Русская Википедия:Карбид кремния

Материал из Онлайн справочника
Версия от 01:29, 22 августа 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {{Вещество | заголовок = Карбид кремния | картинка = <!-- из Викиданных --> | картинка3D = <!-- из Викиданных --> | изображение = Siliciumcarbid.jpg | наименование = <!-- по хим. классификации --> | т...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Вещество

Карби́д кре́мния (карбору́нд) — бинарное неорганическое химическое соединение кремния с углеродом. Химическая формула SiC. В природе встречается в виде чрезвычайно редкого минерала — муассанита. Порошок карбида кремния был получен в 1893 году. Используется как абразив, полупроводник, в микроэлектронике (в силовых установках электроавтомобилей), для имитирующих алмаз вставок в ювелирные украшения.

Открытие и начало производства

Файл:SiC LED historic.jpg
Повторение эксперимента Г. Д. Раунда

О ранних, не систематических и часто непризнанных синтезах карбида кремния сообщали Деспретз (Шаблон:Lang-fr; 1849), Марсден (Шаблон:Lang-en; 1880) и Колсон (Шаблон:Lang-en; 1882 год)[1]. Широкомасштабное производство начал Эдвард Гудрич Ачесон в 1893 году. Он запатентовал метод получения порошкообразного карбида кремния 28 февраля 1893 года[2]. Ачесон также разработал электрическую печь, в которой карбид кремния создаётся до сих пор. Он основал компанию Шаблон:Lang-en2 для производства порошкообразного вещества, которое первоначально использовалось в качестве абразива[3].

Исторически первым способом использования карбида кремния было использование в качестве абразива. За этим последовало применение и в электронных устройствах. В начале XX века карбид кремния использовался в качестве детектора в первых радиоприемниках[4]. В 1907 году Генри Джозеф Раунд создал первый светодиод, подавая напряжение на кристаллы SiC и наблюдая за жёлтым, зелёным и оранжевым излучением на катоде. Эти эксперименты были повторены О. В. Лосевым в СССР в 1923 году[5].

Формы нахождения в природе

Файл:Moissanite-USGS-20-1001d-14x-.jpg
Монокристалл муассанита (~1 мм в размере)

Природный карбид кремния — муассанит можно найти только в ничтожно малых количествах в некоторых типах метеоритов и в месторождениях корунда и кимберлита. Практически любой карбид кремния, продаваемый в мире, в том числе и в виде муассанитового украшения, является синтетическим. Природный муассанит был впервые обнаружен в 1893 году в виде небольших шестиугольных пластинчатых включений в метеорите Каньон Диабло в Аризоне Фердинандом Анри Муассаном, в честь которого и был назван минерал в 1905 году[6]. Исследование Муассана о естественном происхождении карбида кремния было изначально спорным, потому что его образец мог быть загрязнён крошкой карбида кремния от пилы (в то время пилы уже содержали данное вещество)[7].

Хоть карбид кремния и является редким веществом на Земле, он широко распространён в космосе. Это вещество встречается в пылевых облаках вокруг богатых углеродом звёзд, также его много в первозданных, не подвергшихся изменениям, метеоритах (почти исключительно в форме бета-полиморфа). Анализ зёрен карбида кремния, найденных в углеродистом хондритовом метеорите Мёрчисон, показал аномальное изотопное соотношение углерода и кремния, что указывает на происхождение данного вещества за пределами Солнечной системы: 99 % зёрен SiC образовалось около богатых углеродом звёзд, принадлежащих к асимптотической ветви гигантов[8]. Карбид кремния можно часто обнаружить вокруг таких звёзд по их ИК-спектрам[9].

Производство

Из-за редкости нахождения в природе муассанита карбид кремния, как правило, имеет искусственное происхождение. Простейшим способом производства является спекание кремнезёма с углеродом в графитовой электропечи Ачесона при высокой температуре 1600—2500 °C:

<chem>SiO2{} + 3 C ->[1600{-}2500~^\circ\text{C}] SiC{} + 2 CO\uparrow</chem>
Файл:SiC crystals.JPG
Синтетические кристаллы SiC ~3 мм в диаметре

Чистота карбида кремния, образующегося в печи Ачесона, зависит от расстояния до графитового резистора в ТЭНе.

Кристаллы высокой чистоты бесцветного, бледно-жёлтого и зелёного цвета находятся ближе всего к резистору. На большем расстоянии от резистора цвет изменяется на синий или чёрный из-за примесей. Загрязнителями чаще всего являются азот и алюминий, они влияют на электропроводность полученного материала[10].

