Русская Википедия:Транспозоны

Материал из Онлайн справочника
Версия от 19:47, 20 сентября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} мини|250пкс|Схематическое изображение перемещения транспозона с помощью механизма «вырезать и вставить». '''Транспозоны''' ({{lang-en|transposable element, transposon}}) — участки ДНК организмов, способные к передв...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Файл:DNA transposition.gif
Схематическое изображение перемещения транспозона с помощью механизма «вырезать и вставить».

Транспозоны (Шаблон:Lang-en) — участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома[1]. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.

Транспозоны формально относятся к так называемой некодирующей части генома — той, которая в последовательности пар оснований ДНК не несёт информацию об аминокислотных последовательностях белков, хотя некоторые классы мобильных элементов содержат в своей последовательности информацию о ферментах, транскрибируются и катализируют передвижения; например, ДНК-транспозоны и ДДП-1 кодируют белки транспозаза, БОРС1 и БОРС2. У разных видов транспозоны распространены в разной степени: так, у человека транспозоны составляют до 45 % всей последовательности ДНК, у плодовой мухи Drosophila melanogaster часть мобильных элементов составляет лишь 15—20 % всего генома[2]. У растений транспозоны могут занимать основную часть генома — так, у кукурузы (Zea mays) с размером генома в 2,3 миллиарда пар оснований по крайней мере 85 % составляют различные мобильные элементы[3].

История открытия

Барбара Макклинток исследовала вариации окраски зерна и листьев кукурузы, и в 1948 году путём цитологических и генетических исследований пришла к выводу, что мобильные участки ДНК, Ac/Ds-элементы, приводят к соматическому мозаицизму растений[4]. Она была первой, кто доказал, что геном эукариот не статичен, а содержит участки, которые могут передвигаться. В 1983 году за эту работу Барбара Макклинток получила Нобелевскую премию[5].

Хотя транспозоны были открыты в 1940-х годах, только через полвека стало понятно, насколько велика их доля в геноме организмов. Так, получение первой нуклеотидной последовательности (секвенирование) генома человека показало, что мобильных элементов в последовательности ДНК не менее 50 %. Точную оценку получить трудно, поскольку некоторые транспозонные участки со временем настолько изменились, что их нельзя уверенно идентифицировать[6].

Поскольку транспозоны потенциально способны вызывать вредные мутации и поломки хроматина, с начала открытия мобильных элементов считалось, что их действие сводится к геномному паразитизму. Но в начале XXI столетия появляется всё больше данных о возможных благоприятных эффектах транспозонов для организмов[7], об эволюционном влиянии ретротранспозонов на геном плацентарных млекопитающих[8]. Идентифицируют случаи использования транспозонов организмами. Например, РНК ретротранспозона ДДП-1 участвует в образовании гетерохроматина во время инактивации X-хромосомы[9]. Плодовая муха не имеет теломеразы, а вместо этого использует обратную транскриптазу ретротранспозонов для продления теломерных участков, которые у Drosophila melanogaster представлены повторами транспозонов[10][11].

Типы транспозонов и механизмы их передвижения

Файл:Представленность транспозонов в геноме человека.png
Представленность транспозонов в геноме человека.

Мобильные генетические элементы относятся к повторяющимся элементам генома — тем, которые имеют несколько копий в последовательности ДНК клетки. Повторяющиеся элементы генома могут располагаться в тандеме (микросателлиты, теломеры и т. д.) и могут быть рассеяны по геному (мобильные элементы, псевдогены и т. д.)[12].

Мобильные генетические элементы по типу транспозиции можно разделить на два класса: ДНК-транспозоны, которые применяют метод «вырезать и вставить», и ретротранспозоны, передвижение которых имеет в своем алгоритме синтез РНК из ДНК с последующим обратным синтезом ДНК из молекулы РНК, то есть метод «копировать и вставить».

Транспозоны также можно разделить по степени автономности. Как ДНК-транспозоны, так и ретротранспозоны имеют автономные и неавтономные элементы. Неавтономные элементы для транспозиции нуждаются в ферментах, которые кодируются автономными элементами, которые часто содержат значительно изменённые участки транспозонов и дополнительные последовательности. Количество неавтономных транспозонов в геноме может значительно превышать количество автономных[13].

