Русская Википедия:Секвенирование экзома

Материал из Онлайн справочника
Версия от 05:33, 14 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} thumb|Схема секвенирования экзома начиная с этапа фрагментации ДНК образца и заканчивая секвенированием. Начало.'''Секвени́рование экзо́ма''' ({{lang-en|Exome sequencing}}) — секвенирование всех бело...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Файл:Exome Sequencing Workflow 1a rus.png
Схема секвенирования экзома начиная с этапа фрагментации ДНК образца и заканчивая секвенированием. Начало.

Секвени́рование экзо́ма (Шаблон:Lang-en) — секвенирование всех белок-кодирующих генов в геноме (то есть экзома). Под секвенированием экзома подразумеваются две операции: во-первых, отбор экзонов. В зависимости от организма экзоны покрывают 1—2 % генома[1]. У человека их насчитывается около 180 000, примерно 1 % от всего генома, или приблизительно 30 миллионов пар оснований (п. о.). Во-вторых, секвенирование экзонов с использованием любой платформы высокопроизводительного секвенирования ДНК и анализ полученных результатов[2].

Секвенирование экзома позволяет обнаружить генетические изменения, приводящие к изменению белковых последовательностей, которые могут в свою очередь приводить к возникновению заболеваний, таких как атеросклероз, болезнь Альцгеймера и других. Основное преимущество экзомного секвенирования заключается в возможности проводить массовый скрининг генов и обнаруживать мутации, ассоциированные с заболеваниями, при этом данная процедура оказывается проще и дешевле, чем Шаблон:Нп5[1].

Файл:Exome Sequencing workflow 1b rus.png
Схема секвенирования экзома. Окончание.

Методология

Секвенирование экзома включает в себя четыре этапа: Шаблон:Нп5 из предоставленного материала, отбор интересующей фракции ДНК (обогащение образцов), секвенирование отобранного материала и анализ полученных результатов[3].

Выделение ДНК

Первый этап заключается в подготовке высококачественных препаратов геномной ДНК из предоставленных образцов путем отделения ДНК от белков, липидов и т.д. Стандартный метод Шаблон:Нп5экстракция смесью фенол-хлороформ[4].

Стратегии обогащения образцов

Стратегии обогащения образцов позволяют селективно отбирать нужные геномные участки, то есть экзоны, из образцов ДНК до этапа секвенирования. С момента описания первого оригинального метода в 2005 году разработано несколько стратегий обогащения образцов, подходящих для целей экзомного секвенирования[5]. Выбор конкретного метода зависит от размеров интересующих участков, потребности в покрытии при секвенировании, имеющегося в наличии оборудования и других причин[6].

Полимеразная цепная реакция

Шаблон:Main Полимеразная цепная реакция (ПЦР) широко применяется для амплификации требуемых фрагментов ДНК уже более 20 лет[7]. Обычно в ПЦР используют только 2 праймера, однако разработаны методы Шаблон:Нп5, которая использует несколько праймеров и позволяет одновременно амплифицировать несколько ДНК-мишеней в ходе одного процесса. Подходы, использующие ПЦР, очень эффективны, но не позволяют работать с участками генома длиной в несколько миллионов п.о. из-за высокой цены и низкого качества получающихся образцов[1].

Метод молекулярной инверсии

Файл:Метод молекулярной инверсии.png
Метод молекулярной инверсии

Метод Шаблон:Нп5 — это техника, которая позволяет получить образцы ДНК, обогащенные амплифицированными инвертированными участками целевых последовательностей. Отбор нужных последовательностей происходит за счет замыкания интересующего участка в кольцо. Праймер здесь представляет собой одноцепочечный ДНК-олигонуклеотид, в центральной части которого содержится универсальная последовательность с сайтами рестрикции, а концы комплементарны двум участкам геномной ДНК, между которыми находится интересующая последовательность. Образцы, не вступившие в реакцию, остаются линейными и удаляются экзонуклеазами[5][8]. Метод может быть полезен для работы с небольшим числом мишеней в большом количестве образцов. Главный недостаток — единообразие получаемых образцов, а также высокая цена при необходимости покрыть большой набор участков[7].