Файл:Lely SiC Crystal.jpg
Кристаллы карбида кремния, полученные благодаря Шаблон:Нп5

Чистый карбид кремния можно получить с помощью так называемого Шаблон:Нп5[11], в котором порошкообразный SiC возгоняется в атмосфере аргона при 2500 °C и осаждается на более холодной подложке в виде чешуйчатых монокристаллов размерами до 2 см × 2 см. Этот процесс даёт высококачественные монокристаллы, получающиеся из-за быстрого нагрева до высоких температур и в основном состоящие из 6H-SiC фазы. Улучшенный процесс Лели при участии индукционного нагрева в графитовых тиглях даёт ещё большие монокристаллы до 10 см в диаметре[12]. Кубический SiC, как правило, выращивается с помощью более дорогостоящего процесса — химического осаждения паров[10][13].

Чистый карбид кремния также может быть получен путём термического разложения полимера полиметилсилана (SiCH3)n, в атмосфере инертного газа при низких температурах. Относительно CVD-процесса метод пиролиза более удобен, поскольку из полимера можно сформировать изделие любой формы перед запеканием в керамику[14][15][16][17].

Структура и свойства

Известно примерно 250 кристаллических форм карбида кремния[18]. Полиморфизм SiC характеризуется большим количеством схожих кристаллических структур, называемых политипами. Они являются вариациями одного и того же химического соединения, которые идентичны в двух измерениях, но отличаются в третьем. Таким образом, их можно рассматривать как слои, сложенные в стопку в определённой последовательности[19].

Альфа-карбид кремния (α-SiC) является наиболее часто встречающимся полиморфом. Эта модификация образуется при температуре свыше 1700 °C и имеет гексагональную решётку, кристаллическая структура типа вюрцита.

Бета-модификация (β-SiC), с кристаллической структурой типа цинковой обманки (аналог структуры алмаза), образуется при температурах ниже 1700 °C[20]. До недавнего времени бета-форма имела сравнительно небольшое коммерческое использование, однако в настоящее время в связи с использованием его в качестве гетерогенных катализаторов интерес к ней увеличивается. Нагревание бета-формы до температур свыше 1700 °C способно приводить к постепенному переходу кубической бета-формы в гексагональную (2Н, 4Н, 6Н, 8Н) и ромбичеcкую (15R).[21] При повышении температуры и времени процесса все образующиеся формы переходят в конечном итоге в гексагональный альфа-политип 6Н.[22]

Свойства основных политипов карбида кремния[23][24]
Политип 3C (β) 4H 6H (α)
Кристаллическая структура Кубичкская Гексагональная Гексагональная
Пространственная группа <math>T^2_d-F43m</math> <math>C^4_{6v}-P6_3mc</math> <math>C^4_{6v}-P6_3mc</math>
Символ Пирсона cF8 hP8 hP12
Постоянные решётки (Å) 4,3596 3,0730; 10,053 3,0810; 15,12
Плотность (г/см3) 3,21 3,21 3,21
Ширина запрещённой зоны (эВ) 2,36 3,23 3,05
МОС (ГПа) 250 220 220
Теплопроводность (Вт/(см·К)) 3,6 3,7 4,9

Чистый карбид кремния бесцветен. Его оттенки от коричневого до чёрного цвета связаны с примесями железа. Радужный блеск кристаллов обусловливается тем, что при контакте с воздухом на их поверхности образуется плёнка из диоксида кремния, что приводит к пассивированию внешнего слоя.

Карбид кремния является весьма инертным химическим веществом: практически не взаимодействует с большинством кислот, кроме концентрированных фтористоводородной (плавиковой), азотной и ортофосфорной кислот. Способен выдерживать нагревание на открытом воздухе до температур порядка 1500 °C. Карбид кремния не плавится при любом известном давлении, но способен сублимировать при температурах свыше 1700 °C. Высокая термическая устойчивость карбида кремния делает его пригодным для создания подшипников и частей оборудования для высокотемпературных печей.

Существует большой интерес в использовании данного вещества в качестве полупроводникового материала в электронике, где высокая теплопроводность, высокое электрическое напряжение пробоя и высокая плотность электрического тока делают его перспективным материалом для высокомощных устройств[25], в том числе при создании сверхмощных светодиодов. Карбид кремния имеет очень низкий коэффициент теплового расширения (4,0Шаблон:E K−1) и в достаточно широком температурном диапазоне эксплуатации не испытывает фазовых переходов (в том числе фазовых переходов второго рода), из-за которых может произойти разрушение монокристаллов[10].