ДНК-транспозоны

Файл:Схема передвижения транспозонов.png
Схема передвижения транспозонов
I. ДНК-транспозоны: способ передвижения «вырезать и вставить».
II. ДДП-1-ретротранспозоны: способ передвижения «копировать и вставить».

Шаблон:Главная ДНК-транспозоны передвигаются по геному способом «вырезать и вставить» благодаря комплексу ферментов под названием транспозаза[1]. Информация об аминокислотной последовательности белка транспозазы закодирована в последовательности транспозона. Кроме того, этот участок ДНК может содержать другие, связанные с транспозоном последовательности, например гены или их части. Большинство ДНК-транспозонов имеют неполную последовательность. Такие транспозоны не являются автономными и передвигаются по геному благодаря транспозазе, которая закодирована другим, полным, ДНК-транспозоном[1].

На концах участков ДНК-транспозона расположены инвертированные повторы, которые являются особыми участками узнавания транспозазы, таким образом отличая эту часть генома от остальных. Транспозаза способна делать двухцепочные разрезы ДНК, вырезать и вставлять в ДНК-мишень транспозон[14].

К ДНК-транспозонам принадлежат Ac/Ds-элементы растений, которые были впервые открыты Барбарой Макклинток в кукурузе. Ac-элемент (Шаблон:Lang-en) является автономным и кодирует транспозазу. Есть несколько типов Ds-элементов, которые способны к формированию разрывов хромосом и которые перемещаются по геному благодаря Ac-элементам[15].

Гелитроны (Шаблон:Lang-en) — тип транспозонов, который есть у растений, животных и грибов, но который широко представлен в геноме кукурузы, где он, в отличие от других организмов, находится в частях ДНК, богатых генами[3]. Гелитроны транспозируются по механизму «катящегося кольца» (Шаблон:Lang-en). Процесс начинается с разрыва одной цепи ДНК-транспозоны. Высвобожденный участок ДНК вторгается в последовательность-мишень, где формируется гетеродуплекс. С помощью ДНК-репликации завершается внедрение транспозона в новый участок[16].

Гелитроны могут захватывать соседние последовательности при транспозиции.

Ретротранспозоны

Шаблон:Главная

Ретротранспозоны — это мобильные генетические элементы, которые применяют метод «копировать и вставить» для распространения в геноме животных[17]. По крайней мере 45 % генома человека составляют ретротранспозоны и их производные. Процесс передвижения включает промежуточную стадию молекулы РНК, которая считывается с участка ретротранспозона и которая затем, в свою очередь, используется как матрица для обратной транскрипции в последовательность ДНК. Новосинтезированный ретротранспозон встраивается в другой участок генома.

Активные ретротранспозоны млекопитающих делятся на три основные семьи: Alu-повторы, ДДП-1, SVA.