Гибридизационное обогащение

Для гибридизационного обогащения образцов экзомными участками создаются специальные микрочипы, содержащие закрепленные на подложке одноцепочечные олигонуклеотиды (зонды) с последовательностями из генома, способными покрыть интересующие участки. Геномная ДНК разрезается на фрагменты. Концы фрагментов делают Шаблон:Нп5 с помощью рестриктаз, добавляют Шаблон:Нп5 с универсальными праймерами. После гибридизации фрагментов с зондами на микрочипах негибридизованные фрагменты отмываются с подложки, а оставшиеся затем амплифицируются с помощью ПЦР[5]. Ограничения метода связаны с дороговизной аппаратуры, количеством зондов, которые можно разместить на матрице, и необходимостью достаточно больших количеств ДНК для анализа[1].

Обогащение в растворе

Файл:In solution capture rus.png
Обогащение в растворе

В растворе синтезируется набор зондов, которые фиксируются на стрептавидиновых шариках. Шарики помещаются в раствор с фрагментированной геномной ДНК, где происходит селективная гибридизация зондов с нужными геномными участками, после чего шарики с интересующими фрагментами осаждают и отмывают. Затем оставшиеся участки секвенируют. Этот метод был разработан для усовершенствования метода гибридизационного обогащения: он позволяет создать избыток зондов к целевым участкам по сравнению с необходимым количеством образца. Оптимальный размер целевого участка ДНК — около 3,5 миллиона п.о., так при последующем секвенировании получается хорошее Шаблон:Нп5[7].

Платформы, используемые для обогащения экзома

Основными поставщиками платформ для обогащения экзома являются Шаблон:Нп5, Agilent и Illumina[1].

Сравнение характеристик каждой из наиболее распространенных платформ для обогащения экзома[1]
NimbleGen’s SeqCap EZ Exome Library Agilent’s Sure Select Human All Exon Kit Illumina’s TruSeq Exome Enrichment Kit Illumina’s Nextera Rapid Capture Exome Kit
Длина зондов 55 — 105[9] 114 — 126[9] 95 95
Рекомендованное количество ДНК пробы 3 мкг[10] 3 мкг[10] 500 нг[10] 50 нг[10]
Тип нуклеиновой кислоты зонда ДНК РНК ДНК ДНК
Стратегия покрытия интересующего фрагмента зондами Перекрывающиеся зонды[9] Чаще строго последовательные зонды, чем перекрывающиеся Гэпы между последовательностями зондов (зонды находятся на некотором расстоянии друг от друга по последовательности фрагмента) Гэпы между последовательностями зондов
Метод фрагментации Ультразвук Ультразвук Ультразвук Транспозаза
Размер целевого фрагмента (для человека) 64 50 62 62
Шаблон:Нп5, остающиеся после фильтрации 66 % 71,7 % 54,8 %[11] 40,1%
Основные сильные стороны Высокая чувствительность и специфичность. Наиболее равномерное покрытие в трудных регионах[9][12][13]. Хорошее покрытие Шаблон:Нп5[9][13][11]. Высокая скорость выравнивания. Меньше повторных прочтений, чем у других платформ[13]. Хорошее покрытие нетранслируемых областей и микроРНК[9] Хорошее покрытие нетранслируемых областей и микроРНК
Основные слабые стороны Больше повторных чтений, чем у Agilent. Меньшая скорость выравнивания. Меньше качественных чтений, чем у NimbleGen[12] Высокий уровень нецелевого обогащения[9] Высокий уровень нецелевого обогащения. Смещение покрытия для областей с высоким GC-составом, снижающим однородность.
Использование не только для человеческих последовательностей Да Да Нет Нет

В настоящее время, в дополнение к наборам, нацеленным лишь на человека, NimbleGen предлагает наборы для экзомов кукурузы, ячменя, пшеницы, сои, мыши и свиньи, а Agilent — для экзомов мыши, крупного рогатого скота и рыбок данио-рерио. Оба поставщика также предлагают возможность разрабатывать индивидуальные комплекты для других видов. Наборы для нечеловеческих видов используют протоколы и зонды, аналогичные человеческим наборам поставщиков. Оба производителя предлагают гибкий процесс проектирования, который позволяет вносить изменения для улучшения покрытия для конкретных регионов и целей[1].

