Русская Википедия:Синильная кислота

Материал из Онлайн справочника
Версия от 06:53, 15 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {{Вещество | картинка = Hydrogen-cyanide-2D.svg | картинка3D = Hydrogen-cyanide-3D-balls.png | картинка малая = Hydrogen-cyanide-3D-vdW.png | наименование = Цианид водорода, цианистый водород | сокращения = | традиционные названия = Гидроцианид; циановодород,...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Вещество Сини́льная (циа́нистоводорóдная) кислота́ (гидроцианид, циа́нистый водорóд, циа̀новодоро́д[1]) — химическое соединение с формулой HCN. Бесцветная, очень летучая, легкоподвижная ядовитая жидкость, имеющая неприятный запах[2] (некоторые люди не способны ощущать её запах, порог чувствительности широко варьируется среди населения[3][4]).

Синильная кислота содержится в некоторых растениях, коксовом газе, табачном дыме, выделяется при термическом разложении нейлона, полиуретанов.

Физические свойства

Смешивается во всех соотношениях с водой, этанолом, диэтиловым эфиром. Смешивается также со многими другими спиртами и эфирами, ароматическими углеводородами и тетрахлоруглеродом[2].

Молекула HCN имеет линейное строениеШаблон:SfnШаблон:Sfn с межатомными расстояниями H—C 0,1064 нм и C≡N 0,1156 нм и сильно полярна (электрический дипольный момент Шаблон:Math = 0,992Шаблон:E Кл·м)[2].

Безводный цианистый водород является сильно ионизирующим растворителем, растворённые в нём электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна[2] 106,8 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счёт образования водородных связей.

Температура плавления −13,29 °C, кипения +25,65 °C. Плотность 0,71618 г/см3 при 0 °C, 0,68708 г/см3 при 0 °C[2].

Критическое давление 4,95 МПа, критическая температура +183,5 °C, критическая плотность 0,195 г/см3[2].

Коэффициент преломления Шаблон:Math = 1,26136 (20 °C)[2].

Энтальпия образования 132 кДж/моль, энтальпия плавления 8,41 кДж/моль, энтальпия испарения 25,2 кДж/моль. Энтальпия сгорания −663 кДж/моль. Энтропия 201,71 Дж/(моль·К) (при 298 К)[2].

Динамическая вязкость 0,183 мПа·с, кинематическая вязкость 17,78 мН/м[2].

Удельное электрическое сопротивление жидкой синильной кислоты 105 Ом·м[2].

Твёрдая синильная кислота при нормальном давлении существует в двух кристаллических модификациях. При температуре ниже −102,78 °C образует кристаллы Шаблон:Крист. Выше этой температуры переходит в кристаллы Шаблон:Крист[2].

Химические свойства

Очень слабая одноосновная кислота: её константа диссоциации Шаблон:Math = 1,32Шаблон:E, Шаблон:Math = 8,88 (при 18 °C)[2]. Образует с металлами соли — цианиды. Взаимодействует с оксидами и гидроксидами щелочных и щёлочноземельных металлов.

Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО и N2. Температура самовоспламенения в воздухе 538 °C. Температура вспышки −18 °C. Взрывоопасная концентрация паров HCN в воздухе 4,9—39,7 %[2].

В смеси кислорода с фтором горит с выделением большого количества тепла:

<math> \mathsf {2HCN + O_2 + F_2 \rightarrow 2HF\uparrow + 2CO\uparrow + N_2\uparrow + 1020}</math> кДж.

Синильная кислота широко применяется в органическом синтезе. Она реагирует с карбонильными соединениями, образуя циангидрины:

<math> \mathsf {RR'C\!=\!O + HCN \rightarrow RR'C(OH)CN} .</math>

С хлором, бромом и иодом прямо образует циангалогениды:

<math> \mathsf {X_2 + HCN \rightarrow XCN + HX} .</math>

С галогеналканами — нитрилы (реакция Кольбе):

<math> \mathsf {RX + HCN \rightarrow R\!-\!CN + HX} .</math>

С алкенами и алкинами реагирует, присоединяясь к кратным связям:

<math> \mathsf {HCN + CH\!\equiv\!CH \xrightarrow{Cu^+} CH_2\!=\!CHCN}.</math>
<math> \mathsf {HCN + CH_2\!=\!CH_2\ \xrightarrow{Pd/Al_2O_3}\ CH_3CH_2CN}.</math>
<math> \mathsf {HCN + RCH\!=\!NH \xrightarrow{Cu^+} RCH(NH_2)CN}.</math>

Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, например, HCN-CuCl.

