Английская Википедия:Green's identities
Шаблон:Short description Шаблон:Calculus In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem.
Green's first identity
This identity is derived from the divergence theorem applied to the vector field Шаблон:Math while using an extension of the product rule that Шаблон:Math: Let Шаблон:Mvar and Шаблон:Mvar be scalar functions defined on some region Шаблон:Math, and suppose that Шаблон:Mvar is twice continuously differentiable, and Шаблон:Mvar is once continuously differentiable. Using the product rule above, but letting Шаблон:Math, integrate Шаблон:Math over Шаблон:Mvar. Then[1] <math display="block">\int_U \left( \psi \, \Delta \varphi + \nabla \psi \cdot \nabla \varphi \right)\, dV = \oint_{\partial U} \psi \left( \nabla \varphi \cdot \mathbf{n} \right)\, dS=\oint_{\partial U}\psi\,\nabla\varphi\cdot d\mathbf{S} </math> where Шаблон:Math is the Laplace operator, Шаблон:Math is the boundary of region Шаблон:Mvar, Шаблон:Math is the outward pointing unit normal to the surface element Шаблон:Math and Шаблон:Math is the oriented surface element.
This theorem is a special case of the divergence theorem, and is essentially the higher dimensional equivalent of integration by parts with Шаблон:Mvar and the gradient of Шаблон:Mvar replacing Шаблон:Mvar and Шаблон:Mvar.
Note that Green's first identity above is a special case of the more general identity derived from the divergence theorem by substituting Шаблон:Math, <math display="block">\int_U \left( \psi \, \nabla \cdot \mathbf{\Gamma} + \mathbf{\Gamma} \cdot \nabla \psi\right)\, dV = \oint_{\partial U} \psi \left( \mathbf{\Gamma} \cdot \mathbf{n} \right)\, dS=\oint_{\partial U}\psi\mathbf{\Gamma}\cdot d\mathbf{S} ~. </math>
Green's second identity
If Шаблон:Mvar and Шаблон:Mvar are both twice continuously differentiable on Шаблон:Math, and Шаблон:Mvar is once continuously differentiable, one may choose Шаблон:Math to obtain <math display="block"> \int_U \left[ \psi \, \nabla \cdot \left( \varepsilon \, \nabla \varphi \right) - \varphi \, \nabla \cdot \left( \varepsilon \, \nabla \psi \right) \right]\, dV = \oint_{\partial U} \varepsilon \left( \psi {\partial \varphi \over \partial \mathbf{n}} - \varphi {\partial \psi \over \partial \mathbf{n}}\right)\, dS. </math>
For the special case of Шаблон:Math all across Шаблон:Math, then, <math display="block"> \int_U \left( \psi \, \nabla^2 \varphi - \varphi \, \nabla^2 \psi\right)\, dV = \oint_{\partial U} \left( \psi {\partial \varphi \over \partial \mathbf{n}} - \varphi {\partial \psi \over \partial \mathbf{n}}\right)\, dS. </math>
In the equation above, Шаблон:Math is the directional derivative of Шаблон:Mvar in the direction of the outward pointing surface normal Шаблон:Math of the surface element Шаблон:Math, <math display="block"> {\partial \varphi \over \partial \mathbf{n}} = \nabla \varphi \cdot \mathbf{n} = \nabla_\mathbf{n}\varphi.</math>
Explicitly incorporating this definition in the Green's second identity with Шаблон:Math results in <math display="block"> \int_U \left( \psi \, \nabla^2 \varphi - \varphi \, \nabla^2 \psi\right)\, dV = \oint_{\partial U} \left( \psi \nabla \varphi - \varphi \nabla \psi\right)\cdot d\mathbf{S}. </math>
In particular, this demonstrates that the Laplacian is a self-adjoint operator in the Шаблон:Math inner product for functions vanishing on the boundary so that the right hand side of the above identity is zero.
