 O 00,03
O 01,01 5 O 01,06
O 05,05 6 O 05,11

FREI BINARY
Enable block
FREI=0 : -> Block is not processed
FREI=1 : -> The value of the source variable is read and allocated to the
 target variable ZIEL.

QUEL BINARY
The source variable is specified at the input QUEL. The value of this variable is read
and allocated to the target variable.

INDX WORD
The index value is specified at the input INDX. The target variable (see above for a
calculation) results from the index INDX and the basic variable.
Value range : -16383 < INDX < +16383

BASI BINARY
The basic variable is specified at the input BASI. The target variable (see above for a
calculation) results from the index INDX and the basic variable.

IDSm WRITE WORD VARIABLE, INDEXED

FBD/LD IL

IDSm
FREI
QUEL
INDX

BASI

CAL IDSm (FREI,QUEL,INDX,BASI)
or
!BA0
IDS
FREI
QUEL
INDX
BASI

PARAMETERS
FREI BINARY %I, %O, %M, %K, %S Enable block
QUEL WORD %IW, %OW, %MW, %KW Source variable
INDX WORD %IW, %OW, %MW, %KW The current target variable

Function block description

ABB France Page C-256 1SBC006099R1001 C - 03/07

 results from the index and the
 basic variable
BASI WORD %OW, %MW Basic variable

DESCRIPTION
This function block serves the purpose of indexed wri–ting of word variables.
When the block is enabled, the value of the source variable is read and allocated to
the target variable. The target variable is defined by indexing the basic variable.

The group and channel number of the target flag (target variable) are determined on
the basis of the basic flag and the index INDX.
The target flag is called : MW (G_Basis+A),(K_Basis+B) where :
 G_Basis : Group number of the basic flag
 K_Basis : Channel number of the basic flag

Formula : A INDX
16

= Remainder B

Group No. of the target flag : Group No. of the basic flag + A
Channel No. of the target flag : Channel No. of the basic flag + B

Example :
Basic variable : MW 000,00
INDX = 10
-> A = 10 : 16 -> A = 0, Remainder B = 10
-> Target variable : MW(000+A), (00+B) = MW (000+0),(00+10) = MW 000,10

Further examples :
Basic variable INDX Target
MW 000,00 0 MW 000,00
MW 000,00 2 MW 000,02
MW 000,00 16 MW 001,00
MW 000,02 18 MW 001,04
OW 00,00 3 OW 00,03
OW 01,01 5 OW 01,06
OW 05,05 6 OW 05,11

FREI BINARY
Enable block
FREI=0 : -> Block is not processed
FREI=1 : -> The value of the source variable is read and allocated to the
 target variable ZIEL.

QUEL WORD
The source variable is specified at the input QUEL. The value of this variable is read
and allocated to the target variable.

INDX WORD
The index value is specified at the input INDX. The target variable (see above for a

Function block description

ABB France Page C-257 1SBC006099R1001 C - 03/07

calculation) results from the index INDX and the basic variable.
Value range : -16383 < INDX < +16383
If INDX is out of range, the function block is not processed.

BASI WORD
The basic variable is specified at the input BASI. The target variable (see above for a
calculation) results from the index INDX and the basic variables.

INITS INITIALIZE MEMORY AREA IN THE OPERAND MEMORY
WITH ZERO

FBD/LD IL

INITS

01

VAR

CAL INITS (01,#n,VAR)

#n

PARAMETERS
01 BINARY %I, %O, %M, %S Enabling for non-recurring
 processing of the block (0/1
 edge)
#n DIRECT #, #H Quantity (n) of memory words
 CONSTANT to be initialized
VAR BINARY, %I, %O, %M, %K, %S, The n memory words specified
 WORD, %IW, %AM, %MW, %KW, at the input #n are initialized as
 DOUBLE %MD, %KD from this variable.
 WORD

DESCRIPTION
This function block serves the purpose of word-by-word initialization of memory areas
in the operand memory with the value 0.

The block is run through precisely once in the event of a 0/1 edge at the input 01. In
doing so, n memory words are initialized with the value 0 as from the variable
specified at the input VAR. The variable specified at this input can be a BINARY,
WORD or DOUBLE WORD operand.
The following must be observed :
BINARY operand : Occupies 1 BYTE in the operand memory.
WORD operand : Occupies 1 WORD in the operand memory.
DOUBLE WORD operand : Occupies 2 WORDS in the operand memory.

Function block description

ABB France Page C-258 1SBC006099R1001 C - 03/07

0-1 BINARY
Block enable.
The block is run through precisely once when a 0/1 edge appears at this input.

#n DIRECT CONSTANT
Quantity (n) of memory words to be initialized specified as a DIRECT CONSTANT.
Value range : 0 < n < 65535
No initialization is realized if the value 0 is specified.

VAR BINARY, WORD, DOUBLE WORD
n memory words are initialized with the value 0 as from this variable (inclusive).

Example

FBD/LD IL

CAL INITS(%M00.00, #2, %M03.01

%M 03,01

%M 00,00

INITS

01

VAR

The 4 binary flags
%M 03,01
%M 03,02
%M 03,03
%M 03,04

are to be initialized with the value 0.
A binary flag in memory takes up 1 byte. Therefore, there is a total of 4 bytes = 2 words to be initialized.
For this reason, the value 2 must be specified at the input #n as a DIRECT CONSTANT and the flag %M
03,01 at the input VAR.

#n#2

Function block description

ABB France Page C-259 1SBC006099R1001 C - 03/07

INITV INITIALIZE VARIABLES

FBD/LD IL

INITV

01
BW/VAL

!BA
INITV

0

0-1
#W/B
#n
#W0
VR0

PARAMETERS
0-1 BINARY %I, %O, %M, %S Enabling for non-recurring
 processing of the block (0/1
 edge)
BW/VAL BINARY, %I, %O, %M, Initialization value for the I
 WORD %IW, %OW, %MW subsequent variable and
 DIRECT CONSTANT #,#H variable (the format is internally
 recognised)The inputs BW/val
 can be duplicated in pairs
#W/B DIRECT #, #H Format specification
 CONSTANT
#n DIRECT #, #H Number of variables to be
 CONSTANT initialized
#W0 DIRECT #, #H Initialization value for the
 CONSTANT subsequent variable;
 The inputs #W0 and VR0 can
 be duplicated in pairs
VR0 BINARY, %I, %O, %M, Variable to be initialized;
 WORD %IW, %OW, %MW The inputs VR0 and #W0 can
 be duplicated in pairs

DESCRIPTION
This function block serves to initialize BINARY and WORD variables with numeric
values.
The initialization values are specified as direct constants. The block is run through
precisely once when a 0/1 edge appears at the input 0-1.

01 BINARY
The block is run through precisely once when a 0/1 edge appears at the input 0-1.

BW/VAL BINARY/WORD/DIRECT CONSTANT
The variable to be initialized is specified at the input BW/val and the second
parameter is its value as a direct constant
This parameter has to be duplicated in pair

Function block description

ABB France Page C-260 1SBC006099R1001 C - 03/07

#W/B DIRECT CONSTANT
The format of the variable to be initialized is specified as a direct constant at the input
#W/B. The following applies :
 #W/B = 1 : Word variable (%IW, %OW, %MW)
 #W/B = 0 : Binary variable (%I, %O, %M)

#n DIRECT CONSTANT
The quantity n of variables to be initialized is specified as a direct constant at the
input #n.

#W0 DIRECT CONSTANT
The initialization value for the subsequent variable is specified as a direct constant at
the input #W0.
The inputs #W0 and VR0 can be duplicated in pairs.
The following affiliations apply :
 Value 0 -> Variable 0
 Value n-1 -> Variable n-1

VR0 BINARY/WORD
The first variable to be initialized is specified at the input VR0.
The inputs VR0 and #W0 can be duplicated in pairs.

Example

FBD/LD IL

!BA
INITV

0 INITV

01

%MW

%MW

%MW
%M

12
02.15

00.00
00.09
4853
03.07

8

%MW

%M

%MW

%MW

00.09
12

00.00
1
3

4853

03.07
8

02.15

The following variables are to be initialized:
%MW 00,09 = 4853
%MW 03,07 = 12
%MW 02,15 = 8

BW/val

BW/val
BW/val

BW/val
BW/val
BW/val

Function block description

ABB France Page C-261 1SBC006099R1001 C - 03/07

LDT ILLUMINATION PUSHBUTTON CONTROL

FBD IL

LDT

EIN
AUS
E
R EINI

AUSI

A

CAL LDT (EIN,AUS,E,R,A,EINI,AUSI)

PARAMETERS
EIN BINARY %I, %O, %M, %K, %S Dynamic input for activating
 output A
AUS BINARY %I, %O, %M, %K, %S Dynamic input for deactivating
 output A
E BINARY %I, %O, %M, %K, %S Dynamic input for activating
 and deactivating output A
R BINARY %I, %O, %M, %K, %S Static input for deactivating
 output A
A BINARY %O, %M Output
EINI BINARY %O, %M Pulse for the duration of one
 PLC program cycle when
 activating output A
AUSI BINARY %O, %M Pulse for the duration of one
 PLC program cycle when
 deactivating output A

DESCRIPTION
This function block changes the state at the output A with every 0/1 edge at the input
E (like a toggle flip-flop). However, this only applies if the input R is inactive. The
output A can be influenced additionally with the inputs EIN, AUS and R.
All inputs except R are edge-controlled, i. e. they react only to a 0/1 edge. The input
R is active for as long as a static 1 signal is present at it. Brief pulses are available at
the output EINI and AUSI when a status change of the output A occurs.

X
X
X
>

X
X
>
<

X
>
<
<

H
L
L
L

L
NA
L
H

NA : Invert ing of the previous state of A
X : State is ignored
> : 0/1 edge
< : no 0/1 edge
L : State 0
H : State 1

EIN AUS E R A

EIN BINARY
The output A is set with every 0/1 edge at the input EIN. However, this only applies

Function block description

ABB France Page C-262 1SBC006099R1001 C - 03/07

when the inputs AUS, E and R are inactive. Therefore, of all inputs the input EIN has
the lowest priority.

AUS BINARY
The output A is reset with every 0/1 edge at the input AUS. Therefore, the input AUS
has a higher priority than the input EIN, but a lower priority than the inputs E and R.

E BINARY
With every 0/1 edge at the input E, the block changes the status at the output A.
However, this only applies if the input R is inactive. Therefore, the input E has a
higher priority than the inputs EIN and AUS, but a lower priority than the input R.

R BINARY
The output A is reset when a static 1 signal is present at the input R.
The input R has a higher priority than the inputs E and EIN. A priority conflict with the
input AUS is not possible because both inputs have the same effect on the outputs.

A BINARY
The output A is changed corresponding to the definition of the inputs.

EINI BINARY
A pulse is generated at the output EINI with every 0/1 edge of the output A. The
length of this pulse is 1 program cycle.

AUSI BINARY :
A pulse is generated at the output AUSI with every 1/0 edge of the output A. The
length of this pulse is 1 program cycle.

LIFO STACK, LAST IN/FIRST OUT

FBD IL

LIFO
B/W
LADE
LESE
R
E

A
FST
L
V

CAL LIFO (R,LADE,LESE,E,B/W,#L,ANF,A,FST,L,V)

#L
ANF

PARAMETERS
B/W BINARY %I, %O, %M, %S, %K Binary data/word data
LADE BINARY %I, %O, %M, %S, %K Load LIFO
LESE BINARY %I, %O, %M, %S, %K Read LIFO
R BINARY %I, %O, %M, %S, %K Reset LIFO, 0/1 edge
E BINARY %I, %O, %M, %S, %K Enter data in the LIFO

Function block description

ABB France Page C-263 1SBC006099R1001 C - 03/07

 WORD %IW, %OW, %MW, %KW
#L DIRECT #, #H Number of memory locations
 CONSTANT (bytes)
ANF BINARY %I, %O, %M, %K Start of the LIFO in the flag
 WORD %IW, %OW, %MW, %KW area
A BINARY %I, %M Output of data from the LIFO
 WORD %OW, %MW
FST WORD %OW, %MW Filling level of the LIFO
L BINARY %O, %M LIFO empty
V BINARY %O, %M LIFO full

DESCRIPTION
This function block realizes a stack for binary or word data from which the data
written in last is read out first (last in/first out).

B/W BINARY
The input B/W serves to preselect binary or word processing.
B/W = 0 -> word processing
B/W = 1 -> binary processing
Binary or word processing is defined once and must not be changed during operation
of the LIFO.

LADE BINARY
The value present at the input E is transferred to the next free position of the LIFO by
means of a 1 signal at the LADE input. If the LIFO is “full” and a “load” signal is
present, the new value will not be read in. A new value can only be read in if a value
has been read out first. It is then transferred to the first position of the LIFO.

LESE BINARY
A 1 signal at the input LESE results in output of the current LIFO value through the
output A. If the LIFO is “empty”, a pending read order is ignored and the value 0 is
output through the output A. The output A is always set to 0 if there is no read order.

LADE and LESE
If load and read orders are present simultaneously, the value to be loaded is
forwarded directly from the input E to the output A. At the same time, the LIFO does
not store the value. The LIFO does not change its filling level in this mode. The value
output through the output FST remains constant. If the LIFO is empty, the output L
remains 1 and the output FST is set to 0.

R BINARY
A 0->1 edge at the input R results in the reset of the block. Therefore, values read in
before are no longer available. The output L assumes the value 1 and the outputs
FST and A assume the value 0.