Электропроводность

Карбид кремния является полупроводником, тип проводимости которого зависит от примесей. Проводимость n-типа получается при легировании азотом или фосфором, а p-тип — с помощью алюминия, бора, галлия или бериллия[26]. Металлическая проводимость была достигнута за счёт сильного легирования бором, алюминием и азотом.

Сверхпроводимость была обнаружена в политипах 3C-SiC:Al, 3C-SiC:B и 6H-SiC:B при одинаковой температуре — 1,5 К[27].

Физические свойства

Карбид кремния является твёрдым, тугоплавким веществом. Кристаллическая решётка аналогична решётке алмаза. Является полупроводником.[28]

Химические свойства

По типу химической связи карбид кремния относится к ковалентным кристаллам. Доля ионной связи, обусловленной некоторым различием в электроотрицательностях атомов Si и C, не превышает 10—12 %. Энергия ковалентной связи между атомами кремния и углерода в кристаллах SiC почти в три раза превышает энергию связи между атомами в кристаллах кремния. Благодаря сильным химическим связям карбид кремния выделяется среди других материалов высокой химической и радиационной стойкостью, температурной стабильностью физических свойств, большой механической прочностью и высокой твёрдостью. В инертной атмосфере карбид кремния разлагается только при очень высокой температуре:

<chem>SiC ->[2830~^\circ\text{C}] Si{} + C</chem>.

Сильно перегретый пар разлагает карбид кремния:

<chem>SiC{} + 2 H2O ->[1300~^\circ\text{C}] SiO2{} + CH4\uparrow</chem>.

Концентрированные кислоты и их смеси растворяют карбид кремния:

<chem>3 SiC + 8 HNO3 -> 3 SiO2 + 3 CO2 ^ + 8 NO ^ + 4 H2O,</chem>
<chem>3 SiC + 18 HF + 8 HNO3 -> 3 H2[SiF6] + 3 CO2 ^ + 8 NO ^ + 10 H2O</chem>.

В присутствии кислорода щёлочи растворяют карбид кремния:

<chem>SiC + 2 NaOH + 2 O2 -> Na2SiO3 + CO2 ^ + H2O,</chem>
<chem>SiC{} + 4 NaOH{} + 2 O2 ->[>350~^\circ\text{C}] Na2SiO3{} + Na2CO3{} + 2 H2O</chem>.

При нагревании реагирует с кислородом:

<chem>2 SiC{} + 3 O2 ->[950{-}1700~^\circ\text{C}] 2 SiO2{} + 2 CO\uparrow,</chem>

с галогенами:

<chem>SiC{} + 2 Cl2 ->[600{-}1200~^\circ\text{C}] SiCl4{} + C,</chem>

с азотом, образуя нитрид кремния:

<chem>6 SiC{} + 7 N2 ->[1000{-}1400~^\circ\text{C}] 2 Si3N4{} + 3 C2N2,</chem>

с активными металлами:

<chem>2 SiC{} + 5 Mg ->[700~^\circ\text{C}] 2 Mg2Si{} + MgC2,</chem>

и их пероксидами:

<chem>SiC{} + 4 Na2O2 ->[700{-}800~^\circ\text{C}] Na2SiO3{} + Na2CO3 + 2 Na2O</chem>.

Применение

Абразивные и режущие инструменты

Файл:Ultra-thin separated (Carborundum) disk.jpg
Режущие диски из карбида кремния

В современной гранильной мастерской карбид кремния является популярным абразивом из-за его прочности и низкой стоимости. В обрабатывающей промышленности из-за его высокой твёрдости он используется в абразивной обработке в таких процессах как шлифование, хонингование, водоструйная резка и пескоструйная обработка. Частицы карбида кремния ламинируются на бумагу для создания шлифовальной шкурки[31].

Суспензии мелкодисперсных порошков карбида кремния в масле, глицерине или этиленгликоле используются в процессе проволочной резки полупроводниковых монокристаллов на пластины.

В 1982 году случайно был обнаружен композит, состоящий из оксида алюминия и карбида кремния, кристаллы которого растут в виде очень тонких нитей[32].

Конструкционные материалы

Файл:Bodyarmor.jpg
Карбид кремния используется в качестве лицевого слоя композитной секции противопулевого бронежилета

Карбид кремния наряду с карбидом вольфрама и другими износостойкими материалами применяется для создания торцевых механических уплотнений.