При разложении водой даёт формиат аммония, либо формамид

<math>\mathsf {HCN + 2H_2O\rightarrow HCOONH_4}</math>

<math>\mathsf {HCN + H_2O\rightarrow HCONH_2}</math>

Название

Цианогруппа в сочетании с железом даёт насыщенный ярко-синий цвет. Известное соединение берлинская лазурь, смесь гексацианоферратов с формулой Fe7(CN)18. Берлинскую лазурь получил в 1704 году немецкий мастер Иоганн Якоб Дисбах, готовивший краски для художников. И уже в 1782 шведский химик Карл Шееле получил из берлинской лазури синильную (синюю) кислоту.

Физиологические свойства

Синильная кислота очень токсична и смертельно ядовита. Является веществом, вызывающим кислородное голодание тканевого типа[5]. При этом наблюдается высокое содержание кислорода как в артериальной, так и в венозной крови и уменьшение таким образом артерио-венозной разницы, резкое понижение потребления кислорода тканями с уменьшением образования в них углекислоты. Синильная кислота и её соли, растворённые в крови, достигают тканей, где вступают во взаимодействие с трёхвалентной формой железа цитохромоксидазы. Соединившись с цианидом, цитохромоксидаза теряет способность переносить электроны на молекулярный кислород. Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. С артериальной кровью кислород доставляется к тканям в достаточном количестве, но не усваивается ими и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов, необходимых для нормальной деятельности различных органов и систем. Активизируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный. Также подавляется активность и других ферментов — каталазы, пероксидазы, лактатдегидрогеназы. Ототоксична (может ухудшать слух)[6].

Действие на нервную систему

В результате тканевой гипоксии, развивающейся под влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы.

Действие на дыхательную систему

В результате острого отравления наблюдается резкое увеличение частоты и глубины дыхания. Развивающуюся одышку следует рассматривать как компенсаторную реакцию организма на гипоксию. Стимулирующее действие синильной кислоты на дыхание обусловлено возбуждением хеморецепторов каротидного синуса и непосредственным действием яда на клетки дыхательного центра. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением вплоть до полной остановки. Причинами этих нарушений являются тканевая гипоксия и истощение энергетических ресурсов в клетках каротидного синуса и в центрах продолговатого мозга.

Действие на сердечно-сосудистую систему

Проникая в кровь, синильная кислота снижает способность клеток воспринимать кислород из притекающей крови. А так как нервные клетки больше остальных нуждаются в кислороде, они первыми страдают от её действия. В начальном периоде интоксикации наблюдается замедление сердечного ритма. Повышение артериального давления и увеличение минутного объёма сердца происходят за счёт возбуждения синильной кислотой хеморецепторов каротидного синуса и клеток сосудодвигательного центра с одной стороны, и выброса катехоламинов из надпочечников и вследствие этого спазма сосудов — с другой. В дальнейшем артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца.

Изменения в системе крови

Содержание в крови эритроцитов увеличивается, что объясняется рефлекторным сокращением селезёнки в ответ на развивающуюся гипоксию. Цвет венозной крови становится ярко-алым за счёт избыточного содержания кислорода, не поглощённого тканями. Артерио-венозная разница по кислороду резко уменьшается. При угнетении тканевого дыхания изменяется как газовый, так и биохимический состав крови. Содержание CO2 в крови снижается вследствие меньшего образования и усиленного его выделения при гипервентиляции. Это приводит в начале развития интоксикации к газовому алкалозу, который меняется метаболическим ацидозом, что является следствием активации процессов гликолиза. В крови накапливаются недоокисленные продукты обмена. Увеличивается содержание молочной кислоты, нарастает содержание ацетоновых тел, отмечается гипергликемия. Нарушение окислительно-восстановительных процессов в тканях приводит к гипотермии. Таким образом, синильная кислота и её соли вызывают явления тканевой гипоксии и связанные с ней нарушения дыхания, кровообращения, обмена веществ, функции центральной нервной системы, выраженность которых зависит от тяжести интоксикации.

Коррозийность

Как и многие другие кислоты, синильная кислота коррозийно-активна по отношению к металлам[7].

Биологическая роль

Показано, что нейроны способны вырабатывать эндогенную синильную кислоту (цианистый водород, HCN) после их активации эндогенными или экзогенными опиоидами и что образование нейронами эндогенной синильной кислоты повышает активность NMDA-рецепторов и, таким образом, может играть важную роль в передаче сигнала между нейронами (нейротрансмиссии). Более того, образование эндогенного цианида оказалось необходимым для проявления в полном объёме анальгетического действия эндогенных и экзогенных опиоидов, а вещества, снижающие образование свободной HCN, оказались способны уменьшать (но не полностью устранять) анальгетическое действие эндогенных и экзогенных опиоидов. Выдвинуто предположение, что эндогенная синильная кислота может являться нейромодулятором[8].

