Английская Википедия:Abel's inequality

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In mathematics, Abel's inequality, named after Niels Henrik Abel, supplies a simple bound on the absolute value of the inner product of two vectors in an important special case.

Mathematical description

Let {a1, a2,...} be a sequence of real numbers that is either nonincreasing or nondecreasing, and let {b1, b2,...} be a sequence of real or complex numbers. If {an} is nondecreasing, it holds that

<math>

\left |\sum_{k=1}^n a_k b_k \right | \le \operatorname{max}_{k=1,\dots,n} |B_k| (|a_n| + a_n - a_1), </math> and if {an} is nonincreasing, it holds that

<math>

\left |\sum_{k=1}^n a_k b_k \right | \le \operatorname{max}_{k=1,\dots,n} |B_k| (|a_n| - a_n + a_1), </math> where

<math>

B_k =b_1+\cdots+b_k. </math> In particular, if the sequence Шаблон:Nobreak is nonincreasing and nonnegative, it follows that

<math>

\left |\sum_{k=1}^n a_k b_k \right | \le \operatorname{max}_{k=1,\dots,n} |B_k| a_1, </math>

Relation to Abel's transformation

Abel's inequality follows easily from Abel's transformation, which is the discrete version of integration by parts: If Шаблон:Nobreak and Шаблон:Nobreak are sequences of real or complex numbers, it holds that

<math>

\sum_{k=1}^n a_k b_k = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k). </math>

References