Секвенирование

Шаблон:Main Существует несколько технологий секвенирования, включая классический метод секвенирования по Сэнгеру. Методы секвенирования нового поколения используют платформы Illumina, SOLiD и Ion-Torrent. Все эти методы могут использоваться в том числе и для секвенирования экзома[14].

Анализ результатов

Первичные данные секвенирования представляют собой огромный набор небольших последовательностей (чтений), длина и качество которых зависят от технических характеристик секвенатора и способа приготовления образцов. Качество чтений можно контролировать, например, при помощи программного пакета FastQС[15]. Полученные чтения фильтруются: отрезаются концевые участки, которые часто имеют большое число ошибок, удаляются адаптерные последовательности (например, с помощью Trimmomatic[16] или sickle[17]); затем корректируются ошибки (например, с помощью программ Bloocoo[18] и Lighter[19]). Отфильтрованные чтения картируются на геном, где собираются в последовательности, соответствующие экзонам. В настоящий момент существует множество программ, которые осуществляют каждый этап подготовки данных секвенирования и их анализа, большинство из них требует больших вычислительных мощностей, так как объём получаемых данных очень велик[20].

Применение экзомного секвенирования

Используя экзомное секвенирование, в ходе исследований с фиксированными затратами мы можем секвенировать последовательности с существенно большей глубиной покрытия по сравнению с покрытием, получаемым методами полногеномного секвенирования. Благодаря этому экзомное секвенирование чаще используется при решении задач, требующих надежного определения однонуклеотидных полиморфизмов[21].

Клиническая диагностика

29 сентября 2011 года компания Ambry Genetics стала первой сертифицированной компанией, предлагающей секвенирование экзома и диагностику заболеваний на его основе[22]. В компании утверждают, что результаты экзомного секвенирования позволят сотрудникам диагностировать заболевания, при которых традиционные диагностические подходы неприменимы[23].

Идентификация мутаций, вызывающих заболевания, может внести существенный вклад в диагностические и терапевтические подходы, поможет прогнозировать развитие заболевания и позволит тестировать родственников, находящихся в зоне риска[2][24][25][26][27][28]. Есть несколько факторов, на основании которых экзомному секвенированию отдается предпочтение перед моногенным анализом: возможность идентифицировать мутации в генах, не подвергшихся тестированию ввиду нетипичного клинического проявления[28] и идентификация клинических случаев, при которых мутации в разных генах вызывают различные проявления у одного и того же пациента[24]. Кроме того, метод позволяет диагностировать заболевания на ранних этапах и у молодых пациентов до проявления всего спектра характерных симптомов; он также используется для пренатальной диагностики[1] В некоторых случаях пренатальное секвенирование экзома позволяет выявить генетические заболевания, в то время как стандартные методы (кариотипирование и использование микрочипов) оказываются неэффективны[29].

Авторы важнейшей рецензированной публикации об экзомном секвенировании подчеркивают полезность этого метода для клинической практики. Авторы, применившие экзомное секвенирование для идентификации мутации, вызывающей синдром Барттера и Шаблон:Нп5, заявляют: «Мы видим будущее, в котором подобная информация станет частью повседневной клинической оценки пациентов с подозрениями на генетические заболевания с неясным диагнозом… Мы предвидим, что полноэкзомное секвенирование внесет огромный вклад в понимание того, какие гены и какими путями участвуют в развитии редких и частых человеческих болезней, а также в клиническую практику»[25].