Известно также, что стимуляция мускариновых холинорецепторов клеток феохромоцитомы в культуре повышает образование ими эндогенной синильной кислоты, однако стимуляция мускариновых холинорецепторов ЦНС в живом организме крысы приводит, наоборот, к снижению образования эндогенной синильной кислоты[9].

Также показано, что синильная кислота выделяется лейкоцитами в процессе фагоцитоза и способна убивать патогенные микроорганизмы[8].

Возможно, что вазодилатация, вызываемая нитропруссидом натрия, связана не только с образованием окиси азота (механизм, общий для действия всех сосудорасширяющих препаратов группы нитратов, таких как нитроглицерин, нитросорбид), но и с образованием цианида. Возможно, что эндогенный цианид и образующийся при его обезвреживании в организме тиоцианат играют роль в регуляции функций сердечно-сосудистой системы, в обеспечении вазодилатации и являются одними из эндогенных антигипертензивных веществ[10].

Получение

В настоящий момент существуют три наиболее распространённых метода получения синильной кислоты в промышленных масштабах:

<math> \mathsf {2NH_3 + 2CH_4 + 3O_2 \xrightarrow{Pt} 2HCN\uparrow + 6H_2O}.</math>

  • Метод BMA (Blausäure aus Methan und Ammoniak), запатентованный фирмой Degussa: прямой синтез из аммиака и метана без воздуха в присутствии платинового катализатора при высокой температуре:

<math> \mathsf {NH_3 + CH_4 \xrightarrow{Pt} HCN\uparrow + 3H_2}.</math>

<math>\mathsf{KCN + H_2O + CO_2 \longrightarrow HCN\uparrow + KHCO_3}</math>

<math>\mathsf{2H_3[Fe(CN)_6] \ \xrightarrow{T}\ Fe[Fe(CN)_6] + 6HCN\uparrow }</math>

<math>\mathsf{3H_4[Fe(CN)_6] \ \xrightarrow{100^oC}\ Fe_2[Fe(CN)_6] + 12HCN\uparrow }</math>(в присутствии влаги)

<chem>HCl + NaCN->HCN ^ + NaCl</chem>

<chem>H+ + NaCN ->HCN ^ + Na+</chem>

Эта реакция иногда является основой случайных отравлений, потому что кислота превращает нелетучую цианидную соль в газообразный циановодород.

  • Реакцией монооксида углерода с аммиаком:

<math> \mathsf {NH_3 + CO \xrightarrow{ThO2} HCN\uparrow + H_2O}.</math>

  • Фотолиз метана в бескислородной атмосфере:

<math display="inline">\mathsf { 2 CH_4 + N_2 \longrightarrow 2 HCN\uparrow + 3 H_2\uparrow}</math>

Может быть получена в лабораторных условиях взаимодействием красной кровяной соли и разведенной кислоты:Шаблон:Sfn

<math>\mathsf{K_3[Fe(CN)_6] + 6HCl \xrightarrow{}\ 3KCl + FeCl_3 + 6HCN{\uparrow}}</math>

Применение

В химическом производстве

Является сырьём для получения акрилонитрила, метилметакрилата, адипонитрила и других соединений. Большое число её производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластмасс, каучука, органического стекла, стимуляторов роста растений, гербицидов.

Как отравляющее веществo

Впервые в роли боевого отравляющего вещества синильная кислота была использована французской армией 1 июля 1916 года на реке Сомме[11]. Однако из-за отсутствия кумулятивных свойств и малой стойкости на местности её последующее использование в этом качестве прекратилось.

Синильная кислота являлась основной составляющей препарата «Циклон Б», который был наиболее популярным в Европе во время Второй мировой войны инсектицидом, а также использовался нацистами для убийства людей в концентрационных лагерях. В некоторых штатах США синильная кислота использовалась в газовых камерах в качестве отравляющего вещества при исполнении приговоров смертной казни; в последний раз это было сделано в Аризоне в 1999 году[12]. Смерть, как правило, наступает в течение 5—15 минут.

Соли

Шаблон:Main Соли синильной кислоты называются цианидами. Все цианиды, как и сама кислота, очень ядовиты. Цианиды подвержены сильному гидролизу. При хранении водных растворов цианидов при доступе диоксида углерода они разлагаются:

  • <math>\mathsf{KCN + H_2O + CO_2 \rightarrow HCN\uparrow + KHCO_3}</math>
  • <math>\mathsf{KCN + 2H_2O \rightarrow NH_3\uparrow + HCOOK}</math>

Ион CN (изоэлектронный молекуле СО) входит как лиганд в большое число комплексных соединений d-элементов. Комплексные цианиды в растворах очень стабильны.