R and LADE
If R and LADE signals are present simultaneously, the reset is performed first and
then directly afterwards the load operation. Therefore, the LIFO is reset and the new
value to be read in is then immediately stored in the LIFO as the first value.

Function block description

ABB France Page C-264 1SBC006099R1001 C - 03/07

R and LADE and LESE
The value at the input E is forwarded directly to the output A. The output L is set
permanently to 1 and the output FST is set permanently to 0.

E BINARY/WORD
The value to be transferred into the LIFO is specified at the input E.

#L DIRECT CONSTANT
The number of required memory locations (bytes) of the LIFO is specified at the input
#L. This quantity is specified as a direct constant and results from the following
formula :
 BINARY data : #L = Number of binary values to be stored
 WORD data : #L = 2 * Quantity of word values to be stored
 E.g. : BINARY data : 3 values -> #L = 3
 WORD data : 3 values -> #L = 6

The LIFO length parameter is subjected to a plausibility check for the value 0 and
also, in word processing mode, for an odd byte parameter. If the parameter specified
at the input #L is incorrect, the LIFO will assume the initial state (as after R).

ANF BINARY/WORD
The LIFO memory start address is specified as a binary or word flag at the input
ANF. The LIFO begins with the specified flag.
A BINARY/WORD
When the LIFO is read, the current value is available at the output A. If no read order
is available, the value 0 is output.

FST WORD
The output FST indicates the current filling level of the LIFO at any time. The filling
level is the number of binary or word values stored in the LIFO.

L BINARY
The output L indicates whether or not the LIFO is empty.
L = 0 -> LIFO is not empty
L = 1 -> LIFO is empty

V BINARY
The output V indicates whether or not the LIFO is full.
V = 0 -> LIFO is not full
V = 1 -> LIFO is full
No more values can be read in if the LIFO is full. A value can only be read in again
once a value has been read out. This then takes place as from the start of the LIFO.

Function block description

ABB France Page C-265 1SBC006099R1001 C - 03/07

Example

FBD

IL

LIFO
B/W
LADE
LESE
R
E
#L
ANF

A
FST
L
V

%K

%M

%M
%M
%M

%M

00,01
01,01
01,05
01,09
06,04

9
01,10

00,01

12,05
11,07

01,15

%M
%MW
%A
%A

LIFO for 9 binary data, stored as of %M 01,10

FBD

LIFO
B/W
LADE
LESE
R
E
#L
ANF

A
FST
L
V

LIFO for 3 word data, stored as of %MW 10,00

%K

%MW

%M
%M
%M

%MW

00,00
01,00
01,01
02,00
03,01

6
10,00

03,00

11,01
11,02

03,01

%MW
%MW
%M
%M

IL

CAL LIFO (%M01,09, %M01,01, %M01,05, %M06,04, %K00,01, #9, %M01,10,
 %M12,05, %MW11,07, %A00,01, %A01,15)

CAL LIFO (%M02,00, %M01,00, %M01,01, %MW03,01, %K00,00, #6, %MW10,00,
 %MW11,01, %MW11,02, %M03,00, %M03,01)

Function block description

ABB France Page C-266 1SBC006099R1001 C - 03/07

LIZU LIST ALLOCATOR

FBD/LD IL

LIZU
ZEIG
#E

A
A= #E

!BA
LIZU

0

ZEIG
#n
#E

A
A= #E

PARAMETERS
ZEIG WORD %OW, %IW, %MW, %KW Pointer to the list of direct
 constants
#n DIRECT #, #H Number of direct constants in
 CONSTANT the list
#E DIRECT #, #H List of direct constants;
 CONSTANT capable of duplication
A WORD %OW, %MW Selected direct constant
A=#E BINARY %O, %M 0 < ZEIG < #n, i. e. pointer in
 the valid range

DESCRIPTION
This function block has a list of direct constants at its inputs #E (#E0... #En-1). With a
list pointer, it selects a constant out of this list and outputs it through its output A.

ZEIG WORD
The pointer to the direct constant to be selected from the list is specified at the input
ZEIG. The following affiliations apply :
ZEIG = 0 -> Direct constant at #E0
ZEIG = 1 -> Direct constant at #E1
. . . .
ZEIG = n-1 -> Direct constant at #En-1

The value at the input ZEIG is subjected to a validity check. The result of this range
check is signalled at the output A=#E.
Allowed range : 0 < ZEIG < n-1
 Where n : Number of the inputs #E0...#En-1.
No allocation to the output A takes place if the value at the input ZEIG is outside the
allowed range.

Function block description

ABB France Page C-267 1SBC006099R1001 C - 03/07

#n DIRECT CONSTANT
ONLY used in IL language
The number n of the direct constants planned at the inputs #E is specified at the input
#n. This is specified as a direct constant.

#E DIRECT CONSTANT
The input #E is capable of duplication (#E0...#En-1). One of the direct constants
specified at the inputs #E is selected with the value at the input ZEIG and allocated to
the output A.

A=#E BINARY
The output A=#E specifies whether the value of the list pointer (input ZEIG) is within
the allowed range.
Allowed range : 0 < ZEIG < n-1
 where n : Number of the direct constants at #E0...#En-1.
The following applies :
ZEIG in the allowed range -> A=#E = 1
ZEIG in the forbidden range -> A=#E = 0
If the list pointer has a forbidden value, no constant can be selected nor allocated to
the output A. In this case, the output A is not updated.

A WORD
The value of the selected direct constant is allocated to the operand at the output A.

MAX MAXIMUM VALUE GENERATOR

FBD IL

!BA 0
MAX

#n
E1
MAX

MAX

E1 MAX

PARAMETERS
#n DIRECT #, #H Number of inputs
 CONSTANT
E1 WORD %IW, %MW, %OW, %KW 1st input value;
 capable of duplication
MAX WORD %OW, MW Output (maximum value)

DESCRIPTION
From n operands, this function block generates the maximum value and allocates it to
the output.

Function block description

ABB France Page C-268 1SBC006099R1001 C - 03/07

#n DIRECT CONSTANT (#, #H)
Only used in IL.
The number of operands from which the maximum value is to be determined is
specified at the input #n. This is specified as a direct constant.
n > 0 applies.

E1 WORD
The input must be duplicated as many times as necessary until the number of inputs
specified at the input #n exists. On the basis of the values of the operands at these
inputs, the maximum value is determined and is allocated to the output MAX.

MAX WORD
The maximum value from the n input operands is available at the output MAX.

MAXD MAXIMUM VALUE GENERATOR, DOUBLE WORD

FBD IL

!BA 0
MAXD

#n
E1
MAX

MAXD

E1 MAX

PARAMETERS
#n DIRECT #, #H Number of inputs
 CONSTANT
E1 DOUBLE %MD, %KD 1st input value;
 WORD capable of duplication
MAX DOUBLE %MD Output (maximum value)
 WORD

DESCRIPTION
From n operands, this function block generates the maximum value and allocates it to
the output.

#n DIRECT CONSTANT (#, #H)
Only used in IL.
The number of operands from which the maximum value is to be determined is
specified at the input #n. This is specified as a direct constant.
n > 0 applies.

E1 DOUBLE WORD
The input must be duplicated as many times as necessary until the number of inputs
specified at the input #n exists. On the basis of the values of the operands at these
inputs, the maximum value is determined and is allocated to the output MAX.

Function block description

ABB France Page C-269 1SBC006099R1001 C - 03/07

MAX DOUBLE WORD
The maximum value from the n input operands is available at the output MAX.

MAZ MAXIMUM VALUE GENERATOR AS A FUNCTION OF TIME

FBD IL

MAZ
E1
S
INIT MAZ

CAL MAZ (E1,S,INIT,MAZ)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input value whose maximum
 time is to be determined
S BINARY %I, %M, %O, %S, %K Set input
INIT WORD %IW, %MW, %OW, %KW Initial value
MAZ WORD %OW, %MW Maximum value

DESCRIPTION
This function block determines, on the basis of the time progression of a signal, its
maximum value occurring up to the current point in time.

The value of the operand at the input E1 is compared to the previously occurring
maximum value.

If the input value E1 is higher than the previously occurring maximum, the input value
is the new maximum value and is allocated to the operand at the output MAZ.

If the input value E1 is less than the previously occurring maximum value, the
previous maximum value is allocated to the output.

The output MAZ is set to the value of the operand at the input INIT (initial value) with
the 0->1 edge at the binary input S.

The following applies :
 E1 < MAZ -> MAZ = MAZ
 E1 > MAZ -> MAZ = E1
 S = 0->1 edge -> MAZ = INIT

Function block description

ABB France Page C-270 1SBC006099R1001 C - 03/07

MAZD MAXIMUM VALUE GENERATOR AS A FUNCTION OF
TIME, DOUBLE WORD

FBD IL

MAZD
E1
S
INIT MAZ

CAL MAZD (E1,S,INIT,MAZ)

PARAMETERS
E1 DOUBLE %MD, %KD Input value whose maximum
 WORD time is to be determined
S BINARY %I, %M, %O, %S, %K Set input
INIT DOUBLE %MD Initial value
 WORD
MAZ DOUBLE %MD Maximum value
 WORD

DESCRIPTION
This function block determines, on the basis of the time progression of a signal, its
maximum value occurring up to the current point in time.

The value of the operand at the input E1 is compared to the previously occurring
maximum value.

If the input value E1 is higher than the previously occurring maximum, the input value
is the new maximum value and is allocated to the operand at the output MAZ.

If the input value E1 is less than the previously occurring maximum value, the
previous maximum value is allocated to the output.

The output MAZ is set to the value of the operand at the input INIT (initial value) with
the 0->1 edge at the binary input S.

The following applies :
 E1 < MAZ -> MAZ = MAZ
 E1 > MAZ -> MAZ = E1
 S = 0->1 edge -> MAZ = INIT

Function block description

ABB France Page C-271 1SBC006099R1001 C - 03/07

MIN MINIMUM VALUE GENERATOR

FBD IL

!BA 0
MIN

#n
E1
MIN

MIN

E1 MIN

PARAMETER
#n DIRECT #, #H Number of inputs
 CONSTANT
E1 WORD %IW, %MW, %OW, %KW 1st input value;
 capable of duplication
MIN WORD %OW, %MW Output (minimum value)

DESCRIPTION
This function block determines the minimum value from n operands and allocates it to
the output.

#n DIRECT CONSTANT (#, #H)
Only used in IL.
The number of operands from which the minimum value is to be determined is
specified at the input #n. This is specified as a direct constant.
n > 0 applies.

E1 WORD
The input E1 must be duplicated as often as the number of inputs specified at the
input #n exists. On the basis of the values of the operands at these inputs, the
minimum value is determined and is allocated to the output MIN.

MIN WORD
The minimum value of the n input operands is available at the output MIN.

Function block description

ABB France Page C-272 1SBC006099R1001 C - 03/07

MIND MINIMUM VALUE GENERATOR, DOUBLE WORD

FBD IL

!BA 0
MIND

#n
E1
MIN

MIND

E1 MIN

PARAMETERS
#n DIRECT #, #H Number of inputs
 CONSTANT
E1 DOUBLE %MD, %KD 1st input value;
 WORD capable of duplication
MIN DOUBLE %MD Output (minimum value)
 WORD

DESCRIPTION
This function block determines the minimum value from n operands and allocates this
value to the output.

#n DIRECT CONSTANT (#, #H)
Only used in IL.
The number of operands from which the minimum value is to be determined is
specified at the input #n. This is specified as a direct constant.
n > 0 applies.

E1 DOUBLE WORD
The input E1 must be duplicated until the number of inputs specified at the input #n
exists. On the basis of the values of the operands at these inputs, the minimum value
is determined and is allocated to the output MIN.

MIN DOUBLE WORD
The minimum value of the n input operands is available at the output MIN.

Function block description

ABB France Page C-273 1SBC006099R1001 C - 03/07

MUXR MULTIPLEXER WITH RESET

FBD IL

MUXR

E
INDX

! BA 0
MUXR

E
INDX
#n
INOX
AA INOK

PARAMETERS
E WORD %IW, %OW, MW, KW Input
INDX WORD %IW, %OW, MW, KW Index input
#n DIRECT #,#H Quantity n of word outputs
 CONSTANT A0 ... An-1
INOK BINARY %O, M Range monitoring for input
 INDX
A WORD %OW, MW Word outputs A0 ... An-1;
 capable of duplication

DESCRIPTION
This function block connects the input E to one of the outputs A0...An-1 depending on
the input INDX.
The word outputs that are not connected are set to 0.
The validity of the value at the input INDX is checked.

Relationship between E, INDX and A0...An-1 :
The input INDX is used to define with which of the outputs A0...An-1 the input E is
connected.

The following apply : INDX = 1 : E -> A0
 INDX = 2 : E -> A1
 INDX = 3 : E -> A2
 : : : :
 INDX = n : E -> An-1
 where 1 < INDX < n < 32767 (theoretically)

E WORD
Input which is switched through to one of the outputs A0...An-1.

INDX WORD
Index input for selection of one of the outputs A0...An-1.

Function block description

ABB France Page C-274 1SBC006099R1001 C - 03/07

Value range : 1 < INDX < n
Note : INDX = 0 can be used to initialize the outputs A0 ... An-1 (A0 ... An-1 = 0).

#n DIRECT CONSTANT
Only used in IL.
Quantity n of word outputs A0 ... An-1.

