Русская Википедия:Шахматная доска Фейнмана

Материал из Онлайн справочника
Версия от 05:14, 1 октября 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Русская Википедия/Панель перехода}} {{См. также|Шахматная доска (значения)}} справа|мини|280x280пкс| Шахматная доска Фейнмана с двумя путями, вносящими вклад в сумму для пропагатора из (<math>x/\epsilon c</math>, <math>t/\epsilon</math>) = (0, 0) в (3, 7) '''Шахматная...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:См. также

Файл:Feynman checkerboard.svg
Шахматная доска Фейнмана с двумя путями, вносящими вклад в сумму для пропагатора из (<math>x/\epsilon c</math>, <math>t/\epsilon</math>) = (0, 0) в (3, 7)

Шахматная доска Фейнмана (релятивистская шахматная доска) — предложенная Ричардом Фейнманом модель, иллюстрирующая формулировку «суммы по путям» для интеграла по траекториям свободной частицы со спином ½, движущейся в одном пространственном измерении. Она обеспечивает представление решений уравнения Дирака в (1 + 1) -мерном пространстве-времени в виде дискретных сумм.

Модель можно визуализировать, рассматривая релятивистские случайные блуждания на двумерной шахматной доске пространства-времени. На каждом дискретном временном шаге <math>\epsilon</math> частица массы <math>m</math> проходит расстояние <math>\epsilon c</math> влево или вправо (<math>c</math> — скорость света). Для такого дискретного движения интеграл по Фейнману сводится к сумме по возможным путям. Фейнман продемонстрировал, что если каждый «поворот» (изменение движения слева направо или наоборот) пути в пространстве-времени взвешивается с коэффициентом <math>-i \epsilon mc^2/\hbar</math> (<math>\hbar</math> — приведенная постоянная Планка), в пределе бесконечно малых квадратов шахматной доски сумма всех взвешенных путей дает пропагатор, который удовлетворяет одномерному уравнению Дирака. В результате спиральность (одномерный эквивалент спина) получается из простого правила типа клеточных автоматов.

Модель шахматной доски важна, потому что она связывает спин и хиральность с распространением в пространстве-времени[1] и является единственной формулировкой суммы по пути, в которой квантовая фаза дискретна на уровне путей, принимая только значения, соответствующие корню 4-й степени из единицы .

История

Фейнман изобрел модель в 1940-х годах при разработке своего пространственно-временного подхода к квантовой механике.[2] Он не опубликовал результат, пока он не появился в тексте об интегралах по путям, соавтором которого был Альберт Хиббс в середине 1960-х годов.[3] Модель не была включена в оригинальную статью с интегралом по траектории потому что подходящее обобщение для четырехмерного пространства-времени не было найдено.[4]

Одна из первых связей между амплитудами, предписанными Фейнманом для частицы Дирака в 1 + 1 измерениях, и стандартной интерпретацией амплитуд в терминах ядра или пропагатора, была установлена Джаянтом Нарликаром в детальном анализе.[5] Название «модель шахматной доски Фейнмана» было придумано Гершем, когда он продемонстрировал ее связь с одномерной моделью Изинга.[6] Гаво и соавторы обнаружили связь между моделью и стохастической моделью телеграфных уравнений благодаря Марку Кацу посредством аналитического продолжения.[7] Якобсон и Шульман рассмотрели переход от релятивистского к нерелятивистскому интегралу пути.[8] Впоследствии Орд показал, что модель шахматной доски была встроена в корреляции в первоначальной стохастической модели Каца[9] и поэтому имела чисто классический контекст, свободный от формального аналитического продолжения.[10] В том же году Кауфман и Нойес[11] выпустили полностью дискретную версию, касающуюся физики битовых струн, которая превратилась в общий подход к дискретной физике.[12]

Расширения

Хотя Фейнман не дожил до публикации расширений модели шахматной доски, из его архивных заметок видно, что он был заинтересован в установлении связи между корнями 4-й степени из единицы (используемых в качестве статистических весов на путях шахматной доски) и своим совместным с Дж. А. Уилером открытием, что античастицы эквивалентны частицам, движущимся назад во времени. Его заметки содержат несколько набросков дорожек шахматной доски с добавленными пространственно-временными петлями.[13] Первым расширением модели, которая явно содержала такие петли, была «спиральная модель», в которой на шахматной доске допускались спиральные траектории в пространстве-времени. В отличие от случая с шахматной доской, причинно-следственная связь должна быть реализована явно, чтобы избежать расхождений, однако с этим ограничением уравнение Дирака возникло как предел континуума.[14] Далее роли «дрожащего движения», античастиц и моря Дирака в модели шахматной доски были выяснены[15] и через нерелятивистский предел рассмотрены следствия для уравнения Шредингера.[16]

Дальнейшие расширения исходной 2-мерной модели пространства-времени включают такие особенности, как улучшенные правила суммирования[17] и обобщенные решетки.[18] Не было единого мнения об оптимальном расширении модели шахматной доски до полностью четырехмерного пространства-времени. Существуют два различных класса расширений: те, которые работают с фиксированной базовой решеткой[19][20] и те, которые встраивают двумерный случай в пространство более высокой размерностью.[21][22] Преимущество первого состоит в том, что сумма по путям ближе к нерелятивистскому случаю, однако простая картина единственной, не зависящей от направления скорости света теряется. В последних расширениях свойство фиксированной скорости поддерживается за счет переменных направлений на каждом шаге.

Примечания

Шаблон:Примечания

Шаблон:Ричард Фейнман

  1. Шаблон:Книга
  2. Шаблон:Статья
  3. Feynman and Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill, Problem 2-6, pp. 34-36, 1965.
  4. R. P. Feynman, The Development of the Space-Time View of Quantum Electrodynamics Шаблон:Wayback, Science, 153, pp. 699—708, 1966 (Reprint of the Nobel Prize lecture).
  5. J. Narlikar, Path Amplitudes for Dirac particles, Journal of the Indian Mathematical Society, 36, pp. 9-32, 1972.
  6. Шаблон:Статья
  7. Шаблон:Статья
  8. Шаблон:Статья
  9. Шаблон:Статья
  10. Шаблон:Статья
  11. Шаблон:Статья
  12. Louis H. Kauffman, Non-Commutative Worlds — A Summary, 2005, arXiv: quant-ph/0503198.
  13. Шаблон:Статья
  14. Шаблон:Статья
  15. Шаблон:Статья
  16. Шаблон:Статья
  17. Шаблон:Статья
  18. Шаблон:Статья
  19. Шаблон:Книга
  20. Frank D. Smith, HyperDiamond Feynman Checkerboard in 4-dimensional Spacetime, 1995, arXiv: quant-ph/9503015
  21. Шаблон:Статья
  22. Шаблон:Статья