Русская Википедия:Сердечная деятельность

Материал из Онлайн справочника
Версия от 18:35, 14 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} '''Серде́чная де́ятельность''' — функционирование сердца, направленное на поддержание физиологического гомеостаза, который в этом случае является целевой функцией. Сердечная деятельность может осущес...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Серде́чная де́ятельность — функционирование сердца, направленное на поддержание физиологического гомеостаза, который в этом случае является целевой функцией.

Сердечная деятельность может осуществляться только благодаря некоторому количеству петель регулирования и петель управления, которые все вместе и формируют единую и целостную сердечно-сосудистую систему.[B: 1]

Физиологическая роль

«Деятельность сердца обеспечивается его основными функциями: возбудимостью, автоматизмом, проводимостью и сократимостью. Эти функции взаимосвязаны, они обуславливают относительную автономность работы сердца».[B: 2]Шаблон:Sfn В процессе эволюции научных знания и постепенной замены языка физиологического на язык биофизический все перечисленные физиологические функции было предложено понимать как различные проявления автоволновой функции сердца.[B: 3][B: 4]

Когда говорят о сердечной деятельности с учётом базовых общебиологических механизмов, а не просто о работе сердца как изолированного органа, то подразумевается, что у сердечной деятельности, как и у любой деятельности вообще, есть некоторая своя целевая функция как системообразующий фактор в кибернетическом варианте описания систем. Термин «активность» подходит для иных случаев: например, электрические явления, которые сопровождают работу сердца и могут быть зарегистрированы с помощью электрокардиографии, не удовлетворяют целям функционирования сердечно-сосудистой, поскольку они являются лишь побочными эффектами автоволновой функции сердца.[B: 5][B: 3][B: 4] В английской научной и медицинской литературе электрические явления, сопровождающие работу сердца, упоминаются как «электрическая активность сердца» (electrical activity of the heart)

Графически сердечную деятельность можно описать при помощи диаграммы работы сердца, которая строится в координатах давление—объём и отражает нормальный цикл сокращения левого желудочка.Шаблон:Sfn

Предложена также концепция аритмической деятельности сердца как варианта нормальной реакции адаптации.[B: 6]

Физиологические функции

Насосная функция сердца

Шаблон:Заготовка раздела Считается, что сердечная деятельность нацелена на обеспечение насосной функции сердца,Шаблон:Sfn то есть «основной физиологической функцией сердца является ритмическое нагнетание крови в сосудистую систему».[B: 7] Насосная функция сердца в свою очередь является встроенной в более сложную систему гемодинамики (гидродинамики кровообращения).[B: 8]

Для того, чтобы насосная функция сердца осуществлялась достаточно эффективно, должны выполняться следующие пять необходимых условий:[1]

  1. Сокращение отдельных кардиомиоцитов должны происходить синхронно через равные интервалы времени (не аритмично).
  2. Клапаны сердца должны открываться полностью (не должно быть стеноза).
  3. В закрытом состоянии клапаны сердца не должны пропускать жидкость (не должно быть их недостаточности или регургитации).
  4. Сокращения миокарда должны быть сильными (не должно быть его недостаточности).
  5. Во время диастолы желудочки должны адекватно наполняться.

Автоволновая функция сердца

Шаблон:Заготовка раздела Разработка концепции автоволновой функции сердца связана с развитием интегративной физиологии [B: 9] и с проникновение новых научных идей интегративного подхода в старую, выстроенную в рамках редукционизма, кардиологию; развивается в рамках современной математической физики биологических объектов. Важную роль в развитии интегративной физиологии играет проект «Физиом». В рамках этой концепции ранее известные свойства миокарда, такие как возбудимость, автоматизм, проводимость и сократимость предложено понимать как различные проявления единой автоволновой природы активных сред.[A: 1].

Нормальная регуляция

Истинный ритм синусового узла (ИРСУ), то есть ЧСС при собственном автоматизме синусового узла без регуляторных воздействия на него, равен приблизительно 80-100 импульсов в минуту[B: 10]Шаблон:Sfn. Для выполнения двух из пяти необходимых условий требуется осуществление регуляции автоматизма синусового узла (СУ).

