Английская Википедия:Faltings' annihilator theorem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:More citations needed In abstract algebra (specifically commutative ring theory), Faltings' annihilator theorem states: given a finitely generated module M over a Noetherian commutative ring A and ideals I, J, the following are equivalent:[1]

  • <math>\operatorname{depth} M_{\mathfrak{p}} + \operatorname{ht}(I + \mathfrak{p})/\mathfrak{p} \ge n</math> for any <math>\mathfrak{p} \in \operatorname{Spec}(A) - V(J)</math>,
  • there is an ideal <math>\mathfrak b</math> in A such that <math>\mathfrak{b} \supset J</math> and <math>\mathfrak b</math> annihilates the local cohomologies <math>\operatorname{H}^i_I(M), 0 \le i \le n - 1</math>,

provided either A has a dualizing complex or is a quotient of a regular ring.

The theorem was first proved by Faltings in Шаблон:Harv.

References

Шаблон:Reflist


Шаблон:Commutative-algebra-stub

  1. Takesi Kawasaki, On Faltings' Annihilator Theorem, Proceedings of the American Mathematical Society, Vol. 136, No. 4 (Apr., 2008), pp. 1205–1211. NB: since <math>\operatorname{ht}((I + \mathfrak{p})/\mathfrak{p}) = \operatorname{inf}(\operatorname{ht}(\mathfrak{r}/\mathfrak{p}) \mid \mathfrak{r} \in V(\mathfrak{p}) \cap V(I) = V((I + \mathfrak{p})/\mathfrak{p}) \}</math>, the statement here is the same as the one in the reference.