Русская Википедия:Серединный перпендикуляр

Материал из Онлайн справочника
Версия от 19:21, 14 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} thumb|right|200px|Построение середины отрезка AB является одновременно построением серединного перпендикулярa '''Серединный перпендикуляр''' (также '''срединный перпендикуляр''' и устаревший термин '''мед...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Файл:Center of line segment.svg
Построение середины отрезка AB является одновременно построением серединного перпендикулярa

Серединный перпендикуляр (также срединный перпендикуляр и устаревший термин медиатрисаШаблон:Нет АИ) — прямая, перпендикулярная данному отрезку и проходящая через его середину.

Свойства

  • Серединные перпендикуляры к сторонам треугольника (или другого многоугольника, для которого существует описанная окружность) пересекаются в одной точке — центре описанной окружности. У остроугольного треугольника эта точка лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
  • Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
    • Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
  • В равнобедренном треугольнике высота, биссектриса и медиана, проведенные из вершины угла с равными сторонами, совпадают и являются серединным перпендикуляром, проведённым к основанию треугольника, а два других серединных перпендикуляра равны между собой.
  • Отрезки серединных перпендикуляров к сторонам треугольника, заключённые внутри него, можно найти по следующим формулам[1]:
<math>p_a=\frac{2aS}{a^2+b^2-c^2}, \; \;p_b=\frac{2bS}{a^2+b^2-c^2},\; \; p_c=\frac{2cS}{a^2-b^2+c^2},</math>
где нижний индекс обозначает сторону, к которой проведён перпендикуляр, <math>S</math> — площадь треугольника, а также предполагается, что стороны связаны неравенствами <math>a \geqslant b \geqslant c.</math>
  • Если стороны треугольника удовлетворяют неравенствам <math>a \geq b \geq c</math>, тогда справедливы неравенства[1]:
<math>p_a \geq p_b</math> и <math>p_c \geq p_b.</math> Иными словами, наименьшим является серединный перпендикуляр, проведенный к стороне с промежуточной длиной.

Вариации и обобщения

  • Окружность Аполлония — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная.

Примечания

Шаблон:Примечания

Литература