INOK BINARY
Range monitoring of the INDX input
The output indicates whether or not the input INDX is within the valid range.
Valid range : 1 < INDX < n
INOK = 1 -> Index input INDX within the valid range
INOK = 0 -> Index input INDX in the invalid range -> A0...An-1 = 0

If the word input INDX is not within the valid range, all word outputs A0 to An-1 are
set to 0. Thus, for example, INDX = 0 can be used to initialize the outputs (A0...An-1
= 0).

A WORD
The output A is capable of duplication (A0...An-1). The input E is allocated to one of
the n outputs A0...An-1.

MUXRD MULTIPLEXER, DOUBLE WORD WITH RESET

FBD IL

MUXRD

E
INDX

! BA 0
MUXRD

E
INDX
#n
INOX
AA INOK

PARAMETERS
E DOUBLE %MD, %KD Input
 WORD
INDX WORD %IW, %OW, %MW, %KW Index input
#n DIRECT #,#H Quantity n of double word
 CONSTANT outputs A0 ... An-1
INOK BINARY %O, %M Range monitoring for input
 INDX
A WORD %MD Double word outputs A0...An-1;
 capable of duplication

Function block description

ABB France Page C-275 1SBC006099R1001 C - 03/07

DESCRIPTION
This function block connects the input E to one of the outputs A0...An-1 depending on
the input INDX.
The double word outputs that are not connected are set to 0.
The validity of the value at the input INDX is checked.

Relationship between E, INDX and A0...An-1 :
The input INDX is used to define with which of the outputs A0...An-1 the input E is
connected.

The following applies :
 INDX = 1 : E -> A0
 INDX = 2 : E -> A1
 INDX = 3 : E -> A2
 : : : :
 INDX = n : E -> An-1
 where : 1 < INDX < n < 32767 (theoretically)

E DOUBLE WORD
Input which is switched through to one of the outputs A0...An-1.

INDX WORD
Index input for selection of one of the outputs A0...An-1.
Value range : 1 < INDX < n
Note : INDX = 0 can be used to initialize the outputs A0...An-1 (A0...An-1 = 0).

#n DIRECT CONSTANT
Only used in IL.
Quantity n of double word outputs A0...An-1.

INOK BINARY
Range monitoring of the input INDX
The output indicates whether or not the input INDX is within the valid range.
Valid range : 1 < INDX < n
INOK = 1 -> Index input INDX within the valid range
INOK = 0 -> Index input INDX in the invalid range -> A0...An-1 = 0

If the word input INDX is not within the valid range, all double word outputs A0 to An-
1 are set to 0. Therefore, for example, INDX = 0 can be used to initialize the outputs
(A0...An-1 = 0).

A DOUBLE WORD
The output A is capable of duplication (A0...An-1). The input E is allocated to one of
the n outputs A0...An-1.

Function block description

ABB France Page C-276 1SBC006099R1001 C - 03/07

NPULSE

FBD IL

NPULSE
VAL

FREQ
NB

CAL NPULSE (VAL,RESET,FREQ,
NB,RDY,VAL_P)

VAL P
RDY

RESET

PARAMETERS
VAL BINARY %I, %M, %O, %S Validation bit
RESET BINARY %I, %M, %O, %S Reset
FREQ WORD %IW, %MW, %OW, %KW Frequnecy
NB WORD %IW, %MW, %OW, %KW Number of pulses
RDY BINARY %M, %O Ready
VAL_P WORD %OW, %MW Number of pulses elapsed

DESCRIPTION
The %O 62.00 output of central units serie 40 and 50 can be used for a pulse
generator.

Pulses are generated at the output %O 62.00.
The rising edge at the input VAL starts the pulse generator from the beginning.
The first period starts with a high signal.

%O 62.00

NBVAL

T w ith T < 1 cycle t ime

0

1

VAL BINARY
Validation bit
VAL 0->1 The pulse mode is validated. %O 62.00 can not be used normally.

RESET BINARY
Reset =1 stops the pulse generator, the output is set to 0 till reset =1

FREQ WORD
The frequency is defined with : 1/((256-FREQ)*384 10 -6) Hz

Function block description

ABB France Page C-277 1SBC006099R1001 C - 03/07

Pulse frequency : 10 Hz ≤ Frequency ≤ 2,604 kHz

FREQ = 0 Frequency = 10.173Hz
FREQ = 1 Frequency = 11.212Hz
...
FREQ = 255 Frequency = 2,604Khz

If FREQ <0 then Frequency = 10.173Hz
If FREQ > 255 then Frequency = 2,604Khz

NB WORD
Number of pulses to be generated.
If NB<0 then the function NPULSE generates continiuously pulses till RESET input is
valided.

RDY BINARY
Ready bit
RDY = 0 Counting
RDY = 1 No counting

VAL_P WORD
Number of pulses elapsed
This number is estimated by the function bloc every cycle time. It doesn’t represent
the exact value.

The internal memory bit %O62.00 is disabled during pulses are generating

SFEHSU ERROR SEARCHER WITH STORAGE

FBD IL

END
NR

SFEHSU
SFEHSU
S
R
FSU
FKOP
B

S
R
FSU
FKOP
#n
B
END
NR

!BA 0

PARAMETERS
S BINARY %I, %O, %M, %S, %K Set
R BINARY %I, %O, %M, %S, %K Reset
FSU BINARY %I, %O, %M, %S, %K Enable search
FKOP BINARY %I, %O, %M, %S, %K Enable copy
#n DIRECT #, #H Number of binary variables
 CONSTANT

Function block description

ABB France Page C-278 1SBC006099R1001 C - 03/07

B BINARY %I, %O, %M, %S, %K List of binary variables;
 capable of duplication
END BINARY %O, %M List end reached
NR WORD %OW, %MW List number of the variable
 found

DESCRIPTION
This function block successively searches through a list of binary variables (%I, %O,
%M, %S) for set binary variables. If a set binary variable is found, its number is
output through the output NR. In doing so, the block does not directly search through
the input list for the set binary variables, but through its image, which it stores in an
internal list. After a set binary variable has been found in the internal list and its
number has been output through the output NR, this binary variable is deleted from
the internal list.

S BINARY
A 1 signal at the input S results in the following :
– All set binary variables of the input list are additionally entered in the internal list
(ORed with the internal list).
– The block is prepared for a search from the start of the internal list, i. e. the internal
list’s pointer is set to its start.
– The output END (list end reached) is set to 1 and the output NR (number of the
binary variable) is set to 0.
– If a set variable has been found during the previous search in the internal list, this is
deleted from the internal list in order to avoid a double message.

R BINARY
– All set binary variables in the internal list are deleted when the input R has a 1
signal. The set binary variables at the block’s inputs are not affected by this.
– The pointer to the internal list is not changed, i. e. a subsequent search begins as
from the point to which the pointer of the internal list pointed before deletion.
– The output END is set to 1 and the output NR is set to 0.

FSU BINARY
– A 1 signal enables the search for set binary variables in the internal list.
– A 0 signal disables the search; in doing so, the old values at the outputs are
reallocated during each cycle.
– If a binary variabe with the value 1 has been found in the internal list, the number of
this set binary variable is output through the output NR. The binary variable is then
cleared from the internal list. The output END (list end reached) is set to 0 if the
binary variable is not the last one in the list.
– Numbering of the binary variables begins with 1.
– The output END retains the value 0 as long as the block has not reached the end of
the internal list during the search.
– Each time it is called again, the block continues the search in the internal list,
beginning with the next binary variable a fter the one found last. Beforehand, the
binary variable found last is deleted from the internal list in order to avoid a double
message.
– The following applies if the end of the internal list is reached during the search :

Function block description

ABB France Page C-279 1SBC006099R1001 C - 03/07

 • the output END (list end reached) is set to 1.
 • the number of the binary variable found last in the internal list is output through the
output NR.
 • each further time the block is called, the internal list is searched through as from
the point of the binary variable found last. The search ends when a set binary
variable is found or when the end of the list is reached.
- If the last binary variable of the list is set and has been found during the search, the
search stops there until a new search from the start of the internal list is prepared by
means of the input S.
– If no set binary variable has been found during the course of a search from the start
of the list, the output END (list end reached) is set to 1 and the output NR (number)
retains the value 0. Each time the block is called again, the whole list is always
searched through until a binary variable assumes the value 1 and is found.

FKOP BINARY
When the input FKOP has a 1 signal, all set binary variables of the input list are
additionally entered in the internal list. At the same time, the binary variables already
set in the internal list are retained. Updating is realized by “ORing” of the input list
with the internal list.
Restart when searching after updating
Updating of the internal list has no influence on the next search. The search begins
precisely at the point in the internal list where it would also have been begun if no
updating had taken place.

#n DIRECT CONSTANT
ONLY used in IL language
The number of binary variables planned at the inputs B0...Bn-1 is specified at the
input #n. This is specified as a direct constant.
Important : The quantity at the input #n must be an integral multiple of 16. Dummy
operands may also be planned (e.g. %K0,0 is specified at all inputs not needed) in
order to keep to this stipulation.

B BINARY
The input B is capable of duplication (B0...Bn-1). The binary variables to be examined
are specified at the inputs B0...Bn-1. The number of variables must always be an
integral multiple of 16. To achieve this, assign %K0,0 = 0 to inputs Bi that are not
needed.

END BINARY
Whether or not the end of the list has been reached during the search is signalled at
the output END.
END = 0 -> List end not reached
END = 1 -> List end reached
If the last variable of the list is set and has been found during the search just carried
out, its number is output through the output NR and the value 1 is additionally
allocated to the output END.

NR WORD
The list number of the variable found last is output through the output NR. The
following affiliations apply :

Function block description

ABB France Page C-280 1SBC006099R1001 C - 03/07

Variable at the input List number

B0
B1
.
.
.
Bn-1

1
2
.
.
.
n

If the end of the list is reached during the search without a new variable having been
found, the number of the variable found at last continues to be output through the
output NR.
The value 0 is output through the output NR if no variable is set in the list.

Priorities of the inputs S, R, FSU, FKOP
- The set input S has the highest priority. No other input is processed as long as the
input S has a 1 signal.
- The reset input R has the second highest priority. The subsequent inputs are not
processed as long as the input R has a 1 signal.
- The update input FKOP has priority over the enable search input FSU.
Updating of the internal list (input FKOP) :
Case 1 : Updating enabled (FKOP = 1)
If updating is enabled, all set binary input variables are additionally entered in the
internal list. If the search is enabled at the input FSU, it is carried out immediately
after updating of the internal list.
Case 2 : Updating not enabled (FKOP = 0)
If updating is not enabled, the search is carried out immediately if enabled at the input
FSU.
If the search is not enabled in both cases, the old values are output through the
outputs END and NR.

Function block description

ABB France Page C-281 1SBC006099R1001 C - 03/07

UHR CLOCK

FBD IL

UHR

FREI
S
SEC
MIN
H

AMIN
AH

AKT
FEHL
ASEC

CAL UHR (FREI,S,SEC,MIN,H,TAG,MON,JHR,
WTG,AKT,FEHL,ASEC,AMIN,AH,
ATAG,AMON,AJHR,AWTG)

TAG
MON
JHR
WTG

AJHR
AWTG

ATAG
AMON

PARAMETERS
FREI BINARY %I, %O, %M, %K, %S Enable block processing
S BINARY %I, %O, %M, %K, %S 0/1 edge sets the time and date
SEC WORD %IW, %OW, %MW, %KW Set input for the seconds
MIN WORD %IW, %OW, %MW, %KW Set inputs for the minutes
H WORD %IW, %OW, %MW, %KW Set inputs for the hours
TAG WORD %IW, %OW, %MW, %KW Set inputs for the days
MON WORD %IW, %OW, %MW, %KW Set inputs for the months
JHR WORD %IW, %OW, %MW, %KW Set inputs for the years
WTG WORD %IW, %OW, %MW, %KW Set inputs for the weekdays
AKT BINARY %O, %M Topicality (usefulness) of the
 data at the outputs
FEHL WORD %OW, %MW Error identifier
ASEC WORD %OW, %MW Seconds output
AMIN WORD %OW, %MW Minutes output
AH WORD %OW, %MW Hours output
ATAG WORD %OW, %MW Days output
AMON WORD %OW, %MW Months output
AJHR WORD %OW, %MW Years output
AWTG WORD %OW, %MW Weekday No. output

DESCRIPTION
This function block allows users to set and display the current time and the current
date.
The clock is set by means of the set inputs for the time and date. The values present
at the set inputs are adopted by a 0/1 edge at the input S. As long as a 1 signal is
present at the FREI input, the current date and time are indicated at the block’s
outputs.

FREI BINARY

Function block description

ABB France Page C-282 1SBC006099R1001 C - 03/07

Block enable
FREI = 0 : The block is not processed. The AKT and FEHL outputs are set to 0. The
time and date outputs are no longer changed by the block.
FREI = 1 : Block is processed

S BINARY
Set inputs for date and time
In the event of a 0/1 edge at the input S, the clock is set to the values present at the
time and date inputs. During the setting, the time and date at the block’s output are
invalid (output AKT = 0).
If the specified set values are inadmissible, the AKT output is set to 0 and an error
message appears at the FEHL output. The values present at the time and date
outputs are invalid in this case. The clock has to be set again.

SEC WORD
Set input for the seconds.
Value range : 0...59.

MIN WORD
Set input for the minutes.
Value range : 0...59.

H WORD
Set input for the hours.

The clock operates in 24 hour mode, i.e. it changes from 23 :59 :59 h to 0 :0 :0 h.
Value range : 0...23.