Green's third identity
Green's third identity derives from the second identity by choosing Шаблон:Math, where the Green's function Шаблон:Mvar is taken to be a fundamental solution of the Laplace operator, ∆. This means that: <math display="block"> \Delta G(\mathbf{x},\boldsymbol{\eta}) = \delta(\mathbf{x} - \boldsymbol{\eta}) ~.</math>
For example, in Шаблон:Math, a solution has the form <math display="block">G(\mathbf{x},\boldsymbol{\eta})= \frac{-1}{4 \pi \|\mathbf{x} - \boldsymbol{\eta} \|} ~.</math>
Green's third identity states that if Шаблон:Mvar is a function that is twice continuously differentiable on Шаблон:Mvar, then <math display="block"> \int_U \left[ G(\mathbf{y},\boldsymbol{\eta}) \, \Delta \psi(\mathbf{y}) \right] \, dV_\mathbf{y} - \psi(\boldsymbol{\eta})= \oint_{\partial U} \left[ G(\mathbf{y},\boldsymbol{\eta}) {\partial \psi \over \partial \mathbf{n}} (\mathbf{y}) - \psi(\mathbf{y}) {\partial G(\mathbf{y},\boldsymbol{\eta}) \over \partial \mathbf{n}} \right]\, dS_\mathbf{y}.</math>
A simplification arises if Шаблон:Mvar is itself a harmonic function, i.e. a solution to the Laplace equation. Then Шаблон:Math and the identity simplifies to <math display="block">\psi(\boldsymbol{\eta})= \oint_{\partial U} \left[\psi(\mathbf{y}) \frac{\partial G(\mathbf{y},\boldsymbol{\eta})}{\partial \mathbf{n}} - G(\mathbf{y},\boldsymbol{\eta}) \frac{\partial \psi}{\partial \mathbf{n}} (\mathbf{y}) \right]\, dS_\mathbf{y}.</math>
The second term in the integral above can be eliminated if Шаблон:Mvar is chosen to be the Green's function that vanishes on the boundary of Шаблон:Mvar (Dirichlet boundary condition), <math display="block">\psi(\boldsymbol{\eta}) = \oint_{\partial U} \psi(\mathbf{y}) \frac{\partial G(\mathbf{y},\boldsymbol{\eta})}{\partial \mathbf{n}} \, dS_\mathbf{y} ~.</math>
This form is used to construct solutions to Dirichlet boundary condition problems. Solutions for Neumann boundary condition problems may also be simplified, though the Divergence theorem applied to the differential equation defining Green's functions shows that the Green's function cannot integrate to zero on the boundary, and hence cannot vanish on the boundary. See Green's functions for the Laplacian or [2] for a detailed argument, with an alternative.
It can be further verified that the above identity also applies when Шаблон:Mvar is a solution to the Helmholtz equation or wave equation and Шаблон:Mvar is the appropriate Green's function. In such a context, this identity is the mathematical expression of the Huygens principle, and leads to Kirchhoff's diffraction formula and other approximations.
On manifolds
Green's identities hold on a Riemannian manifold. In this setting, the first two are <math display="block">\begin{align} \int_M u \,\Delta v\, dV + \int_M \langle\nabla u, \nabla v\rangle\, dV &= \int_{\partial M} u N v \, d\widetilde{V} \\ \int_M \left (u \, \Delta v - v \, \Delta u \right )\, dV &= \int_{\partial M}(u N v - v N u) \, d \widetilde{V} \end{align}</math> where Шаблон:Mvar and Шаблон:Mvar are smooth real-valued functions on Шаблон:Mvar, Шаблон:Mvar is the volume form compatible with the metric, <math>d\widetilde{V}</math> is the induced volume form on the boundary of Шаблон:Mvar, Шаблон:Mvar is the outward oriented unit vector field normal to the boundary, and Шаблон:Math is the Laplacian.
Green's vector identity
Green's second identity establishes a relationship between second and (the divergence of) first order derivatives of two scalar functions. In differential form <math display="block">p_m \, \Delta q_m-q_m \, \Delta p_m = \nabla\cdot\left(p_m\nabla q_m-q_m \, \nabla p_m\right),</math> where Шаблон:Math and Шаблон:Math are two arbitrary twice continuously differentiable scalar fields. This identity is of great importance in physics because continuity equations can thus be established for scalar fields such as mass or energy.[3]
In vector diffraction theory, two versions of Green's second identity are introduced.