В 1980-х и 1990-х годах карбид кремния исследовался в нескольких научно-исследовательских программах разработки высокотемпературных газовых турбин в США, Японии и Европе. Планировалось, что разработанные компоненты из карбида кремния заменят рабочие и сопловые лопатки турбин из никелевых жаропрочных сплавов. Тем не менее, ни один из этих проектов не привёл к промышленному производству, в основном из-за низкого сопротивления ударным нагрузкам и низкой вязкости разрушения карбида кремния[33].

Подобно другим высокотвёрдым керамическим материалам (оксид алюминия и карбид бора), карбид кремния используется как компонент композитной брони, применяемой для защиты вооружения и военной техники, а также в виде составного элемента слоистой брони керамика/органопластик противопульных жилетов. В бронежилете «Шкура дракона», созданном компанией Шаблон:Lang-en2, используются диски из карбида кремния[34].

Автомотодетали

Файл:PCCB Brake Carrera GT.jpg
Углерод-керамические (карбид кремния) дисковые тормоза Porsche Carrera GT

Инфильтрованый кремний в материале «композит углерод-углерод» используется для производства высококачественных «керамических» дисковых тормозов, так как способен выдерживать экстремальные температуры. Кремний вступает в реакцию с графитом в «композите углерод-углерод», становясь армированным углеродным волокном карбида кремния (C/SiC). Диски из этого материала используются на некоторых спортивных автомобилях, в том числе Porsche Carrera GT, Bugatti Veyron, Chevrolet Corvette ZR1, Bentley, Ferrari, Lamborghini[35]. Карбид кремния используется также в спечённых формах в дизельных фильтрах для очистки от твёрдых частиц[36]Шаблон:Уточнить.

Электроника и электротехника

Первыми электрическими устройствами из SiC были нелинейные элементы варисторы и вентильные разрядники (см. также: тирит, вилит, лэтин, силит) для защиты электроустановок от перенапряжений. Карбид кремния в разрядниках применяется в виде материала вилита — смеси SiC и связующего. Варистор обладает высоким сопротивлением до тех пор, пока напряжение на нём не достигнет определённого порогового значения VT, после чего его сопротивление падает до более низкого уровня и поддерживает это значение, пока приложенное напряжение не упадёт ниже VT[37].

Электронные приборы
Файл:Uv-LED.jpg
Светодиод

Карбид кремния используется в сверхбыстрых высоковольтных диодах Шоттки, n-МОП транзисторах и в высокотемпературных тиристорах[38]. По сравнению с приборами на основе кремния и арсенида галлия приборы из карбида кремния имеют следующие преимущества:

  • в несколько раз большая ширина запрещённой зоны;
  • в 10 раз большая электрическая прочность;
  • высокие допустимые рабочие температуры (до 600 °C);
  • теплопроводность в 3 раза больше, чем у кремния, и почти в 10 раз больше, чем у арсенида галлия;
  • устойчивость к воздействию радиации;
  • стабильность электрических характеристик при изменении температуры и отсутствие дрейфа параметров во времени.

Из почти 250 модификаций карбида кремния только две применяются в полупроводниковых приборах — 4H-SiC и 6H-SiC.

Проблемы с сопряжением элементов, основанных на диоксиде кремния, препятствуют развитию n-МОП транзисторов и IGBT, основанных на карбидокремнии. Другая проблема заключается в том, что сам SiC пробивается при высоких электрических полях в связи с образованием цепочек дефектов упаковки, но эта проблема может быть решена совсем Шаблон:Прояснить2[39].

История светодиодов из SiC весьма примечательна: впервые свечение в SiC было обнаружено Х. Роундом в 1907 году. Первые коммерческие светодиоды были также на основе карбида кремния. Жёлтые светодиоды из 3C-SiC были изготовлены в СССР в 1970-х годах[40], а синие (из 6H-SiC) по всему миру — в 1980-х годах[41]. Производство вскоре остановилось, потому что нитрид галлия показал в 10—100 раз более яркую эмиссию. Эта разница в эффективности связана с неблагоприятной непрямой запрещённой зоной SiC, в то время как нитрид галлия имеет прямую запрещённую зону, которая способствует увеличению интенсивности свечения. Тем не менее, SiC по-прежнему является одним из важных компонентов светодиодов — это популярная подложка для выращивания устройств из нитрида галлия, также он служит теплораспределителем в мощных светодиодах[41].

