Английская Википедия:Alex K. Shalek

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Primary sources

Шаблон:Infobox scientist

Alex K. Shalek is a biomedical engineer, and a core faculty member of the Institute for Medical Engineering and Science (IMES), an Associate Professor of Chemistry, and an Extramural Member of the Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology. Additionally, he is a Member of the Ragon Institute and an Institute Member of the Broad Institute, an Assistant in Immunology at Massachusetts General Hospital, and an Instructor in Health Sciences and Technology at Harvard Medical School. The multi-disciplinary research of the Shalek Lab aims to create and implement broadly-applicable methods to study and engineer cellular responses in tissues, to drive biological discovery and improve prognostics, diagnostics, and therapeutics for autoimmune, infectious, and cancerous diseases. Shalek and his lab are best known for their work in single-cell genomics and for studying a number of devastating, but difficult to study, human diseases with partners around the world.[1]

Education and previous research

Shalek received his B.A. summa cum laude in 2004 from Columbia University where he studied chemical physics as a John Jay Scholar with Richard Bersohn and Louis Brus. He then performed graduate work in chemical physics developing arrays of nanowires as cellular "syringes" and electrochemical probes under the direction of Hongkun Park at Harvard University.[2] After, as a postdoctoral fellow, under the direction of Park and Aviv Regev at the Broad Institute, Shalek helped pioneer single-cell patterns in cellular responses to study how cells respond differently to the same condition, showing that genome-wide gene expression covariation across cells could be used to define cellular types and states, their internal "circuitry", from the “bottom-up”.[3][4][5][6]

As an independent investigator, Shalek and his lab have helped scale and simplify single cell genomics to study complex, low-input clinical specimens around the world.[7][5][8] In parallel, they have used these and other approaches [8][9][10][11][12][13][14]Шаблон:Excessive citations inline to help examine the causes and consequences of cellular heterogeneity across cancers,[15][16][17][18][19] infectious diseases,[5][8][9][10][20][21][22][23][24][25][26][27]Шаблон:Excessive citations inline and inflammation.[28][29][30]

Ongoing research

Current work in the Shalek Lab includes both the development of broadly enabling technologies as well as their application to characterize, model, and control multicellular systems. With respect to technology development, the lab brings together areas of research in genomics, chemical biology, and nanotechnology to establish accessible approaches to profile and control cells and their interactions.

In addition to these tools with the global research community,[31] the lab is applying them to dissect human diseases, like COVID-19,[32][33] methodically linking cellular features and clinical observations. Major areas of focus include how: immune cells coordinate balanced responses to environmental stresses;[28][29][8][34] host cell-pathogen interactions evolve during infection;[8][9][10][21][22][23][26]Шаблон:Excessive citations inline and, tumor cells evade therapeutic treatment and natural immunity.[15][17][18][19][25][35]

From these observations and those of others, the lab aims to understand how disease alters tissue function at the cellular level and realize therapeutic and prophylactic interventions to reestablish or support human health.

Select honors and awards

Select publications

  • Huang, Siyi et al. (2021-01-21). "Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential". Cell. 184 (2): 441–459.e25[34]
  • Ziegler, C.G.K. et al. (2020-05-28). “SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues,” Cell, 181, 1016 (2020).[20]
  • Hughes, Travis K. et al. (2020-10-13). "Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies". Immunity. 53 (4): 878–894.e7.[8]
  • Kotliar, Dylan et al. (2020-11-25). "Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics". Cell. 183 (5): 1383–1401.e19.[10]
  • Kazer, Samuel W. et al. (2020-04). "Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection". Nature Medicine. 26 (4): 511–518.[9]
  • Smillie, C.# et al. (2019). “Intra- and inter-cellular rewiring of the human colon during ulcerative colitis” Cell, 178, 714 (2019).[29]
  • Ordovas-Montanes, J. et al. (2018). “Reduced cellular diversity and an altered basal progenitor cell state inform epithelial barrier dysfunction in human type 2 immunity,” Nature, 560, 649 (2018).[28]
  • Martin-Gayo, E. et al. (2018). “A Rational Framework for Modulating Ensemble Immune Behaviors Inspired by HIV-1 Elite Control”, Genome Biol., 19, 10 (2018).[26]
  • T. M. Gierahn et al. (2017) “Seq-Well: A Portable, Low-cost Platform for Single-Cell RNA-Seq of Low-Input Samples.” Nature Meth. 14 (2017): 395.[5]
  • I. Tirosh et al. (2017) “Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.” Science 352.6282 (2016): 189-96.[15]
  • E. Z. Macosko et al. (2015). “Genome-wide expression profiling of thousands of individual cells using nanoliter droplets.” Cell 161 (2015): 1202-14.[7]
  • A. K. Shalek et al. (2014). “Large-Scale Single-Cell RNA-Seq Reveals Strategies for Regulating Cell-to-Cell Dynamic Variability through Paracrine Signaling.” Nature 510 (2014): 363.[4]
  • A. K. Shalek et al. (2013). “Single-Cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells.” Nature 498 (2013): 236-40.[3]
  • N. Yosef et al. (2013). “Dynamic Regulatory Network Controlling Th17 Cell Differentiation.” Nature 496 (2013): 461-68.[46]

References

  1. Шаблон:Cite web
  2. Шаблон:Cite journal
  3. 3,0 3,1 Шаблон:Cite journal
  4. 4,0 4,1 Шаблон:Cite journal
  5. 5,0 5,1 5,2 5,3 Шаблон:Cite journal
  6. Шаблон:Cite web
  7. 7,0 7,1 Шаблон:Cite journal
  8. 8,0 8,1 8,2 8,3 8,4 8,5 Шаблон:Cite journal
  9. 9,0 9,1 9,2 9,3 Шаблон:Cite journal
  10. 10,0 10,1 10,2 10,3 Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. 15,0 15,1 15,2 Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. 17,0 17,1 Шаблон:Cite journal
  18. 18,0 18,1 Шаблон:Cite journal
  19. 19,0 19,1 Шаблон:Cite journal
  20. 20,0 20,1 Шаблон:Cite journal
  21. 21,0 21,1 Шаблон:Cite journal
  22. 22,0 22,1 Шаблон:Cite journal
  23. 23,0 23,1 Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. 25,0 25,1 Шаблон:Cite journal
  26. 26,0 26,1 26,2 Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. 28,0 28,1 28,2 Шаблон:Cite journal
  29. 29,0 29,1 29,2 Шаблон:Cite journal
  30. Шаблон:Cite web
  31. Шаблон:Cite journal
  32. Шаблон:Cite web
  33. Шаблон:Cite web
  34. 34,0 34,1 Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite web
  37. Шаблон:Cite web
  38. Шаблон:Cite web
  39. Шаблон:Cite web
  40. Шаблон:Cite web
  41. Шаблон:Cite web
  42. Шаблон:Cite web
  43. Шаблон:Cite web
  44. Шаблон:Cite web
  45. 45,0 45,1 45,2 45,3 45,4 45,5 45,6 45,7 Шаблон:Cite web
  46. Шаблон:Cite journal

External links

Шаблон:Authority control