TAG WORD
Set input for the days (which day of the month)

Note for 07 KR 31:
The clock knows the number of days depending on the months and leap years. For
the clock, a leap year exists when the year number is an integral multiple of 4. The
maximum value for the days (28, 29, 30, 31) depends on the month.
Value range : 1...28, 29, 30, 31.

MON WORD
Set input for the month.
Value range : 1...12.

JHR WORD
Set input for the years.
The clock only indicates the years and decades.
Value range : 0...99.

WTG WORD
Set input for the number of the weekday.
Value range : 1...7.

Function block description

ABB France Page C-283 1SBC006099R1001 C - 03/07

Example :
The clock is set on Friday, 01.07.88. If the value 6 is entered for the week day
number, Friday is now the 6th day of the week and Sunday is defined as the 1st day
of the week.

AKT BINARY
Indication of the topicality (usefulness) of the outputs.
AKT is 1 if :
- The date and time outputs were updated in the current cycle;
- The values at the outputs are consistent, i.e. none of the values at the date or time
outputs has changed during updating. They all originate from the same clock pulse;
- The clock was set correctly;
 AKT = 1 -> FEHL = 0 : Date/time are valid.
 AKT = 0 -> FEHL > 0 : Date/time are invalid.
The reason why is displayed at the output FEHL as error identifier.

FEHL WORD
In the event of an error, the relevant error identifier is available at the output FEHL.

Meanings of the error identifiers :
- No error has occurred :
 FEHL = 0 : No error has occurred or FREI = 0,i.e. block disabled
- Error when setting the clock :
 FEHL = 1 : 0 < SEC < 59 has not been obeyed
 FEHL = 2 : 0 < MIN < 59 has not been obeyed
 FEHL = 3 : 0 < H < 23 has not been obeyed
 FEHL = 4 : 1 < TAG < 28, 29, 30, 31 (depending on the month, not
 tested in 07 KR 31) has not been obeyed
 FEHL = 5 : 1 < MON < 12 has not been obeyed
 FEHL = 6 : 0 < JHR < 99 has not been obeyed
 FEHL = 7 : 1 < WTG < 7 has not been obeyed

The following errors are not used in the 07 KR 31 :
 FEHL = 8 : The transmission mailbox is currently occupied by another
 user. The block waits till the mailbox is free and thereafter sets date/time.
 FEHL = 9 : Date/time at the outputs are invalid.
 FEHL = 10 : Date/time are currently being set; this may take several PLC
 cycles.
 FEHL = 11 : Setting was not successful, please repeat (unknown request
 code).
 FEHL = 12 : Setting was not successful, please repeat (invalid mail
 parameter).
 FEHL = 13 : Setting was not successful, please repeat (request code
 cannot be excecuted).
- Error when displaying date and time :
 FEHL = 9 : Date/time at the outputs are invalid.

Outputs for date and time
The outputs are updated whenever a 1 signal is present at the FREI input and the
clock has been set once. During the setting the outputs for date and time are invalid.

Function block description

ABB France Page C-284 1SBC006099R1001 C - 03/07

If the AKT output is equal to 1, the outputs for the date and time are valid. In the
event of an error, an error identifier is output through the output FEHL.

ASEC WORD
Seconds output.
Value range : 0...59

AMIN WORD
Minutes output.
Value range : 0...59.

AH WORD
Hours output.
Value range : 0...23.

ATAG WORD
Days output.
Value range : 1...28, 29, 30, 31.

AMON WORD
Months output.
Value range : 1...12.

AJHR WORD
Years output.
Value range : 0...99.

AWTG WORD
Weekday No. output.
Value range : 1...7.

USM SWITCHOVER MULTIPLEXER

FBD IL

USM

ADR
E

CAL USM (ADR,E)

PARAMETERS
ADR WORD %IW, %OW, %MW, %KW Indirect address of the operand
 to be written
E WORD %OW, %MW Value to be allocated to the
 operand

Function block description

ABB France Page C-285 1SBC006099R1001 C - 03/07

DESCRIPTION
This function block allocates the value from the input E to an operand, using the
method of indirect addressing.

Note : The USM block can only be used meaningfully in conjunction with the ADRWA
block.
The value of the operand at the input ADR is interpreted as the address of the
operand to be written (indirect addressing). Therefore, the operand at the input ADR
and its value represent an indirect address. This indirect address is generated by the
ADRWA function block.

Note : Refer to the function block ADRWA for an explanation of the method of indirect
addressing and the possibilities of using the USM function block.

UST SWITCHOVER GATE

FBD IL

UST
0/1
E1

1

CAL UST (0/1,E1,0,1)

0

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input
E1 WORD %IW, %MW, %OW, %KW Input
0 WORD %OW, %MW Output for 0/1 = 0
1 WORD %OW, %MW Output for 0/1 = 1

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the value of the word operand at the input
E1 to the word operand at the output 0.

A 1 signal at the binary input 0/1 allocates the value of the word operand at the input
E1 to the word operand at the output 1.

The respective output that is not allocated retains its old value, but the old value is
not updated.

Function block description

ABB France Page C-286 1SBC006099R1001 C - 03/07

USTD SWITCHOVER GATE, DOUBLE WORD

FBD IL

USTD
0/1
E1

1

CAL USTD (0/1,E1,0,1)

0

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input
E1 DOUBLE %MD, %KD Input
 WORD
0 DOUBLE %MD Output for 0/1 = 0
 WORD
1 DOUBLE %MD Output for 0/1 = 1
 WORD

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the value of the double word operand at
the input E1 to the double word operand at the output 0.

A 1 signal at the binary input 0/1 allocates the value of the double word operand at
the input E1 to the double word operand at the output 1.

The respective output that is not allocated retains its old value, but the old value is
not updated.

USTR SWITCHOVER GATE WITH RESET

FBD IL

USTR
0/1
E1

1

CAL USTR (0/1,E1,0,1)

0

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input

Function block description

ABB France Page C-287 1SBC006099R1001 C - 03/07

E1 WORD %IW, %MW, %OW, %KW Input
0 WORD %OW, %MW Output for 0/1 = 0
1 WORD %OW, %MW Output for 0/1 = 1

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the value of the word operand at the input
E1 to the word operand at the output 0.

A 1 signal at the binary input 0/1 allocates the value of the word operand at the input
E1 to the word operand at the output 1.

The respective output that is not allocated is set to 0.

USTRD SWITCHOVER GATE WITH RESET, DOUBLE WORD

FBD IL

USTRD
0/1
E1

1

CAL USTDR (0/1,E1,0,1)

0

PARAMETERS
0/1 BINARY %I, %M, %O, %S, %K Switchover input
E1 DOUBLE %MD, %KD Input
 WORD
0 DOUBLE %MD Output for 0/1 = 0
 WORD
1 DOUBLE %MD Output for 0/1 = 1
 WORD

DESCRIPTION
A 0 signal at the binary input 0/1 allocates the value of the double word operand at
the input E1 to the double word operand at the output 0.

A 1 signal at the binary input 0/1 allocates the value of the double word operand at
the input E1 to the double word operand at the output 1.

The respective output that is not allocated is set to 0.

Function block description

ABB France Page C-288 1SBC006099R1001 C - 03/07

WDEC WORD DECODER

FBD IL

WDEC
E
EC

NR
E=EC

!BA
WDEC

0

E
#n
EC
E=EC
NR

PARAMETERS
E WORD %IW, %OW, %MW, %KW Input
#n DIRECT #, #H Number of reference values
 CONSTANT
EC WORD %IW, %OW, %MW, %KW Reference value;
 duplicable
E=EC BINARY %O, %M Coincidence indication
NR WORD %OW, %MW Number of the reference value
 in the event of coincidence

DESCRIPTION
This function block compares the value of the operand at the input E to the reference
values of the operands at the inputs EC (EC0 ... ECn-1). The result of the
comparison is signalled at the outputs.
If the input E agrees with at least 1 of the n reference values EC, the output E=EC is
set to 1. The number of the 1st reference value EC agreeing with the input E is
allocated to the operand at the output NR. Therefore, the number may assume a
value from 1 to n.The outputs E=EC and NR are set to 0 if no agreement between the
input value E and the reference value EC is determined.

No coincidence -> The outputs are : E=EC = 0 and NR = 0
Coincidence -> The outputs are : E=EC = 1 and NR = n, where n > 1
 E = EC0 -> NR = 1
 E = EC2 -> NR = 2
 . . .
 E = ECn-1 -> NR = n

Note : In IL language, the number of inputs EC must be specified as a direct
constant at the input #n.

Function block description

ABB France Page C-289 1SBC006099R1001 C - 03/07

WUMC WORD RECODER

FBD/LD IL

WUMC
E
EC/AC

A
E= EC

!BA
WUMC

0

E
#2* n
EC/AC
E= EC
A

PARAMETERS
E WORD %IW, %OW, %MW, %KW Input
#2*n DIRECT #, #H Quantity n of reference values
 CONSTANT (multiplied by 2)
EC/AC WORD %IW, %OW, %MW, %KW Reference value and output
 code; duplicable
E=EC BINARY %O, %M Coincidence indication
A WORD %OW, %MW Output of the output code’s
 value

DESCRIPTION
This function block compares the value of the operand at the input E to the reference
values of the operands at the inputs EC/AC. If the input E agrees with at least one of
the reference values EC/ACi, the output E=EC is set to 1. The output A receives the
value of the output code EC/ACn+i, which is allocated to the reference value EC/ACi
found. At each reference value at the inputs EC/ACi is assigned an operand for the
output code EC/ACn+1.

Note : In IL language, the number of inputs EC must be specified as a direct constant
at the input #2*n.

E WORD
The input E specify the value to be compared to the values of the n reference values
EC/ACi.

#2*n DIRECT CONSTANT (#, #H)
Only used in IL language
The total number (2*n) of the reference values (EC/AC0...EC/ACn-1) and output
codes (EC/ACn...EC/AC2n-1) is specified at the input #2*n. This is specified as an
indirect constant.

Function block description

ABB France Page C-290 1SBC006099R1001 C - 03/07

EC/AC WORD
The input EC/AC must be duplicated according to the required number of reference
values. The operands for the reference values are specified at the inputs
EC/AC0...EC/ACn-1. The value of the operand at the input E is compared to the
reference values. The output codes are specified at the inputs EC/ACn...EC/AC2n-1.
The output code EC/ACi+n is output through the output A if the input E agrees with
one of the reference values EC/ACi.
Affiliations between the reference values and output codes :
EC/AC0 <-> EC/ACn
EC/AC1 <-> EC/ACn+1
 . .
 . .
EC/ACn-1 <-> EC/ACn+(n-1)

E=EC BINARY
Agreement between the operand value of the input E and one of the reference values
is signalled at the output E=EC.
The following applies : E=EC = 0 -> No coincidence
 E=EC = 1 -> Coincidence

A WORD
The output code EC/ACn+i is output through the output A if the input E agrees with
one of the reference values EC/ACi.
The following applies : A = 0 -> No coincidence
 A = EC/ACn+i -> Coincidence

Function block description

ABB France Page C-291 1SBC006099R1001 C - 03/07

10 Memory access functions

Memory
Access

serie
from pages C-291 to C-317

Ctler 40 50 90 30

COPY Copying memory areas x x x x
DWAES Write double word in the event of value

change
 x

DWOL Read double word with enable x
DWOS Write double word with enabling x
FDEL Delete data segment in Flash EPROM x
FRD Read data segment from the Flash

EPROM
 x

FWR Write data segment to the Flash EPROM x
IOR Read byte value from I/O address x
IOW Write byte value to I/O address x
RDB Read binary values from historical values

memory
 x

RDDW Read double word values from historical
values memory

 x

RDW Read word values from historical values
memory

 x

WAES Write word in the event of value change x
WOL Read word with enabling x x x x
WOS Write word with enabling x
WRB Write binary values into historical values

memory
 x

WRDW Write double word values to historical
values memory

 x

WRW Write word values to historical values
memory

 x

Function block description

ABB France Page C-292 1SBC006099R1001 C - 03/07

COPY COPYING MEMORY AREAS

FBD IL

FREI
ANZ
QOFF
QSEG
ZOFF
ZSEG

CAL COPYCOPY

PARAMETERS
FREI BINARY %I,%O,%M,%K,%S Block enable
ANZ WORD %IW,%OW,%MW,%KW Quantity (n) of words to be
 copied
QOFF WORD %IW,%OW,%MW,%KW Offset address of the start of
 the source area
QSEG WORD %IW,%OW,%MW,%KW Segment address of the start of
 the source area
ZOFF WORD %IW,%OW,%MW,%KW Offset address of the start of
 the target area
ZSEG WORD %IW,%OW,%MW,%KW Segment address of the start of
 the target area

DESCRIPTION
This function block copies n words from a source memory area into a target memory
area. The contents of the source memory area are not changed.
In each case, the start of the source and target memory areas is specified at the
block’s inputs by means of the offset and segment addresses.

FREI BINARY
Block enable
FREI = 0 -> The block is not processed
FREI = 1 -> The block is processed

ANZ WORD
Quantity n of words to be copied.
The following applies : 0 < n < + 8000H
 n = 0 :No copying
 n = 8000H : A whole segment (64 kbytes) is copied

QOFF WORD
Offset address of the start of the source area

Function block description

ABB France Page C-293 1SBC006099R1001 C - 03/07

QSEG WORD
Segment address of the start of the source area

ZOFF WORD
Offset address of the start of the target area

ZSEG WORD
Segment address of the start of the target area

Example for 07 KR 91 central unit :
96 words are to be copied :
- from MW 00,00 to MW 05,15 :
MW 00,00 address is : offset = A410H and segemnt = 30C2H
- to AW 00,00 to AW 05,15 :
AW 00,00 address is : offset = 9310H and segemnt = 30C2H

 serie 90
Number of words to be copied : 96
Offset address of the source memory : A410H
Segment address of the source memory : 30C2H
Offset address of the target memory : 9310H
Segment address of the target memory : 30C2H

Warning : The data addresses vary from a central unit to another.