Файл:ДДП ретротранспозоны.png
Структура ДДП-1-ретротранспозона.
  • ДДП-1-ретротранспозоны — длинные диспергированные повторы — тип ретротранспозонов, который широко распространён у млекопитающих и составляет до 20 % генома. ДДП-1 -элементы имеют длину около 6 тысяч пар оснований[7]. Большинство этих ретротранспозонов в геноме представлено неполно, хотя существует примерно 150 полных и потенциально мобильных ДДП-1-элементов в последовательности ДНК человека и примерно 3000 — у мыши[7].
    Процесс передвижения начинается со считывания молекулы РНК с элемента ДДП-1. РНК транспортируется к цитоплазме, где от неё транслируются белки БОРС1 (который является РНК-связывающим белком) и БОРС2 (который является белком с эндонуклеазной и возвратно-транскриптазной активностями). БОРС1, БОРС2 и РНК транспозона формируют рибонуклеопротеин и импортируются в ядро, где происходит обратная транскрипция ретротранспозона[18].
    Большинство случаев вставки ДДП-1-элементов происходит не до конца, и такие копии больше не способны к самостоятельной мобилизации[7].
    Существуют сведения о неканонических функциях ДДП-1-элементов во время инактивации X-хромосомы[9].
  • ДКП — длинные концевые повторы — ретротранспозоны, имеющие конечные повторяющиеся последовательности, которые играют важную роль в транскрипции и обратной транскрипции РНК транспозона[4]. ДКП-элементы кодируют белки pol и gag, которые близки к белкам ретровирусов, но, в отличие от последних, ДКП не хватает белков, которые смогли бы сформировать внешнюю оболочку (суперкапсид) и выйти из клетки[13].
  • КДП — короткие диспергированные повторы являются неавтономными ретротранспозонами: они требуют активности ДДП-1-элементов для передвижения, в ДНК-последовательности КДП содержат только участок связывания РНК-полимеразы[4]. В число КДП входят Alu-ретротранспозоны.
Файл:Alu-ретротранспозоны.png
Структура Alu-ретротранспозона.
  • Alu-повтор (Alu от Arthrobacter luteus) — широко распространённые мобильные элементы в геноме человека[19]. Alu-элементы имеют длину около 300 пар оснований и часто расположены в интронах, участках генома, которые не транслируются, и межгенных участках[12]. Приставку Alu- ретротранспозоны получили за то, что они содержат последовательность распознавания рестрикционного энзима AluI[12]. Анализ последовательностей показал, что Alu-элементы возникли у приматов примерно 65 миллионов лет назад от гена 7SL РНК, который входит в рибосомный комплекс[12]. Alu-ретротранспозоны не имеют собственной обратной транскриптазы, поэтому для передвижения им необходимые ферменты ДДП-1-элементов.
    Alu-элементы являются участками, где происходит до 90 % всех случаев A-I редактирования РНК[18].
  • SVA — мобильные элементы длиной в 2-3 тысячи пар оснований ДНК, состоящие из нескольких частей: коротких разбросанных элементов (КДП), вариабельного числа тандемных повторов (ВЧТП), Alu-последовательностиі[20] и CT-повтора, с последовательностью CCCTCT, которая встречается чаще всего и имеет название гексамер (Hex)[21]. SVA элементы значительно варьируют в длину из-за разного количества составляющих повторов[21]. Они не являются автономными и нуждаются в белках, закодированных в ДДП1 ретротранспозонах для передвижения, но они активны в геноме человека[4]. SVA-элементы претерпевают высокий уровень метилирования ДНК в большинстве тканей человека. Интересным фактом является заниженное метилирование ДНК SVA-ретротранспозонов в мужских половых клетках человека, тогда как у шимпанзе SVA-последовательности сперматозоидов высоко метилированы[22].

Механизмы блокировки транспозонов

Файл:ПиРНК-индуцированное подавление транспозонов.jpg
Схематическое изображение механизма пиРНК-индуцированного подавления транспозонов.

Мобильные элементы генома достаточно широко представлены в растительных и животных геномах. Их высокая активность является риском для стабильности генома, поэтому их экспрессия жестко регулируется, особенно в тех тканях, которые принимают участие в формировании гамет и передаче наследственной информации потомкам. У растений и животных регуляция активности мобильных элементов генома происходит путём de novo-метилирования последовательности ДНК и активности некодирующих РНК вместе с белковыми комплексами Аргонавт[23].

Основная роль малых некодирующих РНК, которые взаимодействуют с пиви-комплексом, или пиРНК, заключается в подавлении мобильных элементов генома в зародышевых тканях. Эта роль пиРНК достаточно высоко консервативна у животных[24].

У мышей мобильные элементы генома на протяжении онтогенеза находятся преимущественно в неактивном состоянии, которое достигается путём эпигенетических взаимодействий и активности некодирующих РНК[25]. В период эмбрионального развития эпигенетическая метка метилирования ДНК подвергается репрограммированию: родительские метки стираются, а новые устанавливаются[26]. В этот период часть белков-аргонавтов — пиви-белки (Mili и Miwi2) — и некодирующие РНК, которые с ними взаимодействуют — пиРНК — играют ключевую роль в de novo подавлении ретротранспозонов мышей путём метилирования ДНК, и пинг-понг-цикла амплификации пиРНК, и подавления мишени[27]. Если у мышей возникает недостаток белков Mili и Miwi2, это приводит к активации ДДП-1 и ДКП и остановке гаметогенеза и стерильности у самцов[24]. Недавние работы показали, что у мухи Drosophila melanogaster активным кофактором в подавлении является белок СФГ-1.