Астрономия и точная оптика

Жесткость, высокая теплопроводность и низкий коэффициент теплового расширения делают карбид кремния термостабильным материалом в широком диапазоне рабочих температур. Это обуславливает широкое применение карбидкремниевых матриц для изготовления зеркальных элементов в различных оптических системах, например, в астрономических телескопах или в системах передачи энергии с использованием лазерного излучения. Развитие технологий (химическое осаждение паров) позволяет создавать диски из поликристаллического карбида кремния до 3,5 метров в диаметре. Заготовки зеркал могут формироваться различными методами, включая прессование чистого мелкого порошка карбида кремния под высоким давлением. Несколько телескопов (например, Gaia) уже оснащены оптикой из карбида кремния, покрытого адюминием[42][43].

Пирометрия

Файл:SiCpyrometer.jpg
Изображения теста пирометрии. Высота пламени 7 см

Волокна из карбида кремния используются для измерения температуры газов оптическим методом, называемым тонкой пирометрией накаливания. При измерении тонкие нити (диаметр 15 мкм) из карбида кремния вводят в зону измерения. Волокна практически не влияют на процесс горения, а их температура близка к температуре пламени. Таким методом может быть измерена температура в диапазоне 800—2500 K[44][45].

Нагревательные элементы

Первые упоминания об использовании карбида кремния для изготовления нагревательных элементов относятся к началу 20 века, когда они были изготовлены The Carborundum Company в США и EKL в БерлинеШаблон:Нет АИ.

В настоящее время карбид кремния является одним из типичных материалов для изготовления нагревательных элементов, способных работать при температурах до 1400 °C на воздухе и до 2000 °C в нейтральной или восстановительной средеШаблон:Нет АИ, что заметно выше, чем доступно для многих металлических нагревателейШаблон:Нет АИ.

Нагревательные элементы из карбида кремния используются при плавлении цветных металлов и стекла, при термической обработке металлов, флоат-стекла, при производстве керамики, электронных компонентов и т. д.[46]

Ядерная энергетика

Благодаря высокой устойчивости к воздействию внешних неблагоприятных факторов, включая природные, высокой прочности и твёрдости, низкому коэффициенту теплового расширения и низкому коэффициенту диффузии примесей и продуктов деления реакционноспечённый карбид кремния нашёл применение в ядерной энергетике[47].

Карбид кремния, наряду с другими материалами, используется в качестве слоя из триструктурально-изотропного покрытия для элементов ядерного топлива в высокотемпературных реакторах, в том числе в газоохлаждаемых реакторахШаблон:Нет АИ.

Из карбида кремния изготавливаются пеналы для длительного хранения и захоронения ядерных отходовШаблон:Нет АИ.

Ювелирные изделия

Файл:Moissanite ring.JPG
Кольцо с синтетическим муассанитом

Как ювелирный камень карбид кремния используется в ювелирном деле под названием «синтетический муассанит» или просто «муассанит». Муассанит похож на алмаз: он прозрачен и твёрд (9—9,5 по шкале Мооса, по сравнению с 10 для алмаза), с показателем преломления 2,65—2,69 (по сравнению с 2,42 для алмаза).

Муассанит имеет несколько более сложную структуру, чем обычный кубический диоксид циркония. В отличие от алмаза, муассанит может иметь сильное двулучепреломление. Это качество является желательным в некоторых оптических конструкциях, но только не в драгоценных камнях. По этой причине муассанитовые драгоценности разрезают вдоль оптической оси кристалла, чтобы свести к минимуму эффект двупреломления. Муассанит имеет более низкую плотность 3,21 г/см3 (против 3,53 г/см3 для алмаза) и гораздо более устойчив к теплу. В результате получается камень с большим блеском минерала, с чёткими гранями и хорошей устойчивостью к внешним воздействиям. В отличие от алмаза, который горит при температуре 800 °C, муассанит остаётся неповреждённым вплоть до температуры в 1800 °C (для сравнения: 1064 °C — температура плавления чистого золота). Муассанит стал популярен как заменитель алмаза и может быть ошибочно принят за алмаз, так как его теплопроводность гораздо ближе к алмазу, чем у любого другого заменителя бриллианта. Драгоценный камень можно отличить от алмаза с помощью его двулучепреломления и очень небольшой зелёной или жёлтой флуоресценции в ультрафиолетовом свете[48].

Производство стали

Карбид кремния выступает в качестве топлива для изготовления стали в конвертерном производстве. Он чище, чем уголь, что позволяет сократить отходы производства. Также может быть использован для повышения температуры и регулирования содержания углерода. Использование карбида кремния стоит меньше и позволяет производить чистую сталь из-за низкого уровня содержания микроэлементов, по сравнению с ферросилицием и сочетанием с углеродом[49].

