Английская Википедия:Formation matrix

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Technical

In statistics and information theory, the expected formation matrix of a likelihood function <math>L(\theta)</math> is the matrix inverse of the Fisher information matrix of <math>L(\theta)</math>, while the observed formation matrix of <math>L(\theta)</math> is the inverse of the observed information matrix of <math>L(\theta)</math>.[1]

Currently, no notation for dealing with formation matrices is widely used, but in books and articles by Ole E. Barndorff-Nielsen and Peter McCullagh, the symbol <math>j^{ij}</math> is used to denote the element of the i-th line and j-th column of the observed formation matrix. The geometric interpretation of the Fisher information matrix (metric) leads to a notation of <math>g^{ij}</math> following the notation of the (contravariant) metric tensor in differential geometry. The Fisher information metric is denoted by <math>g_{ij}</math> so that using Einstein notation we have <math> g_{ik}g^{kj} = \delta_i^j</math>.

These matrices appear naturally in the asymptotic expansion of the distribution of many statistics related to the likelihood ratio.

See also

Notes

Шаблон:Reflist

References

  • Barndorff-Nielsen, O.E., Cox, D.R. (1989), Asymptotic Techniques for Use in Statistics, Chapman and Hall, London. Шаблон:ISBN
  • Barndorff-Nielsen, O.E., Cox, D.R., (1994). Inference and Asymptotics. Chapman & Hall, London.
  • P. McCullagh, "Tensor Methods in Statistics", Monographs on Statistics and Applied Probability, Chapman and Hall, 1987.
  • Edwards, A.W.F. (1984) Likelihood. CUP. Шаблон:ISBN


Шаблон:Statistics-stub

  1. Edwards (1984) p104