One variant invokes the divergence of a cross product [4][5][6] and states a relationship in terms of the curl-curl of the field <math display="block">\mathbf{P}\cdot\left(\nabla\times\nabla\times\mathbf{Q}\right)-\mathbf{Q}\cdot\left(\nabla\times\nabla\times \mathbf{P}\right) = \nabla\cdot\left(\mathbf{Q}\times\left(\nabla\times\mathbf{P}\right)-\mathbf{P}\times\left(\nabla\times\mathbf{Q}\right)\right).</math>
This equation can be written in terms of the Laplacians,
<math display="block">\mathbf{P}\cdot\Delta \mathbf{Q}-\mathbf{Q}\cdot\Delta \mathbf{P} + \mathbf{Q} \cdot \left[\nabla\left(\nabla\cdot\mathbf{P}\right)\right]-\mathbf{P} \cdot \left[ \nabla \left(\nabla \cdot \mathbf{Q}\right)\right] = \nabla \cdot \left( \mathbf{P}\times \left(\nabla\times\mathbf{Q}\right) - \mathbf{Q}\times\left(\nabla\times\mathbf{P}\right)\right).</math>
However, the terms <math display="block">\mathbf{Q}\cdot\left[\nabla\left(\nabla\cdot\mathbf{P}\right)\right]-\mathbf{P} \cdot \left[\nabla\left(\nabla\cdot\mathbf{Q}\right)\right],</math> could not be readily written in terms of a divergence.
The other approach introduces bi-vectors, this formulation requires a dyadic Green function.[7][8] The derivation presented here avoids these problems.[9]
Consider that the scalar fields in Green's second identity are the Cartesian components of vector fields, i.e., <math display="block">\mathbf{P}=\sum_m p_{m}\hat{\mathbf{e}}_m, \qquad \mathbf{Q}=\sum_m q_m \hat{\mathbf{e}}_m.</math>
Summing up the equation for each component, we obtain <math display="block">\sum_m \left[p_m\Delta q_m - q_m\Delta p_m\right]=\sum_m \nabla \cdot \left( p_m \nabla q_m-q_m\nabla p_m \right).</math>
The LHS according to the definition of the dot product may be written in vector form as <math display="block">\sum_m \left[p_m \, \Delta q_m-q_m \, \Delta p_m\right] = \mathbf{P} \cdot \Delta\mathbf{Q}-\mathbf{Q}\cdot\Delta\mathbf{P}.</math>
The RHS is a bit more awkward to express in terms of vector operators. Due to the distributivity of the divergence operator over addition, the sum of the divergence is equal to the divergence of the sum, i.e., <math display="block">\sum_m \nabla\cdot\left(p_m \nabla q_m-q_m\nabla p_m\right)= \nabla \cdot \left(\sum_m p_m \nabla q_m - \sum_m q_m \nabla p_m \right).</math>
Recall the vector identity for the gradient of a dot product, <math display="block">\nabla \left(\mathbf{P} \cdot \mathbf{Q} \right) = \left( \mathbf{P} \cdot \nabla \right) \mathbf{Q} + \left( \mathbf{Q} \cdot \nabla \right) \mathbf{P} + \mathbf{P}\times \left(\nabla\times\mathbf{Q}\right)+\mathbf{Q}\times \left(\nabla\times\mathbf{P}\right),</math> which, written out in vector components is given by
<math display="block">\nabla\left(\mathbf{P}\cdot\mathbf{Q}\right)=\nabla\sum_m p_m q_m = \sum_m p_m \nabla q_m + \sum_m q_m \nabla p_m.</math>
This result is similar to what we wish to evince in vector terms 'except' for the minus sign. Since the differential operators in each term act either over one vector (say <math>p_m</math>’s) or the other (<math>q_m</math>’s), the contribution to each term must be <math display="block">\sum_m p_m \nabla q_m = \left(\mathbf{P} \cdot \nabla\right) \mathbf{Q} + \mathbf{P} \times \left(\nabla \times \mathbf{Q}\right),</math> <math display="block">\sum_m q_m \nabla p_m = \left(\mathbf{Q} \cdot \nabla\right) \mathbf{P} + \mathbf{Q} \times \left(\nabla \times \mathbf{P}\right).</math>
