Русская Википедия:Силицен

Материал из Онлайн справочника
Версия от 02:19, 15 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} thumb|[[Сканирующий туннельный микроскоп|СТМ изображение первого (4×4) и второго (√3×√3-β) слоев силицена на тонкой плёнке серебра. Размер изображения 16 × 16 нм.<ref>{{cite doi|10.1088/1367-2630/16/9/095004}}</ref>]] '''Силице...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Файл:Silicene-Ag STM5 crop.jpg
СТМ изображение первого (4×4) и второго (√3×√3-β) слоев силицена на тонкой плёнке серебра. Размер изображения 16 × 16 нм.[1]

Силице́н (Шаблон:Lang-en) — двумерное аллотропное соединение кремния, подобное графену, в котором по крайней мере часть атомов находится в sp2-гибридизации[2].

История

Хотя теоретики рассуждали[3][4][5] о существовании и возможных свойствах силицена с середины 1990-х годов, он не был обнаружен до 2010 года, когда исследователи в первый раз наблюдали структуры кремния, похожие на силицен[6][7][8]. Используя сканирующий туннельный микроскоп, они изучили с атомарным разрешением самособранные силиценовые наноленты и силиценовые листы, выращенные на кристалле серебра.

Файл:Silicene Cluster.jpg
Структура типичного силиценового кластера.

Вычисления согласно теории функционала плотности показали, что атомы кремния образуют сотовые конструкции на серебре с небольшими искривлениями, которые делают графеноподобные конфигурации более вероятными.

В 2012 году силицен был выращен на подложке из диборида циркония ZrB2[9].

Структура и свойства

Структура силицена является метастабильной[10], в отличие от графена он легко взаимодействует с окружающей средой: окисляется на воздухе и связывается с другими материалами[11]. Силицен проявляет сильную склонность к образованию неровностей и гребней на его поверхности, что может являться следствием характера взаимодействия соседних атомов кремния, которые не склонны к образованию sp2-связей[12]: разные расчёты говорят о том, что высота неровностей составляет 0.44 — 0.53 Å. Носители заряда в силицене описываются уравнением Дирака для безмассовых частиц[10], как и в графене, приводящей к линейному закону дисперсии, но существенным преимуществом силицена является возможность управления шириной запрещённой зоны, что важно для практического применения материала[10][13]. Предполагается, что по своим свойствам силицен может быть близок к топологическим изоляторам[11]. При помощи квантовомеханических расчётов было получено, что модуль Юнга в силицене составляет 178 ГПа и была показана возможность управлять электропроводностью силицена путём его механического растяжения, переводя его из состояния полуметалла в металл[14]. Моделирование методом молекулярной динамики даёт меньшее значение для модуля Юнга: около 82 ГПа[15]. При помощи теории функционала плотности показано, что подвижность носителей заряда в силицене составляет 2.57·105 м2/(В·с) при комнатной температуре[16].

Возможные применения

Силицен совместим с кремниевой электроникой, поскольку сам состоит из кремния[17], поэтому предполагается, что он найдёт широкое применение, например, в производстве транзисторов[18]. В дополнение к его потенциальной совместимости с существующей полупроводниковой техникой, силицен имеет преимущество малой окисляемости кислородом вблизи границы с оксидом кремния[19]. Расчёты по теории функционала плотности показали, что силиценовые плёнки являются отличными материалами для изготовления полевых транзисторов. Поскольку плоская структура для силицена энергетически невыгодна, он характеризуется упорядоченными искажениями на поверхности и повышенной гибкостью по сравнению с графеном, что также увеличивает спектр его применения в электронике[20]. В 2015 году впервые продемонстрирована технология создания транзистора на основе силицена[21][22]. Существуют исследования, свидетельствующие в пользу возможности применения силицена для создания анода в натрий-ионных аккумуляторах[23]. Вследствие особенностей адсорбции газов на своей поверхности силицен может найти применение в области высокочувствительных молекулярных сенсоров[24].

Литература

Spencer M. J. S., Morishita T. Silicene: Structure, Properties and Applications, Springer Series in Materials Science, Volume 235. ISBN 978-3-319-28342-5. Springer International Publishing Switzerland, 2016. — 2016. — ISBN 978-3-319-28342-5.

Примечания

Шаблон:Примечания

Ссылки