Деятельность сердца регулируется комплексом воздействий со стороны метаболитов, гуморальных факторов и нервной системы.[B: 11]Шаблон:Sfn[B: 12]Шаблон:Sfn В целостном организме сердечная деятельность регулируется нервной системой и зависит от гуморальных влияний.[2]

«Способность сердца к адаптации обусловлена двумя типами регуляторных механизмов:

  1. внутрисердечной регуляцией (такая регуляция связана с особыми свойствами самого миокарда, благодаря чему она действует и в условиях изолированного сердца) и
  2. экстракардиальной регуляцией, которую осуществляют эндокринные железы и вегетативная нервная система»[3]

Показано первостепенное значение эмоций как в механизмах нарушения, так и нормализации сердечной деятельности, причём выявлена зависимость сердечной деятельности не только от качества эмоций, но и от исходного состояния миокарда.[B: 13]

Внутрисердечная регуляция

Шаблон:Заготовка раздела В качестве примера внутрисердечной саморегуляции можно привести механизм Франка — Старлинга в результате действия которого ударный объём сердца увеличивается в ответ на увеличение объёма крови в желудочках перед началом систолы (конечный диастолический объем), когда все остальные факторы остаются неизменными. Физиологическое значение этого механизма заключается в основном в поддержании равенства объёмов крови, проходящей через левый и правый желудочек. Косвенно этот механизм может влиять и на ЧСС.

Работа сердца существенно модифицируется также и на уровне локальных интракардиальных (кардиально-кардиальных) рефлексов, замыкающихся в интрамуральных ганглиях сердца.[4]

По сути дела внутрисердечные рефлекторные дуги — часть метасимпатической нервной системы. Эфферентные нейроны являются общими с дугой классического парасимпатического рефлекса (ганглионарные нейроны), представляя единый «конечный путь» для афферентных влияний сердца и эфферентной импульсации по преганглионарным эфферентным волокнам блуждающего нерва. Внутрисердечные рефлексы обеспечивают «сглаживание» тех изменений в деятельности сердца, которые возникают за счет механизмов гомео- или гетерометрической саморегуляции, что необходимо для поддержания оптимального уровня сердечного выброса.[5]

Экстракардиальная регуляция

Шаблон:Заготовка раздела Сердце может быть эффекторным звеном рефлексов, зарождающихся в сосудах, внутренних органах, скелетных мышцах и коже; все эти рефлексы выполняются на уровне различных отделов вегетативной нервной системы, и рефлекторная дуга их может замыкаться на любом уровне, начиная от ганглиев и до гипоталамуса.[4]. Так, рефлекс Гольтца проявляется брадикардией, вплоть до полной остановки сердца, в ответ на раздражение механорецепторов брюшины; рефлекс Данана — Ашнера проявляется урежением ЧСС при надавливании на глазные яблоки; и т. д.[4].

Расположенный в продолговатом мозге сосудодвигательный центр, являющийся частью вегетативной нервной системы, получает сигналы от различных рецепторов: проприорецепторов, барорецепторов и хеморецепторов, — а также стимулы от лимбической системы. В совокупности эти входные сигналы обычно позволяют сосудодвигательному центру достаточно точно регулировать работу сердца через процессы, известные как сердечные рефлексыШаблон:Sfn. В качестве примера рефлексов сосудодвигательного центра можно привести барорефлекс (рефлекс Циона — Людвига): при повышении артериального давления увеличивается частота импульсации барорецепторов, а сосудодвигательный центр уменьшают симпатическую стимуляцию и увеличивают парасимпатическую стимуляцию, что приводит, в частности, и к уменьшению ЧСС; и, наоборот, по мере снижения давления скорость срабатывания барорецепторов уменьшается, и сосудодвигательный центр увеличивает симпатическую стимуляцию и снижает парасимпатическую, что приводит, в частности, и к увеличению ЧСС. Существует аналогичный рефлекс, называемый предсердным рефлексом или рефлексом Бейнбриджа, в котором задействованы специализированные барорецепторы предсердий.