DWAES WRITE DOUBLE WORD IN THE EVENT OF VALUE
CHANGE

FBD IL

DWAES
E1
#OFF
#SEG

CAL DWAES (E1,#OFF,#SEG)

PARAMETERS
E1 DOUBLE %MD, %KD Input for the operand to be read
 WORD
#OFF DIRECT #, #H Offset address of the memory
 CONSTANT location to which the value of
 E1 must be written in the event
 of a change.
#SEG DIRECT #, #H Segment address of the
 CONSTANT memory location to which the

Function block description

ABB France Page C-294 1SBC006099R1001 C - 03/07

 value of E1 must be written in
 the event of a change.

DESCRIPTION
If the value of the operand at the input E1 changes in comparison with the value
during previous processing of the block, the value of the operand at the input E1 is
written to the specified physical address.
The physical address consists of a segment and an offset.

E1 DOUBLE WORD
If the operand at the input E1 changes, its value is written to the address specified at
the inputs #OFF and #SEG.

#OFF DIRECT CONSTANT (#,#H)
The offset component of the address to be written is specified at the #OFF input. This
is specified as a direct constant.

#SEG DIRECT CONSTANT (#,#H)
The segment component of the address to be written is specified at the input #SEG.
This is specified as a direct constant.

DWOL READ DOUBLE WORD WITH ENABLE

FBD IL

DWOL
FREI
#OFF
#SEG A1

CAL DWOL (FREI,#OFF#SEG,A1)

PARAMETERS
FREI BINARY %I, %O, %M, %S, %K Block enable
#OFF DIRECT #, #H Offset address of the memory
 CONSTANT location whose double word
 value is to be read.
#SEG DIRECT #, #H Segment address of the
 CONSTANT memory location whose double
 word value is to be read.
A1 DOUBLE %MD Output to which the value read
 WORD is allocated.

DESCRIPTION
When a 1 signal is present at the FREI input, the value of the specified physical
address is read and is allocated to the operand at the output A1.

Function block description

ABB France Page C-295 1SBC006099R1001 C - 03/07

No double word is read if there is a 0 signal at the FREI input.
The physical address consists of a segment and an offset.

FREI BINARY
Processing of the block is enabled or disabled with the operand at the input FREI.
The following applies:
FREI = 0 -> Processing disabled
FREI = 1 -> Processing enabled

#OFF DIRECT CONSTANT (#, #H)
The offset component of the address to be read is specified at the input #OFF. This is
specified as a direct constant.

#SEG DIRECT CONSTANT (#, #H)
The segment component of the address to be read is specified at the input #SEG.
This is specified as a direct constant.

A1 WORD
The value read is allocated to the operand at the output A1.

DWOS WRITE DOUBLE WORD WITH ENABLING

FBD IL

DWOS
FREI
E1
#OFF
#SEG

CAL DWOS (FREI,E1,#OFF,#SEG)

PARAMETERS
FREI BINARY %I, %M, %O, %S, %K Block enable
E1 DOUBLE %MD, %KD Input for the operand to be
 WORD written
#OFF DIRECT #, #H Offset address of the memory
 CONSTANT location to which the value of
 E1 must be written.
#SEG DIRECT #, #H Segment address of the
 CONSTANT memory location to which the
 value of E1 must be written.

DESCRIPTION
If there is a 1 signal at the input FREI, the value of the operand at the input E1 is read
and then written to the specified physical address.

Function block description

ABB France Page C-296 1SBC006099R1001 C - 03/07

No double word is written if there is a 0 signal at the FREI input.
The physical address consists of a segment and an offset.

FREI BINARY
Processing of the block is enabled or disabled with the operand at the input FREI.
The following applies : FREI = 0 -> Processing disabled
 FREI = 1 -> Processing enabled

E1 DOUBLE WORD
The operand at the input E1 is read and its value is written to the address defined by
the inputs #OFF and #SEG.

#OFF DIRECT CONSTANT (#,#H)
The offset component of the address to be written is specified at the input #OFF. This
is specified as a direct constant.

#SEG DIRECT CONSTANT (#,#H)
The segment component of the address to be written is specified at the input #SEG.
This is specified as a direct constant.

FDEL DELETE DATA SEGMENT IN FLASH EPROM

FBD/LD IL

CAL FDEL (0/1,#SEG,RDY,ERR)FDEL
0/1
#SEG

RDY
ERR

PARAMETERS
0/1 BINARY %I, %M, %O, %K, %S Deletion of one data segment
 by a 0/1 edge
#SEG DIRECT #, #H Data segment number in the
 FLASH EPROM
RDY BINARY %O, %M Write procedure completed
ERR BINARY %O, %M Error

DESCRIPTION
This function block deletes a data segment in the Flash EPROM. All data in this data
segment are lost after deletion.

The input #SEG defines the data segment in the Flash EPROM. The deletion
procedure in the Flash EPROM can take several PLC cycles. A 0->1 edge at the
input 0/1 starts the deletion procedure once. Until the procedure has not been
finished (RDY = 1), the input 0/1 is not evaluated again. After completion of the
deletion procedure all function block outputs are updated. If then RDY = 1 and ERR =

Function block description

ABB France Page C-297 1SBC006099R1001 C - 03/07

0, the deletion was successful. If the outputs show RDY = 1 and ERR = 1, the data
segment could not be deleted.

Important notes :
An access to the Flash EPROM is only permitted by using the function blocks FWR
and FRD. It is not allowed to access the Flash EPROM by other function blocks
(WOL, WOS, COPY,...).

0/1 BINARY
The input 0/1 controls the processing of the function block.
0/1 = 0 : All outputs are set to the value of ”0”. This is not valid during
 a deletion procedure.
0/1= 0->1 edge : Deletion of the data segment is started once. Until the
 procedure has not been finished (RDY = 1), the input 0/1
 is not evaluated again.
0/1 = 1 : The function block is not processed, i.e. the function block
 does no longer change its outputs. This is not valid during a
 deletion procedure.

#SEG DIRECT CONSTANT
The number of the data segment in the Flash EPROM is given at the input SEG.
In the Flash EPROM, 4 data segments are available :
 #0 corresponds to data segment 0
 #1 corresponds to data segment 1
 #2 corresponds to data segment 2
 #3 corresponds to data segment 3

RDY BINARY
The output RDY indicates that the deletion procedure has been completed. This
output has always to be considered together with the output ERR.
RDY = 1 and ERR = 0 : The deletion procedure has been completed. The data
 segment has been deleted successfully.
RDY = 1 and ERR = 1 : An error has occurred during the deletion procedure. The
 data segment could not be deleted.

ERR BINARY
The output ERR indicates whether or not an error has occurred during the deleting
procedure. This output has always to be considered together with the output RDY.
If the data segment could not be deleted, the outputs have the following status :
RDY = 1 and ERR = 1

Function block description

ABB France Page C-298 1SBC006099R1001 C - 03/07

FRD READ DATA SET FROM FLASH EPROM

FBD/LD IL

CAL FRD (0/1,SM,#nB,#SEG,BNR,RDY,ERR,ERNO)FRD
0/1
SM
#nB

RDY
ERR

ERNO
#SEG
BNR

PARAMETERS
0/1 BINARY %I, %M, %O, %K, %S Reading of one data set by a
 0/1 edge
SM BINARY %I, %M, %O, %K, %S Start flag of the location of the
 WORD %IW, %MW, %OW, %KW data set
 DOUBLE WORD %MD, %KD
#nB DIRECT #, #H Block number of the data set
 CONSTANT
#SEG DIRECT #, #H Data segment number in the
 CONSTANT Flash EPROM
BNR WORD %IW, %MW, %OW, %KW Block number in the data
 segment
RDY BINARY %O, %M Reading procedure completed
ERR BINARY %O, %M Error indication
ERNO WORD %OW, %MW Error number

DESCRIPTION
This function block reads a data set from a data segment in the Flash EPROM and
stores the read data set beginning at the start flag defined by SM. The data of the
data set had been stored in the Flash EPROM by the function block FWR or by the
operating command FWR.

The inputs SM and #nB define which data are read from the Flash EPROM. The input
#SEG defines the data segment in the Flash EPROM. The number of data, which are
read from a block, depends on input SM.
Either 32 binary data or 16 word data or 8 double word data are read per block. The
data of each block are secured by a checksum.
The reading procedure is carried out once by a 0/1 edge at the input 0/1. If there was
no error when reading the data, the output RDY is set to ”1” and the outputs ERR and
ERNO are set to ”0”. The data set is stored beginning at the defined start flag SM.
Storing the data set can take several PLC cycles.
If an error occurs during the reading procedure, RDY and ERR are both set to ”1”.
The error type is indicated at the output ERNO.
The outputs RDY, ERR and ERNO are set to ”0” by a signal 0 at the input 0/1.

Function block description

ABB France Page C-299 1SBC006099R1001 C - 03/07

Important note:
An access to the Flash EPROM is only permitted by using the function blocks FWR
and FRD. It is not allowed to access the Flash EPROM by other function blocks
(WOL, WOS, COPY,...).

0/1 BINARY
The processing of the block is controlled by the input 0/1.
0/1 = 0 : The outputs RDY, ERR and ERNO are set to ”0”.
0/1= 0->1 edge : The reading procedure of the data set is carried out once.
0/1 = 1 : The block is not processed, i.e. it does not change its
 outputs any more.

SM BINARY / WORD / DOUBLE WORD
The first binary / word / double word flag for storing the data set is given at input SM.

#nB DIRECT CONSTANT
The block number of the data set is given at input #nB. The number of data, which
are read by a block, depends on the input SM. Either 32 binary data or 16 word data
or 8 double word data are read per block.
Examples:
SM = M 01,00 and #nB = 1 : Storing the data from M 01,00 to M 02,15
 (1 block = 32 binary data)
SM = M 01,00 and #nB = 2 : Storing the data from M 01,00 to M 04,15
 (2 blocks = 64 binary data)
SM = MW 02,00 and #nB = 1 : Storing the data from MW 02,00 to MW 02,15
 (1 block = 16 word data)
SM = MW 02,00 and #nB = 2 : Storing the data from MW 02,00 to MW 03,15
 (2 blocks = 32 word data)
SM = MD 03,00 and #nB = 1 : Storing the data from MD 03,00 to MD 03,07
 (1 block = 8 double word data)
SM = MD 03,00 and #nB = 2 : Storing the data from MD 03,00 to MD 03,15
 (2 blocks = 16 double word data)

#SEG DIRECT CONSTANT
The number of the data segment in the Flash EPROM is given at the input SEG.
In the Flash EPROM, 4 data segments are available.
 #0 corresponds to data segment 0
 #1 corresponds to data segment 1
 #2 corresponds to data segment 2
 #3 corresponds to data segment 3

BNR WORD
The number of the block in the data segment is given at the input BNR.
Valid values: 0...480

RDY BINARY
The output RDY indicates, that the reading procedure has been completed. The
output has always to be considered together with the output ERR.
RDY = 1 and ERR = 0: The reading procedure has been completed. The data set is
 stored beginning at the definition at the input SM.

Function block description

ABB France Page C-300 1SBC006099R1001 C - 03/07

RDY = 1 and ERR = 1: An error has occurred during the reading procedure. The
 output ERNO indicates the error number.

ERR BINARY
The output ERR indicates whether or not an error has occurred during the reading
procedure. The output has always to be considered together with the output RDY.
If there was an error, the outputs have the following status :
RDY = 1 and ERR = 1

ERNO WORD
In case of error, the output ERNO indicates the error number coded binary.
ERNO = 0: There was no error.
ERNO = 1: Block number and number of blocks is greater than 480
 (bit 0 of ERNO = 1).
ERNO = 2: Data segment is greater than 3 (bit 1 of ERNO = 1).
ERNO = 4: Checksum error of read data. The data are not entered into the flag area
 (bit 2 of ERNO = 1).
This output has always to be considered together with the outputs RDY and ERR.

FWR WRITE DATA SET TO FLASH EPROM

FBD/LD IL

CAL FWR (0/1,SM,#nB,#SEG,BNR,RDY,ERR,ERNO)FWR
0/1
SM
#nB

RDY
ERR

ERNO
#SEG
BNR

PARAMETERS
0/1 BINARY %I, %M, %O, %K, %S Saving of one data set by a
 0/1 edge
SM BINARY %I, %M, %O, %K, %S Start flag of the location of the
 WORD %IW, %MW, %OW, %KW data set
 DOUBLE WORD %MD, %KD
#nB DIRECT #, #H Block number of the data
 CONSTANT set
#SEG DIRECT #, #H Data segment number in the
 CONSTANT Flash EPROM
BNR WORD %IW, %MW, %OW, %KW Block number in the data
 segment
RDY BINARY %O, %M Writing procedure completed
ERR BINARY %O, %M Error indication
ERNO WORD %OW, %MW Error number

Function block description

ABB France Page C-301 1SBC006099R1001 C - 03/07

DESCRIPTION
The function block writes a data set to a data segment in the Flash EPROM. For this
purpose, there are 4 data segments (0...3) available in the Flash EPROM. A deletion
procedure (function block FDEL) always deletes a complete data segment. Each data
segment consists of 481 blocks (0...480). After deletion, each of these 481 blocks
can store data only once. If a block containing data is to be overwritten by new data,
the entire data segment has to be deleted beforehand. In doing so, all data in this
segment are lost.