Катализатор

Естественная резистентность карбида кремния к окислению, а также открытие новых путей синтеза кубической формы β-SiC с большей площадью поверхности, приводит к большому интересу в использовании его в качестве гетерогенного катализатора. Эта форма уже использовалась в качестве катализатора при окислении углеводородов, таких как н-бутан, малеиновый ангидрид[50][51].

Производство графена

Карбид кремния используется для производства графена с помощью графитизации при высоких температурах. Это производство рассматривается как один из перспективных методов синтеза графена в больших масштабах для практических применений[52][53]. Высокая температура (2830 °C, как выше указано в реакции) приводит к разложению карбида кремния. Кремний как более летучий элемент уходит из приповерхностных слоёв, оставляя одно- или многослойный графен, нижние из которых сильно связаны с объёмным кристалом. В качестве исходного материала используют монокристаллы 6H-SiC(0001), на поверхности которых формировались террасы графена в результате термообработки с размерами около 1 мкм, разделённые областями с несколькими слоями[54].

Применение в строительстве

Может использоваться в качестве фибры в фибробетоне (аналогично базальтовому волокну)[55].

См. также

Примечания

Шаблон:Примечания

Ссылки

  • Шаблон:Cite web 2
  • Карбид кремния: технология, свойства, применение / Под ред. Беляева А. Е., Конаковой Р. В. — Харьков: ИСМА, 2010. — 532 с. — ISBN 978-966-02-5445-9
  • Дигонский С. В. Газофазные процессы синтеза и спекания тугоплавких веществ. — М.: ГЕОС, 2013. — 462 с.

Шаблон:ВС

  1. Шаблон:Книга
  2. Acheson, G. (1893) Шаблон:US patent «Production of artificial crystalline carbonaceous material»Шаблон:Ref-en.
  3. Шаблон:Cite news
  4. Dunwoody, Henry H. C. (1906) Шаблон:US patent «Wireless telegraph system» (silicon carbide detector)Шаблон:Ref-en.
  5. Шаблон:Cite web
  6. Шаблон:Статья
  7. Шаблон:Статья
  8. Шаблон:Статья
  9. Шаблон:Cite web
  10. 10,0 10,1 10,2 Шаблон:Книга
  11. Шаблон:Статья
  12. Шаблон:Статья
  13. Шаблон:Книга
  14. Шаблон:Статья
  15. Шаблон:Книга
  16. Шаблон:Статья
  17. Шаблон:Статья
  18. Шаблон:Книга
  19. Шаблон:Статья
  20. Шаблон:Статья
  21. Карбид кремния / под ред. Г. Хенита и Р. Рол, пер. с англ. — М.: Мир, 1972. — 349 с., с ил. — С. 119—128.
  22. Г. Г. Гнесин. Карбидокремниевые материалы. — М.: Металлургия, 1977. — 216 с., с ил.
  23. Шаблон:Cite web
  24. Шаблон:Книга
  25. Шаблон:Статья
  26. Ошибка цитирования Неверный тег <ref>; для сносок ioffe не указан текст
  27. Шаблон:Статья
  28. Шаблон:Cite web
  29. 29,0 29,1 29,2 29,3 Шаблон:Публикация
  30. Шаблон:Книга
  31. Fuster, Marco A. (1997) «Skateboard grip tape», Шаблон:US patentШаблон:Ref-en.
  32. Шаблон:Книга
  33. Шаблон:Cite news
  34. Шаблон:Cite web
  35. Шаблон:Cite web
  36. Шаблон:Статья
  37. Шаблон:Книга
  38. Шаблон:Статья
  39. Шаблон:Статья
  40. Шаблон:Cite web
  41. 41,0 41,1 Шаблон:Книга
  42. Шаблон:Cite news
  43. Шаблон:Статья
  44. Шаблон:Cite news
  45. Шаблон:Статья
  46. Шаблон:Книга
  47. Шаблон:Статья
  48. Шаблон:Книга
  49. Шаблон:Cite web
  50. Шаблон:Публикация
  51. Шаблон:Публикация
  52. Шаблон:КнигаШаблон:Недоступная ссылка
  53. Шаблон:Статья
  54. Шаблон:Статья
  55. 212. К. А. Сарайкина, В. А. Шаманов Дисперсное армирование бетонов // Вестник ПГТУ. Урбанистика. 2011. № 2.