Русская Википедия:Уравнение движения
Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или динамической системы (например, поля) во времени и пространстве[1].
Эволюция физической системы однозначно определяется уравнениями движения и начальными условиями.
Введение
В уравнении движения динамической системы входит полный набор переменных, определяющий состояние этой системы (например, все координаты и скорости, или все координаты и импульсы), а также их производные по времени, что позволяет, зная такой набор в некий момент времени, вычислить его для момента времени, отстоящего на малый (бесконечно малый) промежуток времени. В принципе, повторяя этот процесс вычисления последовательно большое (бесконечное) количество раз, можно вычислить значение всех этих переменных для момента времени, как угодно далеко[2] отстоящего от начального. С помощью такого процесса можно (выбрав <math>\Delta t</math> достаточно малым, но конечным) получить приближённое численное решение уравнений движения. Однако чтобы получить точное[3] решение, приходится применять другие математические методы.
В современной квантовой теории термин уравнение движения нередко используется для обозначения именно только классических уравнений движения, то есть как раз для различения классического и квантового случая. В таком употреблении, например, слова «решение уравнений движения» означают именно классическое (неквантовое) приближение, которое может затем так или иначе использоваться при получении квантового результата или для сравнения с ним. В этом смысле уравнения эволюции волновой функции не называют уравнениями движения, например упомянутые ниже уравнение Шредингера и уравнение Дирака нельзя назвать уравнением движения электрона. Определённую ясность тут вносит дополнение, указывающее на то, об уравнении движения чего идёт речь: так, хотя уравнение Дирака нельзя назвать уравнением движения электрона, его можно, даже в смысле, обсуждаемом в этом абзаце, назвать классическим уравнением движения спинорного поля.
Примеры
Простой механический пример
Рассмотрим в рамках ньютоновской механики точечную частицу, способную перемещаться лишь по одной прямой (например, бусину, скользящую по гладкой спице). Будем описывать положение частицы на прямой единственным числом — координатой — x. Пусть на эту частицу действует (например, со стороны некоторой пружины) сила f, зависящая от положения частицы по закону Гука, то есть, выбрав удобное начало отсчёта x, можем записать f = — k x. В таком случае, учитывая второй закон Ньютона и кинематические соотношения, обозначив скорость как v, будем иметь следующие уравнения движения для нашей системы:
- <math>dv/dt = - (k/m) x</math>
- <math>dx/dt = v </math>,
или, исключая v из системы:
- <math>d^2 x/d t^2 = - (k/m) x</math>
Подставив начальную координату и скорость в правые части этих уравнений, и заменив бесконечно малое dt на малое, но конечное, <math>\delta t</math>, и переписав приближённо в соответствии с этим уравнения в первой форме — в виде величина(<math>t+\delta t</math>) = величина(t) + производная·<math>\delta t</math>, получим:
- <math>v(t+\delta t) = v(t) - (k/m) x(t) \delta t </math>
- <math>x(t+\delta t) = x(t) + v(t) \delta t </math>,
и, переходя от предыдущего момента к следующему (каждый раз время растёт на <math>\delta t</math>), можем получить численное решение этих уравнений движения в виде таблицы <math>{x(0),v(0); x(\delta t),v(\delta t); x(2\delta t),v(2\delta t); \dots; x(n\delta t),v(n\delta t);}</math>, приближенно представляющей зависимость x(t) и v(t) от времени (с шагом <math>\delta t</math>). Можно увидеть, что, если <math>\delta t</math> было выбрано достаточно малым, что x(t) и v(t) очень близко совпадают с функцией <math>const \cdot \cos(\sqrt{k/m}\cdot t + const')</math>.
Использовав для догадки это приближённое решение или какие-то другие соображения, можем, если мы уже подозреваем, каким должно быть решение, просто подставить
- <math>x = A \cos(\omega t + \phi)</math>,
где <math>A, \omega, \phi</math> — просто постоянные, в точные уравнения движения, взяв нужные производные по времени от этого выражения. При этом мы сможем убедиться, что нетрудно подобрать конкретные значения <math>A, \omega, \phi</math>, чтобы равенство при этой подстановке выполнялось, а также найти необходимые для этого значения <math>A, \omega, \phi</math> (оказывается, <math>A</math> и <math>\phi</math> могут быть любыми, а <math>\omega = \sqrt{k/m}</math>. Мы получили таким образом точное решение уравнений движения, да ещё и общее точное решение (то есть подходящее для любых начальных условий, в чём нетрудно убедиться).
Теперь, имея это общее точное решение, мы можем выбрать из множества общих решений (с разными <math>A</math> и <math>\phi</math>) частное решение, удовлетворяющее конкретным начальным условиям. Так мы решим задачу для заданного уравнения движения и начальных условий.
Так иллюстрируется понятие уравнения движения (уравнений движения) и их решения на конкретном простом примере.
Примеры уравнений движения в разных областях физики
- В классической механике
- Законы Ньютона
- (кроме собственно законов Ньютона — а именно второго — в уравнения движения ньютоновской механики входят кинематические уравнения и конкретные законы сил, такие, как например закон всемирного тяготения или закон Гука).
- Уравнения Эйлера — Лагранжа
- Уравнения Гамильтона
- Законы Ньютона
- В классической статистической механике:
- В классической теории поля:
- Уравнения Максвелла (могут быть записаны и использоваться в разной форме).
- Уравнение движения сплошной среды
- В квантовой механике (см. замечание в основной статье о возможных ограничениях применимости термина уравнения движения в этой области)
Примечания
Ссылки
- ↑ Когда говорят об уравнениях движения в общеупотребительном смысле, подразумеваются дифференциальные или интегро-дифференциальные уравнения (хотя некоторые другие типы уравнений, например разностные — для дискретных систем — могут представлять собой достаточно близкую аналогию).
- ↑ Слова «в принципе… как угодно далеко» означают, что это верно вообще говоря лишь для математической модели (которая всегда лишь с некоторой погрешностью описывает физическую реальность), при этом с абсолютно точно заданными начальными данными; в реальности корректность предсказания состояния системы с помощью уравнений движения на длительный срок вперед определяется погрешностями записи самих уравнений (по сравнению с описываемой ими реальностью), погрешностью задания начальных данных и устойчивостью решений данного конкретного вида уравнений; тем не менее в ряде случаев (хотя и далеко не во всех) на практике предсказание с помощью уравнений движения бывает весьма точным на достаточно больших временных промежутках (как например в небесной механике) или хотя бы удовлетворительным.
- ↑ Под точным решением, конечно, подразумевается «точное в рамках математической модели», то есть не рассматривая погрешность в написании самих уравнений; могло бы показаться, что получением точных решений незачем заботиться, раз уже и сами уравнения не абсолютно точно отражают физическую реальность, однако, не говоря уж о том, что зачастую погрешность модели достаточно мала и точные в математическом смысле решения, достаточно точны тогда и в физическом, точные решения обладают как правило еще одним преимуществом: они записываются в виде формул в такой форме, которая позволят гораздо удобнее их использовать в дальнейших вычислениях и анализе, что важно и для практики и для теоретического осмысления, ведь одно точное решение с несколькими параметрами представляет собой запись бесконечного семейства единичных решений.