The inputs SM and #nB define, which data are written to the Flash EPROM. The
input #SEG defines the data segment in the Flash EPROM. The number of data,
which can be stored in the block, depends on input SM.
Either 32 binary data or 16 word data or 8 double word data are written per block.
The data of each block are secured by a checksum.
When a writing procedure of a data set is started (0->1 edge at input 0/1), the data of
the data set must not be changed until the end of the writing procedure (RDY = 1).
Storing the data set in the Flash EPROM can take several PLC cycles.
A 0->1 edge at input 0/1 starts the writing procedure of the data set once. The input
0/1 is no longer evaluated until the storing of the data set has been completed (RDY
= 1).
After completion of the writing procedure the block outputs RDY, ERR and ERNO are
updated. If RDY = 1 and ERR = 0, the procedure was successful. If RDY = 1 and
ERR = 1, an error had occurred. The output ERNO indicates the error type then.
After storing the data set in the Flash EPROM, the block outputs RDY, ERR and
ERNO are set to ”0” by a signal 0 at input 0/1. A new 0/1 edge at input 0/1 starts a
new writing procedure. Since without a previous deletion of the data segment no new
data can be written to blocks which already contain data, the input BNR must point to
the next free block for the next writing procedure.

Important note:
An access to the Flash EPROM is only permitted by using the function blocks FWR
and FRD. It is not allowed to access the Flash EPROM by other function blocks
(WOL, WOS, COPY,...).
For each user data set, a separate function block FWR as well as a separate function
block FRD have to be planned in the PLC program.

0/1 BINARY
The processing of the block is controlled by the input 0/1.
0/1 = 0 : The outputs RDY, ERR and ERNO are set to ”0”.
 This is not valid during a writing procedure.
0/1= 0->1 edge : The writing procedure of the data set is carried out once.
 The 0/1 is no longer evaluated until the writing procedure
 has been completed (RDY =1)
0/1 = 1 : The block is not processed, i.e. it does not change its
 outputs any more.
 This is not valid during a writing procedure.

SM BINARY / WORD / DOUBLE WORD
The first binary / word / double word flag for storing the data set is given at input SM.
When the writing procedure of a data set has been started (0->1 edge at input 0/1),

Function block description

ABB France Page C-302 1SBC006099R1001 C - 03/07

the data of the data set must not been changed until the procedure has been
completed (RDY = 1).

#nB DIRECT CONSTANT
The block number of the data set is given at input #nB. The number of data, which
are read by a block, depends on the input SM. Either 32 binary data or 16 word data
or 8 double word data are read per block.
Examples:
SM = M 01,00 and #nB = 1 : Storing the data from M 01,00 to M 02,15
 (1 block = 32 binary data)
SM = M 01,00 and #nB = 2 : Storing the data from M 01,00 to M 04,15
 (2 blocks = 64 binary data)
SM = MW 02,00 and #nB = 1 : Storing the data from MW 02,00 to MW 02,15
 (1 block = 16 word data)
SM = MW 02,00 and #nB = 2 : Storing the data from MW 02,00 to MW 03,15
 (2 blocks = 32 word data)
SM = MD 03,00 and #nB = 1 : Storing the data from MD 03,00 to MD 03,07
 (1 block = 8 double word data)
SM = MD 03,00 and #nB = 2 : Storing the data from MD 03,00 to MD 03,15
 (2 blocks = 16 double word data)

#SEG DIRECT CONSTANT
The number of the data segment in the Flash EPROM is given at the input SEG.
In the Flash EPROM, 4 data segments are available.
 #0 corresponds to data segment 0
 #1 corresponds to data segment 1
 #2 corresponds to data segment 2
 #3 corresponds to data segment 3

BNR WORD
The number of the block in the data segment is given at the input BNR.
Valid values: 0...480

RDY BINARY
The output RDY indicates, that the writing procedure has been completed. The output
has always to be considered together with the output ERR.
RDY = 1 and ERR = 0: The writing procedure has been completed. The data set is
 stored beginning at the definition at the input SM.
RDY = 1 and ERR = 1: An error has occurred during the writing procedure. The
 output ERNO indicates the error number.

ERR BINARY
The output ERR indicates whether or not an error has occurred during the writing
procedure. The output has always to be considered together with the output RDY.
If there was an error, the outputs have the following status :
RDY = 1 and ERR = 1

ERNO WORD
In case of error, the output ERNO indicates the error number coded binary.
ERNO = 0: There was no error.

Function block description

ABB France Page C-303 1SBC006099R1001 C - 03/07

ERNO = 1: Block number and number of blocks is greater than 480
 (bit 0 of ERNO = 1).
ERNO = 2: Data segment is greater than 3 (bit 1 of ERNO = 1).
ERNO = 4: Checksum error of read data. The data are not entered into the flag area
 (bit 2 of ERNO = 1).
This output has always to be considered together with the outputs RDY and ERR.

IOR READ BYTE VALUE FROM I/O ADDRESS

FBD IL

IOR
CAL IOR (ADR,A1)

ADR A1

PARAMETERS
ADR WORD %IW, %OW, %MW, %KW Address from the I/O area
 whose BYTE value is to be
 read.
A1 WORD %OW, MW The BYTE value read is
 allocated to the output A1.

DESCRIPTION
This function block reads a byte out of the I/O area and allocates it to the operand at
the output.

ADR WORD
The value of the operand at the input ADR represents the I/O address to be read.

A1 WORD
The byte read out of the I/O area is allocated to the LOW BYTE of the operand at the
output A1.

Function block description

ABB France Page C-304 1SBC006099R1001 C - 03/07

IOW WRITE BYTE VALUE TO I/O ADDRESS

FBD IL

IOW

ADR

CAL IOW (E1,ADR)

E1

PARAMETERS
E1 WORD %IW, %OW, %MW, %KW Operand whose LOW byte is
 read and written into the I/O
 area
ADR WORD %IW, %OW, %MW, %KW I/O address to which the value
 of the operand is written.

DESCRIPTION
This function block writes the byte specified at the input E1 into the I/O area.

E1 WORD
The LOW BYTE of the operand at the input E1 is written into the I/O area.

ADR WORD
The value of the operand at the input ADR represents the I/O address to which the
value is written.

RDB READ BINARY VALUES FROM HISTORICAL VALUES MEMORY

FBD IL

RDB

BI

!BA
RDB

0

#n
BI

PARAMETERS
#n DIRECT #, #H Number of outputs BI0 ... BIn-1
 CONSTANT
BI BINARY %O, %M Output for the binary values,
 capable of duplication

Function block description

ABB France Page C-305 1SBC006099R1001 C - 03/07

DESCRIPTION
This function block allows to use ready-made program parts several times in one user
program. It works with local variables within this part of the program. The local
variables lose their validity outside of this program part.

At the end of the program part, the local variables values at the input BI0...BIn-1 are
stored in the historical values memory of the RDB block by the affiliated WRB block.
The function block RDB reads these values out of the historical values memory again
at the start of the program part.

The function blocks WRB and RDB always occur in pairs.

#n DIRECT CONSTANT
Only used in IL. The number of outputs BI0...BIn-1 is specified at the input #n.

BI BINARY
The BI output can be duplicated (BI0...BIn-1). The block allocates the values read out
of the historical values memory to the outputs BI0...BIn-1.

Note : The number n of BI outputs must agree with the number of inputs of the
affiliated WRB block.

Example :

FBD/LD IL

!BA
WRB

0

#0
#3
%M 03,00
%M 03,01
%M 03,02

The program part, which is used multiply and in which the
variables %M 03,00 ... %M 03,02 are needed in the next cycle,
is located here. For this purpose, the values are written into the
historical value memory by means of the WRB block and are
read out again in the next cycle by means of the RDB block.

RDB

BI
BI
BI

%M 03,00
%M 03,01
%M 03,02

WRB

BI
BI
BI

%M 03,00
%M 03,01
%M 03,02

!BA
RDB

0

#3
%M 03,00
%M 03,01
%M 03,02

Function block description

ABB France Page C-306 1SBC006099R1001 C - 03/07

RDDW READ DOUBLE WORD VALUES FROM HISTORICAL
VALUES MEMORY

FBD IL

RDDW

DW

!BA
RDDW

0

#n
DW

PARAMETERS
#n DIRECT #, #H Number of outputs
 CONSTANT DW0 ... DWn-1
DW DOUBLE %MD Output for the double word
 WORD values, capable of duplication

DESCRIPTION
This function block allows to use ready-made program parts several times in one user
program. It works with local variables within this part of the program. The local
variables lose their validity outside of this program part.

At the end of the program part, the local variables values at the input DW0...DWn-1
are stored in the historical values memory of the RDB block by the affiliated WRB
block. The function block RDB reads these values out of the historical values memory
again at the start of the program part.

The function blocks WRDW and RDDW always occur in pairs.

#n DIRECT CONSTANT
Only used in IL. The number of the outputs DW0...DWn-1 is specified at the input #n.

DW DOUBLE WORD
The DW output can be duplicated (DW0...DWn-1). The block allocates the values
read out of the historical values memory to the outputs DW0...DWn-1.

Note : The number n of DW outputs must agree with the number of inputs of the
affiliated WRDW block.

Function block description

ABB France Page C-307 1SBC006099R1001 C - 03/07

Example :

FBD/LD IL

!BA
WRDW

0

#0
#3
%MD 03,00
%MD 03,01
%MD 03,02

The program part, which is used multiply and in which the
variables %MD 03,00 ... %MD 03,02 are needed in the next
cycle, is located here. For this purpose, the values are written
into the historical value memory by means of the WRDW block
and are read out again in the next cycle by means of the RDDW
block.

RDDW

DW
DW
DW

%MD 03,00
%MD 03,01
%MD 03,02

WRDW

DW
DW
DW

%MD 03,00
%MD 03,01
%MD 03,02

!BA
RDDW

0

#3
%MD 03,00
%MD 03,01
%MD 03,02

RDW READ WORD VALUES FROM HISTORICAL VALUES MEMORY

FBD IL

RDW

WO

!BA
RDW

0

#n
WO

PARAMETERS
#n DIRECT #, #H Number of outputs
 CONSTANT WO0 ... WOn-1
WO WORD %OW, MW Output for the word values,
 capable of duplication

DESCRIPTION
This function block allows to use ready-made program parts several times in one user
program. It works with local variables within this part of the program. The local
variables lose their validity outside of this program part.

Function block description

ABB France Page C-308 1SBC006099R1001 C - 03/07

At the end of the program part, the local variables values at the input WO0...WOn-1
are stored in the historical values memory of the RDB block by the affiliated WRB
block. The function block RDB reads these values out of the historical values memory
again at the start of the program part.

The function blocks WRW and RDW always occur in pairs.

#n DIRECT CONSTANT
Only used in IL. The number of outputs WO0...WOn-1 is specified at the input #n.

WO WORD
The output WO can be duplicated (WO0...WOn-1). The block allocates the values
read out of the historical values memory to the outputs WO0...WOn-1.

Note : The number n of WO outputs must agree with the number of inputs of the
affiliated WRW block.

Example

FBD/LD IL

!BA
WRW

0

#0
#3
%MW 03,00
%MW 03,01
%MW 03,02

The program part, which is used multiply and in which the
variables %MW 03,000 ... %MW 03,002 are needed in the next
cycle, is located here. For this purpose, the values are written
into the historical value memory by means of the WRW block
and are read out again in the next cycle by means of the RDW
block.

RDW

WO
WO
WO

%MW 03,00
%MW 03,01
%MW 03,02

WRW

WO
WO
WO

%MW 03,00
%MW 03,01
%MW 03,02

!BA
RDW

0

#3
%MW 03,00
%MW 03,01
%MW 03,02

Function block description

ABB France Page C-309 1SBC006099R1001 C - 03/07

WAES WRITE WORD IN THE EVENT OF VALUE CHANGE

FBD IL

WAES
E1
#OFF
#SEG

CAL WAES (E1,#OFF,#SEG)

PARAMETERS
E1 WORD %IW, %MW, %OW, %KW Input for the operand to be read
#OFF DIRECT #, #H Offset address of the memory
 CONSTANT location to which the value of
 E1 must be written in the event
 of a change.
#SEG DIRECT #, #H Segment address of the
 CONSTANT memory location to which the
 value of E1 must be written in
 the event of a change.

DESCRIPTION
If the value of the operand at the input E1 compared to the value during previous
processing of the block changes, the value of the operand at the input E1 is written to
the specified physical address.
The physical address consists of a segment and an offset.

E1 WORD
If the operand at the input E1 changes, its value is written to the address specified at
the inputs #OFF and #SEG.

#OFF DIRECT CONSTANT (#, #H)
The offset of the address to be written is specified at the input #OFF. This is specified
as a direct constant.

#SEG DIRECT CONSTANT (#, #H)
The segment of the address to be written is specified at the input #SEG. This is
specified as a direct constant.