Картирование редких полиморфизмов при комплексных расстройствах и менделевских болезнях

Текущие крупные международные исследования направлены на определение в геноме частых полиморфизмов, которые легче всего идентифицировать современными методами. Однако из-за отрицательного отбора полиморфизмы, вызывающие крайне тяжелые заболевания, в частности, менделевские болезни, встречаются с существенно меньшей аллельной частотой и могут остаться невыявленными в ходе поиска генов-кандидатов при использовании современных стандартных методов Шаблон:Нп5, при этом чаще всего они расположены в границах экзома. Так как при комплексных расстройствах с риском заболевания связано большое количество генов, для обнаружения их необходимы исследования очень большой выборки, поэтому, с точки зрения издержек, полногеномное секвенирование не является оптимальным. К тому же, полиморфизмы в кодирующих областях изучаются очень подробно, и их функциональное значение проще определить[30] Успешная модель идентификации менделевских генов включает определение возникающих Шаблон:Нп5 полиморфизмов при секвенировании генов двух родителей и потомка[31].

Использование в сельском хозяйстве

Геномы растений могут быть чрезвычайно сложными, повторяющимися и часто полиплоидными; в результате некоторые из наиболее экономически важных культур не удается исследовать с использованием полногеномного секвенирования. Разработан набор для обогащения экзома пшеницы на основе накопленных данных транскриптома[32], с использованием которого были проведены исследования нежелательной внутрикультурной Шаблон:Нп5 экзома, влияющей на фенотип растения, в частности, скорость роста, способность жить в различных условиях и другие важные для селекции признаки. Подобные же наборы были использованы при исследовании риса Oryza sativa[33] и сои Glycine max[34]. Также можно идентифицировать генетические маркеры, отвечающие за особую устойчивость растительных культур к определенным патогенам[35].

В ряде случаев секвенирование экзома может быть использовано как альтернатива более дорогому секвенированию полного генома, например, при исследовании генетических вариаций внутри и между популяциями[36].

Сравнение с генотипированием с использованием микрочипов

Методы микрочипирования требуют зондов для гибридизации с известной последовательностью, поэтому они ограничены требованиями к разработке зондов и не позволяют выявить некоторые генетические изменения. Технологии высокопроизводительного секвенирования, используемые для секвенирования экзома, позволяют узнать последовательности гораздо большего числа локусов одновременно и определить неизвестные до сих пор источники многих болезней[37], то есть позволяют обойти ограничения генотипирующих чипов и классического секвенирования[38].

Секвенирование экзома — процедура более дорогая, но по мере уменьшения финансовых затрат и увеличения производительности методов секвенирования этот метод все шире используется в практике для диагностики редких генетических заболеваний[39].

Ограничения

Некоторые болезни могут быть связаны с мутациями в некодирующих областях или структурными перестройками, которые секвенирование экзома не позволит выявить[2]. Но из-за дороговизны полногеномного секвенирования на нынешнем этапе развития науки и технологий экзомное секвенирование представляется оптимальным методом для клинической диагностики редких наследственных заболеваний, не выявляемых микрочипами[25].

Статистический анализ больших объёмов данных в ходе секвенирования экзома — отдельная трудоемкая задача. Есть несколько подходов для улучшения качества экзомных данных[2]:

  • сравнение полиморфизмов, определённых с помощью секвенирования и микрочипирования;
  • сравнение кодирующих полиморфизмов с данными полногеномного секвенирования пациентов с таким же заболеванием;
  • сравнение кодирующих ОНП с гаплотипами, отсеквенированными по Сэнгеру.

Для некоторых биологических видов качество сборки генома и его Шаблон:Нп5 значительно хуже, чем для человека (или секвенированного генома нет вовсе). Это существенно ограничивает применение секвенирования экзома к другим организмам, поскольку осложняет обогащение образцов ДНК и картирование результатов секвенирования на геном[1].

Примечания

Шаблон:Примечания

Шаблон:Добротная статья