Механизм пиРНК-индуцированного подавления транспозонов окончательно не выяснен, но схематически его можно представить такой моделью[28]:

  • первичное накопление одноцепочечных молекул РНК, пиРНК-прекурсоров;
  • созревание пиРНК и их амплификация с помощью пиви-белков (пинг-понг-цикл);
  • подавление целевого транспозона, что может происходить несколькими путями: деградация РНК (с помощью РНКазной активности H-подобного домена белков-аргонавтов), подавление трансляции и привлечение хроматин-модифицирующих систем (таких, как белки SWI/SNF[13]) и дальнейшее эпигенетическое подавление транспозона.

В отличие от вирусов, которые используют организм хозяина для размножения и способны его покинуть, мобильные генетические элементы существуют исключительно в организме хозяина. До некоторой степени поэтому транспозоны способны регулировать свою активность. Примером этого является Ac-ДНК-транспозоны — автономные мобильные элементы растений, кодирующие собственную транспозазу. Ac-элементы проявляют способность снижать активность транспозазы при увеличении её копий[29].

Также подавление растительных автономных ДНК-транспозонов MuDR может происходить с помощью Muk. Muk является вариантом MuDR и имеет в своей последовательности несколько палиндромных участков ДНК. Когда Muk транскрибируется, такая РНК формирует шпильку, затем режется комплексом ферментов на малые интерферирующие РНК (миРНК), которые заглушают активность MuDR с помощью процесса РНК-интерференции[29].

Болезни

По состоянию на 2012 год задокументировано 96 различных заболеваний человека, причиной которых является de novo внедрение мобильных генетических элементов[22]. Alu-повторы часто вызывают хромосомные аберрации и являются причиной 50 разновидностей заболеваний[30]. Так, у нейрофиброматоза I типа было найдено 18 случаев встроенных ретротранспозонов, 6 из которых происходят в 3 специфических местах. Активность мобильных элементов ДДП-1 в соматических тканях зафиксирована у пациентов с раком легких[22].

Если транспозиция, которая вызывает заболевания, происходит в гаметах, то следующие поколения наследуют болезни. Так, гемофилия может возникать из-за встраивания ретротранспозона ДДП-1 в участок ДНК, кодирующий ген VIII фактора свертывания крови. У мышей были зафиксированы случаи онкогенеза, остановки развития и стерильность в связи со встраиванием мобильных элементов генома[30].

Эволюционная роль транспозонов

Некоторые этапы эволюционирования организмов были вызваны активностью мобильных элементов генома. Уже первая нуклеотидная последовательность генома человека доказала, что многие гены были производными транспозонов[6]. Мобильные элементы генома могут влиять на организацию генома путём рекомбинации генетических последовательностей и входя в состав таких фундаментальных структурных элементов хроматина, как центромеры и теломеры[31]. Мобильные элементы могут влиять на соседние гены, меняя узоры (паттерны) сплайсинга и полиаденилирования или выполняя функции энхансеров или промоторов[13]. Транспозоны могут влиять на структуру и функции генов путём выключения и изменения функций, изменения структуры генов, мобилизации и реорганизации фрагментов генов и изменения эпигенетического контроля генов[16].

Репликация транспозонов может вызвать некоторые заболевания, но, несмотря на это, в процессе эволюции транспозоны не были удалены и остались в ДНК-последовательностях почти всех организмов, или в виде целых копий, которые имели возможность передвигаться по ДНК, или в укороченном виде, потеряв способность к передвижению. Но укороченные копии также могут принимать участие в таких процессах, как пост-транскрипционная регуляция генов, рекомбинация и т. п.[31] Также важным моментом в потенциальной способности транспозонов влиять на темпы эволюции является то, что их регуляция зависит от эпигенетических факторов. Это приводит к возможности транспозонов реагировать на изменения окружающей среды и вызывать генетическую нестабильность[31]. На стресс транспозоны активируются или прямо, или путём снижения их подавления белками-аргонавтами и пиРНК[13]. У растений мобильные генетические элементы очень чувствительны к различным типам стресса, на их активность могут влиять многочисленные абиотические и биотические факторы, среди которых солёность, ранения, холод, тепло, бактериальные и вирусные инфекции[16].