Function block description

ABB France Page C-310 1SBC006099R1001 C - 03/07

WOL READ WORD WITH ENABLING

FBD IL

WOL
FREI
#OFF
#SEG A1

CAL WOL (FREI,#OFF,#SEG,A1)

PARAMETERS
FREI BINARY %I, %M, %O, %S, %K Enable block
#OFF DIRECT #, #H Offset address of the memory
 CONSTANT location whose value must be
 read
#SEG DIRECT #, #H Segment address of the
 CONSTANT memory location whose value
 must be read
A1 WORD %OW, %MW Output to which the read value
 is allocated.

DESCRIPTION
When the FREI input has a 1 signal, the value of the specified physical address is
read and is allocated to the operand at the output A1.
No reading and no allocation take place if the input FREI has a 0 signal.
The physical address consists of a segment and an offset.
The attainable address space is 1 MByte.

FREI BINARY
Processing of the block is enabled or disabled with the operand at the FREI input.
The following applies:
FREI = 0 -> Processing disabled
FREI = 1 -> Processing enabled

#OFF DIRECT CONSTANT (#,#H)
The offset of the address to be read is specified at the input #OFF. This is specified
as a direct constant.

#SEG DIRECT CONSTANT (#,#H)
The segment of the address to be read is specified at the input #SEG. This is
specified as a direct constant.

A1 WORD
The read value is allocated to the operand at the output A1.

Function block description

ABB France Page C-311 1SBC006099R1001 C - 03/07

WOS WRITE WORD WITH ENABLING

FBD IL

WOS
FREI
E1
#OFF
#SEG

CAL WOS (FREI,E1,#OFF,#SEG)

PARAMETERS
FREI BINARY %I, %M, %O, %S, %K Enable block
E1 WORD %IW, %MW, %OW, %KW Input for the operand to be
 written
#OFF DIRECT #, #H Offset address of the memory
 CONSTANT location to which the value of
 E1 must be written
#SEG DIRECT #, #H Segment address of the
 CONSTANT memory location to which the
 value of E1 must be written

DESCRIPTION
When the input FREI has a 1 signal, the value of the operand at the input E1 is read
and is then written to the specified physical address. The block is not processed if
there is a 0 signal at the FREI input. The physical address consists of a segment and
an offset. The attainable address area is 1 MByte.

FREI BINARY
Proces sing of the block is enabled or disabled with the operand at the input FREI.
The following applies : FREI = 0 -> Processing disabled
 FREI = 1 -> Processing enabled

E1 WORD
The operand at the input E1 is read and its value is written to the address defined by
the inputs #OFF and #SEG.

#OFF DIRECT CONSTANT (#,#H)
The offset of the address to be written is specified at the input #OFF. This is specified
as a direct constant.

#SEG DIRECT CONSTANT (#,#H).
The segment of the address to be written is specified at the input #SEG. This is
specified as a direct constant.

Function block description

ABB France Page C-312 1SBC006099R1001 C - 03/07

WRB WRITE BINARY VALUES INTO HISTORICAL VALUES
MEMORY

FBD IL

WRB

BI

!BA
WRB

0

#0
#n
BI

PARAMETERS
#n DIRECT #, #H Number of inputs BI0 ... BIn-1
 CONSTANT
BI0 BINARY %O, %M Input for the binary values to be
 written, capable of duplication

DESCRIPTION
This function block allows to use ready-made program parts several times in one user
program. It works with local variables within this part of the program. The local
variables lose their validity outside of this program part.

At the end of the program part, the local variables values at the input BI0...BIn-1 are
stored in the historical values memory of the affiliated RDB block by the WRB block.
The affiliated function block RDB reads these values out of the historical values
memory again at the start of the program part.
The function blocks WRB and RDB always occur in pairs.

#0 DIRECT CONSTANT
Only used in IL. The PLC enters the pointer to the historical values of the affiliated
RDB block at this point.

#n DIRECT CONSTANT
Only used in IL. The number of inputs BI0...BIn-1 is specified at the input #n as a
direct constant.

Note : The value specified at the input #n must also agree with the number of outputs
belonging to the affiliated RDB block.

BI BINARY
The input BI is capable of duplication (BI0...BIn-1). The values of the operands
specified at the inputs BI0...BIn-1 are written into the historical values memory of the
affiliated RDB block.

Function block description

ABB France Page C-313 1SBC006099R1001 C - 03/07

Example

FBD/LD IL

!BA
WRB

0

#0
#3
%M 03,00
%M 03,01
%M 03,02

The program part, which is used multiply and in which the
variables %M 03,00 ... %M 03,02 are needed in the next cycle,
is located here. For this purpose, the values are written into the
historical value memory by means of the WRB block and are
read out again in the next cycle by means of the RDB block.

RDB

BI
BI
BI

%M 03,00
%M 03,01
%M 03,02

WRB

BI
BI
BI

%M 03,00
%M 03,01
%M 03,02

!BA
RDB

0

#3
%M 03,00
%M 03,01
%M 03,02

Function block description

ABB France Page C-314 1SBC006099R1001 C - 03/07

WRDW WRITE DOUBLE WORD VALUES INTO HISTORICAL
VALUES MEMORY

FBD IL

WRDW

DW0

!BA
WRDW

0

#0
#n
DW0

PARAMETERS
#n DIRECT #, #H Number of inputs
 CONSTANT DW0 ... DWn-1
DW0 DOUBLE %MD Input for the double word
 WORD values to be written, capable of

DESCRIPTION
This function block allows to use ready-made program parts several times in one user
program. It works with local variables within this part of the program. The local
variables lose their validity outside of this program part.

At the end of the program part, the local variables values at the input DW0...DWn-1
are stored in the historical values memory of the affiliated RDB block by the WRB
block. The affiliated function block RDB reads these values out of the historical
values memory again at the start of the program part.

The function blocks WRDW and RDDW always occur in pairs.

#0 DIRECT CONSTANT
Only used in IL. At this point, the PLC enters the pointer to the historical values of the
affiliated RDDW block.

#n DIRECT CONSTANT
Only used in IL. The number of inputs DW0...DWn-1 is specified at the input #n.

Note : The value specified at the input #n must also agree with the number of outputs
of the affiliated RDDW block.

D DOUBLE WORD
The input DW is capable of duplication (DW0...DWn-1). The values of the operands
specified at the inputs DW0...DWn-1 are written into the historical values memory of
the affiliated RDDW block.

Function block description

ABB France Page C-315 1SBC006099R1001 C - 03/07

Example

FBD/LD IL

!BA
WRDW

0

#0
#3
%MD 03,00
%MD 03,01
%MD 03,02

The program part, which is used multiply and in which the
variables %MD 03,00 ... %MD 03,02 are needed in the next
cycle, is located here. For this purpose, the values are written
into the historical value memory by means of the WRDW block
and are read out again in the next cycle by means of the RDDW
block.

RDDW

DW
DW
DW

%MD 03,00
%MD 03,01
%MD 03,02

WRDW

DW
DW
DW

%MD 03,00
%MD 03,01
%MD 03,02

!BA
RDDW

0

#3
%MD 03,00
%MD 03,01
%MD 03,02

WRW WRITE WORD VALUES TO HISTORICAL VALUES
MEMORY

FBD IL

WRW

WO0

!BA
WRW

0

#0
#n
WO0

PARAMETERS
#n DIRECT #, #H Number of inputs
 CONSTANT WO0 ... WOn-1
WO0 WORD %OW, %MW Input for the word values to be
 written, capable of duplication

DESCRIPTION
This function block allows to use ready-made program parts several times in one user
program. It works with local variables within this part of the program. The local
variables lose their validity outside of this program part.

Function block description

ABB France Page C-316 1SBC006099R1001 C - 03/07

At the end of the program part, the local variables values at the input WO0...WOn-1
are stored in the historical values memory of the affiliated RDB block by the WRB
block. The affiliated function block RDB reads these values out of the historical
values memory again at the start of the program part.

The function blocks WRW and RDW always occur in pairs.

#0 DIRECT CONSTANT
Only used in IL. The PLC then enters the pointer to the historical values of the
affiliated RDW block at this point.

#n DIRECT CONSTANT
Only used in IL. The number of the inputs WO0...WOn-1 is specified at the input #n
as a direct constant.

Note : The value specified at the input #n must also agree with the number of the
outputs belonging to the affiliated block RDW.

WO BINARY
The input WO0 can be duplicated (WO0...WOn-1). The values of the operands
specified at the inputs WO0...WOn-1 are written into the historical values memory of
the affiliated RDW block.

Example

FBD/LD IL

!BA
WRW

0

#0
#3
%MW 03,00
%MW 03,01
%MW 03,02

The program part , w hich is used mult iply and in w hich the
variables %MW 03,000 ... %MW 03,002 are needed in the
next cycle, is located here. For this purpose, the values are
w rit ten into the historical value memory by means of the
WRW block and are read out again in the next cycle by
means of the RDW block.

RDW

WO
WO
WO

%MW 03,00
%MW 03,01
%MW 03,02

WRW

WO
WO
WO

%MW 03,00
%MW 03,01
%MW 03,02

!BA
RDW

0

#3
%MW 03,00
%MW 03,01
%MW 03,02

Function block description

ABB France Page C-317 1SBC006099R1001 C - 03/07

11 Special Functions

Special
functions

serie
from pages C-317 to C-323

Ctler 40 50 90 30

5F_ARC94 Arcnet for 07KT94 94
COUNTB Test of number of bits in a word/double

word
 94

COUNTW Fast counter on 07KT94 94
DWWW One double word in 2 words conversion 94
IDENT Identification 94
MODMASTK MODBUS master 94
SETB Set a bit in a word/double word 94
TESTB Test a bit in a word/double word 94

WWDW 2 words in one double word conversion 94

5F_ARC94 ARCNET for 07KT94
FBD IL

5F_ARC94
FREI

T_I1
T_01

CAL 5F_ARC94(FREI, T_I1, T_01, ERR,
OP0)

ERR
OP0

PARAMETERS
FREI BINARY %I, %M, %O, %S, %K Enable block
T_I1 WORD %IW,%OW,%KW,%MW Offset address of the

memory
T_01 WORD ,%OW, %MW Segment address of the

memory
ERR WORD ,%OW, %MW Error number
OP0 BINARY,

WORD,
DOUBLE WORD

DESCRIPTION
This funtion is used for ARCNET communication . Refer to 07KT94 and ARCNET
documentation for a complete description.

Function block description

ABB France Page C-318 1SBC006099R1001 C - 03/07

COUNTB TEST of NUMBER of BITS in a WORD/DW

FBD/LD IL

COUNTB
W/D
E

LOW
NUM

HIGH

CAL COUNTB (W/D, E,
NUM, LOW, HIGH)

PARAMETERS
W/D BINARY %I, %O, %M, %K Word or Double word selection
E WORD %IW,%OW,%MW,%KW Word/Double word for test of

number of bits
NUM WORD %OW,%MW Number of bits in E
LOW WORD %OW,%MW Position of lower bit
HIGH WORD %OW, %MW Position of higher bit

DESCRIPTION
This function block defines the number of bits in a word or double word.
The position of the lower bit (0…31) is in LOW and the position of higher bit (0..31) is
in HIGH.

COUNTW Fast counter on 07KT94

FBD/LD IL

COUNTW
N0
U/D

STAT
ERR

CF

CAL COUNTW(N0, U/D,
SET, STA, END, ERR,
STAT, CF, OUT)

EN
SET
STA
END

OUT

PARAMETERS
NO WORD %IW,%OW,%MW,%KW Counter number 0 or 1
U/D BINARY %I, %O, %M, %K 0=Up / 1=Down
EN BINARY %I, %O, %M, %K 1=Enable counting

Function block description

ABB France Page C-319 1SBC006099R1001 C - 03/07

SET BINARY %I, %O, %M, %K 1=Set start value
STA WORD %IW,%OW,%MW,%KW Star value
END WORD %IW,%OW,%MW,%KW End value
ERR BINARY %O, %M Error
STAT WORD %OW,%MW Status
CF BINARY %O, %M Carry Flag (1= End value

reached)
OUT WORD %OW,%MW Actual value output

DESCRIPTION
This function block defines the fast counter on the central unit 07KT94.
Refer to the relevant documentation for a complete description

DWWW One double word in 2 words conversion

FBD/LD IL

DWWW
E

A2
A1

CAL DWWW(E, A1, A2)

PARAMETERS
E DOUBLE

WORD
%KD, %MD Double word to slip into 2 words

A1 WORD %OW,%MW Low word
A2 WORD %OW,%MW High word

DESCRIPTION
The Low word of the input E (double word) is set to the output A1. and the High word
of the input E is set to A2

Function block description

ABB France Page C-320 1SBC006099R1001 C - 03/07

IDENT Identification

FBD/LD IL

IDENT
FREI

RUB
TYP

VER

CAL IDENT (FREI, TYP,
RUB, VER)

PARAMETERS
FREI BINARY %I, %O, %M, %K Enable input
TYP WORD %OW,%MW 94 for 07KT94
RUB WORD %OW,%MW Rubric =101 for R0101
VER WORD %OW,%MW Sofware version =100 for V1.00

SETB Set a bit in a word/double word

FBD/LD IL

SETB
E
#BIT A

CAL SETB (E, #BIT, A)

PARAMETERS
E BINARY %I, %O, %M, %K Bit value
#BIT DIRECT

CONSTANT
 Position of the bit into the

word/double word
A WORD %OW,%MW output

DESCRIPTION
A bit can be set in a word or double word
The bit number defined by #BIT in the output is set to the value of E

Function block description

ABB France Page C-321 1SBC006099R1001 C - 03/07

The value of #BIT is 0…31
The output A is a word
If #BIT is higher than 15 then the following address is used
For example :
A=%MW00.00 and #BIT=16 -> bit 0 of %MW00.01 will be set

TESTB Test a bit in a word/double word

FBD/LD IL

TESTB
E
#BIT A

CAL TESTB (E, #BIT, A)

PARAMETERS
E WORD %KW, %IW, %OW, %MW Word to test
#BIT DIRECT

CONSTANT
 Position of the bit into the

word/double word
A BINARY %O,%M Result of the test

DESCRIPTION
A bit can be tested in a word or double word
The bit number defined by #BIT in the input E is set to output A
The value of #BIT is 0…31
The output A is a bit
If #BIT is higher than 15 then the following address is used
For example :
E=%MW00.00 and #BIT=16 -> bit 0 of %MW00.01 will be set on the output A

Function block description

ABB France Page C-322 1SBC006099R1001 C - 03/07

WWDW 2 words in one double word conversion

FBD/LD IL

WWDW
E1

A

CAL WWDW(E1, E2, A)

E2

PARAMETERS
E1 WORD %KW, %IW, %OW,%MW E1 is the lower word in A
E2 WORD %KW, %IW, %OW,%MW E2 is the higher word in A
A DOUBLE

WORD
%MD Output A

DESCRIPTION
The Low word of the input E1 and Higher word E2 is set in the double word A

Function block description

ABB France Page C-323 1SBC006099R1001 C - 03/07

12 Historical values

12.1 Definition

Some specific functions need several program cycles to be processed. An historical
value is an internal register used by the function and during the function processing,
to stock the function result of the (n-1) program cycle.

