Русская Википедия:Точка Жергонна

Материал из Онлайн справочника
Версия от 18:17, 20 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {{Центр треугольника | название = Точка Жергонна | изображение = Intouch Triangle and Gergonne Point.svg | описание изображения = Треугольник ΔABC, с вписанной окружностью (синяя), Центр вписанной окружности|центро...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Центр треугольника Точка Жергонна — точка пересечения отрезков, соединяющих вершины треугольника с точками касания противоположных сторон вписанной окружности.

Обычно обозначается <math>Ge</math>, <math>G</math>, <math>J</math> или <math>K</math>.

Свойства

  • Точка Жергонна является точкой Лемуана треугольника, образованного точками касания сторон треугольника со вписанной окружностью.
  • Точка Жергонна изотомически сопряжена точке Нагеля.
  • Точка Жергонна изогонально сопряжена с центром отрицательной гомотетии вписанной и описанной окружности.
  • Квадрат расстояния от точки Жергонна до центра вписанной окружности равен

<math>L^2 = r^2 - \frac {3p^2r^2}{(4R+r)^2}</math>

  • Квадрат расстояния от точки Жергонна до центра описанной окружности равен

<math>L^2 = R^2 - \frac {4p^2r(R+r)}{(4R+r)^2}</math>

  • Точка Жергонна лежит внутри открытого ортоцентроидного круга с выколотым центром.[1]
  • Полный набор свойств точки Жергонна можно найти в статье Декова.[2]

Треугольник Жергонна

Треугольник Жергонна для основного треугольника ABC определяется тремя точками касания вписанной окружности трёх его сторон. Эти вершины обозначим TA, TB и TC. Точка TA лежит напротив вершины A. Этот треугольник Жергонна TATBTC известен также как треугольник касаний треугольника ABC.

Свойства

  • Три прямые ATA, BTB и CTC пересекаются в одной точке — точке Жергонна и обозначается Ge — X(7).
  • Точка Жергонна треугольника является точкой пересечения симедиан треугольника Жергонна.
  • Пусть точки касания вписанной в данный треугольник окружности соединены отрезками, тогда получится треугольник Жергонна, и в полученном треугольнике проведены высоты. В этом случае прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника. Следовательно, ортотреугольник треугольника Жергонна и исходный треугольник подобны.
  • Треугольник Жергонна (для треугольника ABC) является подерным треугольником для инцентра в треугольнике ABC.

См. также

История

Точка Жергонна была открыта Жозефом Диасом Жергонном (Joseph Diaz Gergonne, 19.06.1771 – 4.05.1859) в начале XIX века.

Примечания

Шаблон:Примечания

Шаблон:Rq