Стягиваемое пространство — топологическое пространство, гомотопически эквивалентное точке. Это условие равносильно тому, что тождественное отображение на <math>X</math> гомотопно постоянному.
Локально стягиваемое пространство — топологическое пространство, каждая точка которого обладает стягиваемой окрестностью.
Свойства
Пространство <math>X</math> стягиваемо тогда и только тогда, когда существует <math>x_0 \in X</math> такое, что <math>\{x_0\}</math> — деформационный ретракт пространства <math>X</math>.
Стягиваемые пространства всегда односвязны; обратное утверждение, в общем случае, не имеет места, стягиваемость — более сильное ограничение, чем односвязность.
Всякое непрерывное отображение стягиваемых пространств является гомотопической эквивалентностью. Два любых непрерывных отображения произвольного пространства в стягиваемое гомотопны; притом если два любых непрерывных отображения в <math>X</math> гомотопны, то <math>X</math> — стягиваемое пространство.
Конус <math>\mathrm{C}X</math> для данного пространства <math>X</math> — стягиваемое пространство, таким образом, любое пространство <math>X</math> может быть вложено в стягиваемое, что, в свою очередь, свидетельствует о том, что не всякое подпространство стягиваемого пространства стягиваемо. Кроме того, <math>X</math> стягиваемо тогда и только тогда, когда существует ретракция <math>\mathrm{C}X \to X</math>.
Примеры и контрпримеры
Стягиваемы <math>n</math>-мерное вещественное пространство <math>\R^n</math>, любое выпуклое подмножество евклидова пространства, в частности — <math>n</math>-мерный шар.
Сфера в бесконечномерном гильбертовом пространстве стягиваема, но при этом <math>n</math>-мерные евклидовы сферы нестягиваемы. Всякое непрерывное отображение <math>n</math>-мерной сферы в стягиваемое пространство можно непрерывно продолжить на <math>n+1</math>-мерный шар.
Другие примечательные стягиваемые пространства — многообразие Уайтхеда (трёхмерное многообразие, не гомеоморфное <math>\R^3</math>), Шаблон:Iw (четырёхмерное гладкое многообразие с краем, не диффеоморфное четырёхмерному шару), дом Бинга, шутовской колпак.
Все многообразия и CW-комплексы локально стягиваемы, но не стягиваемы в общем случае.
Литература
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|