Цианиды тяжёлых металлов термически неустойчивы; в воде, кроме цианида ртути (Hg(CN)2), нерастворимы. При окислении цианиды образуют соли — цианаты:

<math>\mathsf{2KCN + O_2 \rightarrow 2KOCN}</math>

Многие металлы при действии избытка цианида калия или цианида натрия дают комплексные соединения, что используется, например, для извлечения золота и серебра из руд:

<math>\mathsf{8NaCN + 4Au + O_2 + 2H_2O \rightarrow 4Na[Au(CN)_2] + 4NaOH}</math>

Токсичность и биологические свойства

Файл:Skull and Crossbones.svg

Синильная кислота — сильнейший яд общетоксического действия, блокирует клеточную цитохромоксидазу, в результате чего возникает выраженная тканевая гипоксия. Половинные летальные дозы (LD50) и концентрации для синильной кислоты[13]:

  • Мыши:
    • перорально (ORL-MUS LD50) — 3,7 мг/кг;
    • при вдыхании (IHL-MUS LC50) — 323 м.д.;
    • внутривенно (IVN-MUS LD50) — 1 мг/кг.
  • Кролики, внутривенно (IVN-RBT LD50) < 1 мг/кг;
  • Человек, минимальная опубликованная смертельная доза перорально (ORL-MAN LDLo) < 1 мг/кг.

При вдыхании синильной кислоты в небольших концентрациях наблюдается царапанье в горле, горький вкус во рту, головная боль, тошнота, рвота, боли за грудиной. При нарастании интоксикации уменьшается частота пульса, усиливается одышка, развиваются судороги, наступает потеря сознания. При этом цианоз отсутствует (содержание кислорода в крови достаточное, нарушена его утилизация в тканях).

При вдыхании синильной кислоты в высоких концентрациях или при попадании её внутрь появляются клонико-тонические судороги и почти мгновенная потеря сознания вследствие паралича дыхательного центра. Смерть может наступить в течение нескольких минут.

В организме человека метаболитом синильной кислоты является роданид (тиоцианат) SCN, образующийся при её взаимодействии с серой под действием фермента роданазы.

Антидоты синильной кислоты

Шаблон:Нет ссылок в разделе

Для лечения отравлений синильной кислотой известно несколько антидотов, которые могут быть разделены на две группы. Лечебное действие одной группы антидотов основано на их взаимодействии с синильной кислотой с образованием нетоксичных продуктов. К таким препаратам относятся, например, коллоидная сера и различные политионаты, переводящие синильную кислоту в малотоксичную роданистоводородную кислоту, а также альдегиды и кетоны (глюкоза, диоксиацетон и др.), которые химически связывают синильную кислоту с образованием циангидринов. К другой группе антидотов относятся препараты, вызывающие образование в крови метгемоглобина: синильная кислота связывается метгемоглобином и не доходит до цитохромоксидазы. В качестве метгемоглобинообразователей применяют метиленовую синь, а также соли и эфиры азотистой кислоты.

Сравнительная оценка антидотных средств: метиленовая синь предохраняет от двух смертельных доз, тиосульфат натрия и тетратиосульфат натрия — от трёх доз, нитрит натрия и этилнитрит — от четырёх доз, метиленовая синь совместно с тетратиосульфатом — от шести доз, амилнитрит совместно с тиосульфатом— от десяти доз, азотистокислый натрий совместно с тиосульфатом — от двадцати смертельных доз синильной кислоты.

Охрана труда

ПДК[14] в воздухе рабочей зоны равна 0,3 мг/м3 (максимально-разовая). По данным[15] при опасной концентрации люди скорее всего не почувствуют запаха; а согласно[16] порог восприятия запаха может быть 5,6 мг/м3.

Примечания

Шаблон:Примечания

См. также

Литература

Шаблон:Боевые отравляющие вещества Шаблон:ВС Шаблон:Цианиды

  1. Обычно под синильной кислотой в химии подразумевается водный раствор цианистого водорода, поэтому отождествление синильной кислоты с самим цианистым водородом, хотя и широко распространено, не вполне корректно.
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 Шаблон:ХЭ
  3. Шаблон:Cite doi
  4. Шаблон:Cite web
  5. Шаблон:БМЭ3
  6. Шаблон:Книга PDF
  7. Коррозионная активность синильной кислоты
  8. 8,0 8,1 Шаблон:Статья
  9. Шаблон:Статья
  10. Шаблон:Статья
  11. Шаблон:Cite web
  12. P.Clarke, L.Hardy, A.Williams «Executioners», London, 2008, page 493 (ISBN 978-0-70880-491-9)
  13. Шаблон:Cite web
  14. Ошибка цитирования Неверный тег <ref>; для сносок ГН-2-2-5-3532-18 не указан текст
  15. МКХБ Шаблон:Cite web
  16. Шаблон:Книга