Ещё одним возможным механизмом эволюции геномов организмов является горизонтальный перенос генов — процесс передачи генов между организмами, которые не находятся в отношениях «предки-потомки». Есть сведения о том, что взаимодействия паразитических организмов и животных-хозяев могут повлечь горизонтальный перенос генов с помощью транспозонов, который состоялся между позвоночными и беспозвоночными организмами[32].

Примеры эволюционной роли мобильных генетических элементов

Считается, что приобретённый иммунитет млекопитающих возник у челюстных рыб примерно 500 миллионов лет назад[33]. Приобретённый иммунитет позволяет формировать антитела для многих видов патогенов, попадающих в организм млекопитающих, включая человека. Для формирования различных антител клетки иммунной системы изменяют последовательность ДНК путём соматической рекомбинации с помощью системы, которая возникла и эволюционировала благодаря мобильным элементам генома[33].

Нейроны, клетки нервной системы, могут иметь мозаичный геном, то есть последовательность ДНК у них отличается от последовательности ДНК других клеток, хотя все они сформировались из одной клетки-предшественника — зиготы. Доказано, что у крыс специально вставленные ДДП-1-ретротранспозоны человека активны даже в зрелом возрасте. Также зафиксировано увеличение копий ДДП-1-ретротранспозонов в нейронах некоторых участков мозга, в частности гипоталамуса, по сравнению с другими тканями у взрослых людей[34]. Также установлено, что мобильные элементы приводят к разнородности в нейронах мухи Drosophila melanogaster[2]. Активность мобильных элементов в нейронах может повлечь синаптическую пластичность и большую вариабельность поведенческих реакций[7].

Последовательности ДНК генов теломеразы и ДДП-1-ретротранспозонов имеют высокую гомологию, что свидетельствует о возможности происхождения теломераз от ретротранспозонов[1].

У растений очень большая скорость эволюции геномов, поэтому лучше всего известны те влияния мобильных элементов, которые возникли вследствие одомашнивания, поскольку оно произошло недавно, и эти изменения легко идентифицировать, поскольку известны черты, по которым велась селекция культурных растений[16]. Примером может быть приобретение овальной формы римским помидором Solanum lycopersicum. Ген, который находится в локусе SUN, был перемещён путём ретротранспозиции в другой участок ДНК, где он регулируется другими промоторными последовательностями у овальных томатов[16].

Использование транспозонов

Генная инженерия

Поскольку мобильные элементы генома способны к встраиванию в хроматин, они используются в генной инженерии для специального и контролируемого встраивания генов или участков ДНК, которые изучают учёные. Транспозоны используются для мутагенеза и для определения регуляторных элементов генома в лабораториях.

Наиболее известная система для введённого мутагенеза in vivo — P-мобильный элемент мухи D. melanogaster, с помощью которого можно изучать функции генов, налаживание хромосомных аберраций и т. п.[35]

У позвоночных животных долгое время не было эффективной методики транспозонной модификации генома. Сейчас есть система мобильного элемента Tol2, полученная из японской рыбы Oryzias latipes, которая используется как у мышей, так и на клеточных линиях человека[35]. Также успешной является система транспозонов Minos[36].

Система транспозонов «Спящая Красавица» (Шаблон:Lang-en) была создана на основе последовательности ДНК транспозазы из рыбы. Удачное использовании этой системы на мышах позволило определить кандидатов в онкогены рака кишечника человека[37].

Филогенетика

Кроме использования транспозонов в генной инженерии, изучение активности транспозонов является методом филогенетики. Путём анализа и сопоставления нуклеотидных последовательностей геномов различных видов можно найти транспозоны, которые имеются у одних видов, но отсутствуют у других. Виды, у которых есть одинаковый ретротранспозон, скорее всего получили его от общего предка. Таким образом, можно получить информацию об эволюционном развитии видов и строить филогенетические деревья[38].

Примечания

Шаблон:Примечания

Глоссарий

Литература

См. также

Внешние ссылки

Шаблон:Выбор языка Шаблон:Повторяющиеся последовательности