Волокна правого блуждающего нерва иннервируют преимущественно правое предсердие и особенно обильно СУ; вследствие этого влияния со стороны правого блуждающего нерва проявляются в отрицательном хронотропном эффекте, т. е. уменьшают ЧСС.[4].

К экстракардиальной регуляции относят также гормональные влияния[4]. Так, гормоны щитовидной железы (тироксин и трийодтиронин) усиливают сердечную деятельность, способствуя более частой генерации импульсов, увеличению силы сердечных сокращений и усилению транспорта кальция; тироидные гормоны повышают и чувствительность сердца к катехоламинам — адреналину, норадреналину[5].

В качестве примера воздействия метаболитов можно привести воздействие повышенной концентрации ионов калия, которая оказывает на сердце влияние, подобное действию блуждающих нервов: избыток калия в крови вызывает урежение ритма сердца, ослабляет силу сокращения, угнетает проводимость и возбудимость[5].

Моделирование

Шаблон:Заготовка раздела Примерно с середины 20-го, с появления цифровых вычислительных машин, математическое моделирование стало играть важную и всё возрастающую роль в развитии более глубокого понимания принципов сердечной деятельности.[A: 2] Начало тому положила широко известная работа Н.Винера.[A: 3]

Модели миокарда: Д. Нобла[A: 4], Биллера—Рейтера[A: 5], Лео—Руди[A: 6] — послужили основой для понимания автоволновой природы функционирования миокарда.

Большое значение в понимании электрических проявлений сердечной деятельности сыграла теория эквивалентного электрического генератора сердца, разработанная под руководством Л. И. Титомира; развиты теоретические подходы к приемлемому с практической точки зрения решению обратной задачи электродинамики в электрокардиологии.[B: 14]

Моделирование помогло обнаружить обратное механо-электрическое сопряжение в кардиомиоцитах, которое, как оказалось, играет существенную роль в нормальной сердечной деятельности.[A: 7][A: 8]

Современные средства компьютерного моделирования позволяют разрабатывать многоуровневые сложные модели сердечной деятельности.[B: 15]

Новые принципы математического моделирования с учётом уровня научных знаний 21-го века были сформулированы в проекте «Физиом сердца».[A: 9]

Особенности у разных групп населения

Особенности у детей

Шаблон:В планах

Особенности у пожилых лиц

Шаблон:В планах

Особенности у спортсменов

Шаблон:Заготовка раздела Адаптация сердечно-сосудистой системы у спортсменов к физическим нагрузкам приводит к комплексу структурных и функциональных особенностей сердечно-сосудистой системы, обеспечивающих высокую производительность при мышечной работе. Для оценки тренированности и работоспособности спортсмена использовать следует значения показателей гемодинамического обеспечения иные, чем у обычных людей. При перетренированности, возникающей из-за недостаточно рационального построения тренировок, выявляются атипичным изменениям в аппарате кровообращения.[B: 16]

См. также

Шаблон:Div col

Шаблон:Div col end

Примечания

Шаблон:Примечания

Литература

Книги

Шаблон:Примечания

Статьи

Шаблон:Примечания


Ошибка цитирования Для существующих тегов <ref> группы «B:» не найдено соответствующего тега <references group="B:"/>

  1. Ошибка цитирования Неверный тег <ref>; для сносок Morman2000_p27 не указан текст
  2. Ошибка цитирования Неверный тег <ref>; для сносок Krechker2000p1 не указан текст
  3. Ошибка цитирования Неверный тег <ref>; для сносок Sshmidt2005ru2p485 не указан текст
  4. 4,0 4,1 4,2 4,3 4,4 Ошибка цитирования Неверный тег <ref>; для сносок Filimonov2002_p453 не указан текст
  5. 5,0 5,1 5,2 Ошибка цитирования Неверный тег <ref>; для сносок Sudakov2000_p327 не указан текст


Ошибка цитирования Для существующих тегов <ref> группы «A:» не найдено соответствующего тега <references group="A:"/>