Английская Википедия:Binet–Cauchy identity

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin-Louis Cauchy, states that[1] <math display="block"> \left(\sum_{i=1}^n a_i c_i\right) \left(\sum_{j=1}^n b_j d_j\right) = \left(\sum_{i=1}^n a_i d_i\right) \left(\sum_{j=1}^n b_j c_j\right) + \sum_{1\le i < j \le n} (a_i b_j - a_j b_i ) (c_i d_j - c_j d_i ) </math> for every choice of real or complex numbers (or more generally, elements of a commutative ring). Setting Шаблон:Math and Шаблон:Math, it gives Lagrange's identity, which is a stronger version of the Cauchy–Schwarz inequality for the Euclidean space <math display="inline">\R^n</math>. The Binet-Cauchy identity is a special case of the Cauchy–Binet formula for matrix determinants.

The Binet–Cauchy identity and exterior algebra

When Шаблон:Math, the first and second terms on the right hand side become the squared magnitudes of dot and cross products respectively; in Шаблон:Math dimensions these become the magnitudes of the dot and wedge products. We may write it <math display="block">(a \cdot c)(b \cdot d) = (a \cdot d)(b \cdot c) + (a \wedge b) \cdot (c \wedge d)</math> where Шаблон:Math, Шаблон:Math, Шаблон:Math, and Шаблон:Math are vectors. It may also be written as a formula giving the dot product of two wedge products, as <math display="block">(a \wedge b) \cdot (c \wedge d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)\,,</math> which can be written as <math display="block">(a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)</math> in the Шаблон:Math case.

In the special case Шаблон:Math and Шаблон:Math, the formula yields <math display="block">|a \wedge b|^2 = |a|^2|b|^2 - |a \cdot b|^2. </math>

When both Шаблон:Math and Шаблон:Math are unit vectors, we obtain the usual relation <math display="block">\sin^2 \phi = 1 - \cos^2 \phi</math> where Шаблон:Math is the angle between the vectors.

This is a special case of the Inner product on the exterior algebra of a vector space, which is defined on wedge-decomposable elements as the Gram determinant of their components.

Einstein notation

A relationship between the Levi–Cevita symbols and the generalized Kronecker delta is <math display="block">\frac{1}{k!}\varepsilon^{\lambda_1\cdots\lambda_k\mu_{k+1}\cdots\mu_{n}} \varepsilon_{\lambda_1\cdots\lambda_k\nu_{k+1}\cdots\nu_{n}} = \delta^{\mu_{k+1}\cdots\mu_{n}}_{\nu_{k+1}\cdots\nu_{n}}\,.</math>

The <math>(a \wedge b) \cdot (c \wedge d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)</math> form of the Binet–Cauchy identity can be written as <math display="block">\frac{1}{(n-2)!}\left(\varepsilon^{\mu_1\cdots\mu_{n-2}\alpha\beta} ~ a_{\alpha} ~ b_{\beta} \right)\left( \varepsilon_{\mu_1\cdots\mu_{n-2}\gamma\delta} ~ c^{\gamma} ~ d^{\delta}\right) = \delta^{\alpha\beta}_{\gamma\delta} ~ a_{\alpha} ~ b_{\beta} ~ c^{\gamma} ~ d^{\delta}\,.</math>

Proof

Expanding the last term, <math display="block"> \begin{align} &\sum_{1\le i < j \le n} (a_i b_j - a_j b_i ) (c_i d_j - c_j d_i ) \\ ={}&{} \sum_{1\le i < j \le n} (a_i c_i b_j d_j + a_j c_j b_i d_i) + \sum_{i=1}^n a_i c_i b_i d_i - \sum_{1\le i < j \le n} (a_i d_i b_j c_j + a_j d_j b_i c_i) - \sum_{i=1}^n a_i d_i b_i c_i \end{align} </math> where the second and fourth terms are the same and artificially added to complete the sums as follows: <math display="block"> = \sum_{i=1}^n \sum_{j=1}^n a_i c_i b_j d_j - \sum_{i=1}^n \sum_{j=1}^n a_i d_i b_j c_j. </math>

This completes the proof after factoring out the terms indexed by i.

Generalization

A general form, also known as the Cauchy–Binet formula, states the following: Suppose A is an m×n matrix and B is an n×m matrix. If S is a subset of {1, ..., n} with m elements, we write AS for the m×m matrix whose columns are those columns of A that have indices from S. Similarly, we write BS for the m×m matrix whose rows are those rows of B that have indices from S. Then the determinant of the matrix product of A and B satisfies the identity <math display="block">\det(AB) = \sum_{ S\subset\{1,\ldots,n\} \atop |S| = m} \det(A_S)\det(B_S),</math> where the sum extends over all possible subsets S of {1, ..., n} with m elements.

We get the original identity as special case by setting <math display="block"> A = \begin{pmatrix}a_1&\dots&a_n\\b_1&\dots& b_n\end{pmatrix},\quad B = \begin{pmatrix}c_1&d_1\\\vdots&\vdots\\c_n&d_n\end{pmatrix}. </math>

Notes

References