A maximum number of historical values can be used in a program :
- for serie 40 : 1000
- for serie 50 : 1000
- for serie 90 : 1024
- for serie 30 : 128

In case of serie 40, 50, 30 the number of timer function allowed in a program is
illimited, but a maximum of 42 timers can be processed in the program at the same
time.

Important note concerning ONLINE modifications :
The insertion of a function with historical values modify the historical value registers.
For this reason, it is not possible to insert in a running program a function with
historical values before other functions with historical values; the new program would
work with wrong historical values.

12.2 Historical value table

 serie 40 &50 serie 90 serie 30
AMELD - #n + 3 -
AMELDD - 4 + (2 * #n) -
ASV 2 1 1
BITSU - 9 -
BMELD 3+nb E if #n even : 2 + #n/2

 if #n odd : 2 + (#n+1)/2
 if #n even : 2 + #n/2
 if #n odd : 2 +
(#n+1)/2

CALLUP - #VGW -
CONFIO1 3
CONFIO4 3
CONFIO8 3
CS31CO 1 1 1
CS31QU - 1 1
CTU 2 - -
CTUH 2 - -
DT1 - 4 -
DWAES - 2 -
ESV 2 1 1
FEHSU - 4 -
FIFO - 4 -

Function block description

ABB France Page C-324 1SBC006099R1001 C - 03/07

 serie 40 &50 serie 90 serie 30
HLG - 2 -
INITS - 1 -
INITV - 1 -
INTK - 3 -
LDT - 1 -
LIFO - 3 -
LZB - 1 -
MAZ - 2 -
MAZD - 3 -
MOA 2 1 1
MODBUS 2 1 1
MODMASTK 2
MOK 2 1 1
NPULSE 1 - -
PDM 1 3 1
PI 3 4 6
PIDT1 5 9 -
PT1 - 2 -
RDB - if #n even : #n/2

 if #n odd : (#n+1)/2
-

RDDW - 2 * #n -
RDW - #n -
REC/EMAS 1 1 1
SEND/DRUCK 2 1 1
SFEHSU - 3 + #n/16 -
SINIT 1 1 1
TOF 2 - -
TON 2 - -
TP 2 - -
UHR 1 1 1
VGLEH - 1 -
VGLUH - 1 -
VRZ 3 2 3
VRZD - 3 -
VVZ - 2 -
WAES - 1 -

Function block description

ABB France Page C-325 1SBC006099R1001 C - 03/07

13 Runtimes

13.1 Definition

The runtime (in μs) is the time for the function to be read by the program during one
cycle.
The program cycle time (in ms) is then the runtime addition of all the functions in the
program.

13.2 Runtime table (time in μs)

Binary
functions

Controller,
serie 40, serie 50

serie 90
(standard time + time
per additional output)

serie 30
(standard time + time
per additional output)

& 5.1 6.6 + 2.3 20 + 6
/ 6 6.6 + 2.3 ??
= 3.9 4.3 + 2.3 14 + 8
=1 8.8 10.9 32
=R 4.4 4.3 + 2.3 15 + 9
=S 4.45 4.3 + 2.3 15 + 9
I- 10.6 13.2 45
I+ 8.95 13.2 45
MAJ - 36 -
RS 8.8 8.6 30
SR 8.8 8.6 30

Timer
functions

Controller,
serie 40, serie 50

serie 90
(standard time; time in
case of edge at input

signal)

serie 30
(standard time; time in
case of edge at input

signal)
ASV 124 45; 541 97; 551
ESV 124 38; 400 97; 554
MOA 167 36; 600 97; 552
MOK 213 20; 380 97; 554
PDM 640 35 1300
TIME_W
TOF 167 - -
TON 210 - -
TP 208 - -
VVZ - 46; 566 if 0-1 edge;

 283 if 1-0 edge
-

W_TIME

Counter
functions

Controller,
serie 40, serie 50

90 serie 30 serie

CTU 430 - -
CTUH 560 - -

Function block description

ABB France Page C-326 1SBC006099R1001 C - 03/07

VRZ 190 92 241
VRZD - 38...113 according to

the mode
-

Comparison
functions,
word

Controller,
serie 40, serie 50

90 serie 30 serie

< 13.1 <12 ??
<= 12.4 <12 ??
<> 13.3 <12 <49
=? 13.3 <12 <47
> 12.4 <12 ??
>= 13.1 <12 ??
VGL3P - 48 -
VGLEH - 56 -
VGLUH - 58...63 -

Arithmetic
functions,
word

Controller,
serie 40, serie 50

90 serie
(standard time + time

per additional
parameter)

30 serie
(standard time + time

per additional
parameter)

+ 12.8 <12 + 5 <46 + 18
- 13.8 <12 + 5 <49 + 21
* 31.8 <30 + 23 ??
: 142 <31 + 24 <781 + 753
*: / MULDI 186 84 1430
= 8.1 7 + 5 28 + 14
BETR 23.3 28 42
COS1 - ?? -
MUL2N 36.2 30...35 + 4 per shift 72 + 15 per shift
NEG 10.6 - -
SIN1 - ?? -
SQRT 572 55...193 -
ZUDKW 17 10 20

Logical
functions,
word

Controller,
serie 40, serie 50

90 serie 30 serie

MASKE - 35...38 -
SHIFT - 37...78 according to

the shift type + 1 per
bit position to be

shifted

-

WAND 22.7 28 46
WOR 22.7 29 46
WXOR 22.6 28 46

Program
control
functions

Controller,
serie 40, serie 50

90 serie 30 serie

Function block description

ABB France Page C-327 1SBC006099R1001 C - 03/07

=PE 100 2 4
ABORT - 10 -
CAL_FB - -
CALLUP 29 12
DI - -
DIN - <200 (KR91,KT93 :

stand-alone);
 <1000 (KT92 : stand-

alone)
up to 4800 with

master or slave CPU

-

DO - -
DOUT - <200 (KR91,KT93 :

stand-alone);
 <1000 (KT92 : stand-

alone)
up to 4800 with

master or slave CPU

-

IOCON - ca. 0 -
LZB - 29 -
VTASK - -

CS31
functions

Controller,
serie 40, serie 50

90 serie 30 serie

CONFIO1
CONFIO4
CONFIO8
CS31CO 180 100
CS31QU 27.5 60

Communicatio
n functions

Controller,
serie 40, serie 50

90 serie 30 serie
(standard time + time

per character)
AINIT - ?x -
APOLL - ?x -
AREC - ?x -
ASEND - ?x -
ASEND+ - ?x -
MODBUS -
REC / EMAS ? 332 + 135
SEND /
DRUCK

 ? 374 + 63

SINIT 100 25 865

Regulation
functions

Controller,
serie 40, serie 50

90 serie 30 serie

DT1 - 200 -
INTK - 189...197 -
PI 1600 280 3600
PIDT1 1600 318 without DT1; -

Function block description

ABB France Page C-328 1SBC006099R1001 C - 03/07

564 with DT1
PT1 - 106 -

Format
conversion
functions

Controller,
serie 40, serie 50

90 serie
(standard time + time

per planned binary
variable)

30 serie
(standard time + time

per planned binary
variable)

BCDDUAL /
BCDBIN

72.5 88 365

BCDDUALD /
BCDDW

- 310 -

DUALBCD /
BINBCD

107 28 (value=0) up to
162 (value=9999)

548

DUALBCDD /
DWBCD

- 36...288 -

DWW 97 36...38 154
PACK4 355 56 168
PACK8 650 86 292
PACK16 1220 153 540
PACKD4 - 67 -
PACKD8 - 103 -
PACKD16 - 175 -
PACKD24 - 247 -
PACKD32 - 319 -
UNPACK4 325 61.5 164
UNPACK8 615 99.5 296
UNPACK16 1200 175.5 560
UNPACKD4 - 76 -
UNPACKD8 - 112 -
UNPACKD16 - 184 -
UNPACKD24 - 256 -
UNPACKD32 - 328 -
WDW 26 51

Comparison
function,
double word

Controller,
serie 40, serie 50

90 serie 30 serie

<D / VKLD 107 35...36 -
=?D / VGLD 110 35...37 -
>D / VGRD 108 35...37 -

Arithmatic
function,
double word

Controller,
serie 40, serie 50

90 serie 30 serie

+D / ADDD 114 49...52 -
-D / SUBD 116 50...55 -
*D / MULD 380 117...120 -
:D / DIVD 504 300...324 -
=D / ZUWD 40.5 31 -
BETRD 32...36 -

Function block description

ABB France Page C-329 1SBC006099R1001 C - 03/07

MUL2ND 34 + 6 per shift -
NEGD 34 -
SQRT 604 x -

Logical
function,
double word

Controller,
serie 40, serie 50

90 serie 30 serie

DWAND 38 49 -
DWOR 39 35 -
DWXOR 38 35 -
MASKED - 42 -
SHIFT - x -

High order
functions

Controller,
serie 40, serie 50

90 serie
per planned input E1

30 serie
per planned input E1

ADRWA - 44 + 8 per operand
EC0...ECn-1

-

AMELD - 57 + 31 per input
E0...En-1

-

AMELDD - 64 + 41 per input
E0...En-1

-

ANAI4_20 - 180 -
AWM - 26 -
AWT 22 30 40
AWTB 38.4 32 74
AWTD - 41 -
BEG 32...35 147
BEGD - 30...38 -
BITSU - 136 + 26 per word

variable
-

BMELD 1430 61 + 31 per input
E0...En-1

?

DMUX - 36 -
DMUXD - 38 -
DWUMC - 53 + 10 per

entered ref. value
-

FEHSU - 90 + 10 per input
B0...Bn-1

-

FIFO - 64 + 0...114 -
FKG - 136 + 9 per

interpolation point
-

HLG - 126 -
IDLB 209 35 -
IDLm / IDL 27.4 35 63
IDSB 201 35 -
IDSm / IDS 38.6 35 99
INITS - 40 + 2.6 per memory

word
-

INITV - 34 + 11 per additional
VR1...VRn-1

-

Function block description

ABB France Page C-330 1SBC006099R1001 C - 03/07

LDT - x -
LIFO - 64 + 0...114 -
LIZU 139 19 127
MAX 426 22 + 9 74 + 64
MAXD - 29 + 13 -
MAZ - 36...40 -
MAZD - 49...58 -
MIN 430 35 + 7 74 + 64
MIND - 24 + 14 -
MUXR - 44.5 + 7.5 per

additional output
A1...An-1

-

MUXRD - 43 + 10 per additional
output A1...An-1

-

NPULSE 386 - -
SFEHSU - 83 + 22 per input

B0...Bn-1
-

UHR 430 60 to display;
200 to set

409 to display;
4697 to set

USM - 225 -
UST - 31 -
USTD - 35 -
USTR - 35 -
USTRD - 43 -
WDEC - 22 + 4max. per

entered ref.value
-

WUMC - 40 + 7.5 per
entered comparison

value

-

Memory
access

Controller,
serie 40, serie 50

90 serie 30 serie

COPY 258 59 + 2 per copied
word

146 + 30 per copied
word

DWAES - 27 -
DWOL - 26.5 if enable;

19 if not
-

DWOS - 38 if enable;
19 if not

-

FDEL - x -
FRD - x -
FWR - x -
IOR - 24 -
IOW - 24 -
RDB - 48 (with time WRB) +

14 per var.
-

RDDW - 34 (with WRDW time)
+ 28 per additional

output

-

RDW - 38 (with WRW time) + -

Function block description

ABB France Page C-331 1SBC006099R1001 C - 03/07

19 per additional
output

WAES - 23 no reading;
33 reading

-

WOL 21.5 20 no reading;
33 reading

146 + 48 if reading

WOS - 25 no reading;
39 reading

-

WRB - x -
WRDW - x -
WRW - x -
Special
functions

Controller,
serie 40, serie 50

90 serie 30 serie

5F_ARC94 - x -
COUNTB - x -
COUNTW - x -
DWWW - x -
IDENT - x -
MODMASTK - x -
SETB - x -
TESTB - x -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