These results can be rigorously proven to be correct through evaluation of the vector components. Therefore, the RHS can be written in vector form as
<math display="block"> \sum_m p_m \nabla q_m - \sum_m q_m \nabla p_m = \left(\mathbf{P} \cdot \nabla\right) \mathbf{Q} + \mathbf{P}\times \left(\nabla\times\mathbf{Q}\right)-\left( \mathbf{Q} \cdot \nabla\right) \mathbf{P} - \mathbf{Q}\times \left(\nabla\times\mathbf{P}\right).</math>
Putting together these two results, a result analogous to Green's theorem for scalar fields is obtained,
Theorem for vector fields: <math display="block">\color{OliveGreen}\mathbf{P} \cdot \Delta \mathbf{Q} - \mathbf{Q} \cdot \Delta \mathbf{P} = \left[ \left(\mathbf{P} \cdot \nabla\right) \mathbf{Q} + \mathbf{P}\times \left(\nabla\times\mathbf{Q}\right)-\left( \mathbf{Q} \cdot \nabla\right) \mathbf{P} - \mathbf{Q}\times \left(\nabla\times\mathbf{P}\right)\right].</math>
The curl of a cross product can be written as <math display="block">\nabla\times\left(\mathbf{P}\times\mathbf{Q}\right)=\left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}-\left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right);</math>
Green's vector identity can then be rewritten as <math display="block">\mathbf{P}\cdot\Delta \mathbf{Q}-\mathbf{Q}\cdot\Delta \mathbf{P}= \nabla \cdot \left[\mathbf{P} \left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q} \left( \nabla \cdot \mathbf{P}\right)-\nabla \times \left( \mathbf{P} \times \mathbf{Q} \right) +\mathbf{P}\times\left(\nabla\times\mathbf{Q}\right) - \mathbf{Q}\times \left(\nabla\times\mathbf{P}\right)\right].</math>
Since the divergence of a curl is zero, the third term vanishes to yield Green's vector identity: <math display="block">\color{OliveGreen}\mathbf{P}\cdot\Delta\mathbf{Q}-\mathbf{Q} \cdot \Delta \mathbf{P} =\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q} \left( \nabla \cdot \mathbf{P} \right) + \mathbf{P}\times \left(\nabla\times\mathbf{Q}\right) - \mathbf{Q}\times\left(\nabla\times\mathbf{P}\right)\right].</math>
With a similar procedure, the Laplacian of the dot product can be expressed in terms of the Laplacians of the factors <math display="block"> \Delta \left( \mathbf{P} \cdot \mathbf{Q} \right) = \mathbf{P} \cdot \Delta \mathbf{Q}-\mathbf{Q}\cdot\Delta \mathbf{P} + 2\nabla \cdot \left[ \left( \mathbf{Q} \cdot \nabla \right) \mathbf{P} + \mathbf{Q} \times \nabla \times \mathbf{P} \right].</math>
As a corollary, the awkward terms can now be written in terms of a divergence by comparison with the vector Green equation, <math display="block">\mathbf{P}\cdot \left[ \nabla \left(\nabla \cdot \mathbf{Q} \right) \right] - \mathbf{Q} \cdot \left[ \nabla \left( \nabla \cdot \mathbf{P} \right) \right] = \nabla \cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q} \left( \nabla \cdot \mathbf{P} \right) \right].</math>
This result can be verified by expanding the divergence of a scalar times a vector on the RHS.
See also
References
External links
- Шаблон:Springer
- [1] Green's Identities at Wolfram MathWorld