Английская Википедия:2023 in paleontology

Материал из Онлайн справочника
Версия от 07:50, 25 декабря 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Year nav topic20 |2023|paleontology |paleobotany |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |mammal paleontology |paleoichthyology }} {{Year in paleontology header}} {{Science year nav|2023}} <!--Please do not delete. Sources and information will be added in the coming days.--> ==Flora== ==="Algae"=== * Liu ''et al.'' (2...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Year nav topic20 Шаблон:Year in paleontology header Шаблон:Science year nav


Flora

"Algae"

Plants

Шаблон:Main

Fungi

Name Novelty Status Authors Age Type locality Location Notes Images

Porterra[4]

Gen. et sp. nov

Retallack

Tonian

Chuar Group

Шаблон:Flag
(Шаблон:Flag)

A lichen-like thalli.
The type species is P. dehlerae.

Potteromyces[5]

Gen. et sp. nov

Strullu-Derrien & Hawksworth in Strullu-Derrien et al.

Devonian

Rhynie chert

Шаблон:Flag

A member of Ascomycota of uncertain affinities.
The type species is P. asteroxylicola.

Rhyniomycelium[6]

Gen. et sp. nov

Krings & Harper

Devonian

Rhynie chert

Шаблон:Flag

A fungal mycelium of uncertain affinities. Genus includes new species R. endoconidiarum.

Szaferomyces[7]

Gen. et sp. nov

Worobiec & Piątek in Worobiec, Piątek & Worobiec

Pliocene

Шаблон:Flag

A member of Ascomycota of uncertain affinities, with resemblances to modern powdery mildews. The type species is S. pliocenicus.

Mycological research

General floral research

Cnidarians

New cnidarian taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Actinophrentis crassithecata[11]

Sp. nov

El-Desouky, Herbig & Kora

Carboniferous (Kasimovian)

Aheimer Formation

Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Antiphyllidae.

Apoplacophyllia polygonata[12]

Sp. nov

Valid

Samaniego-Pesqueira, Löser & Moreno-Bedmar

Early Cretaceous (Albian)

Espinazo del Diablo Formation

Шаблон:Flag

A coral belonging to the superfamily Stylinoidea and the family Aulastraeoporidae.

Aulastraeopora aguedae[12]

Sp. nov

Valid

Samaniego-Pesqueira, Löser & Moreno-Bedmar

Early Cretaceous (Albian)

Espinazo del Diablo Formation

Шаблон:Flag

A coral belonging to the superfamily Stylinoidea and the family Aulastraeoporidae.

Bertratis[13]

Gen. et sp. nov

Valid

Larson & Briggs

Silurian (Přídolí)

Bertie Group

Шаблон:Flag
(Шаблон:Flag)
Шаблон:Flag
(Шаблон:Flag)

A hydrozoan belonging to the group Capitata and the superfamily Porpitoidea. The type species is B. ciurcae.

Burgessomedusa[14]

Gen. et sp. nov

Valid

Moon, Caron & Moysiuk

Cambrian

Burgess Shale

Шаблон:Flag
(Шаблон:Flag)

A medusozoan, possibly a member of the stem group to Cubozoa or Acraspeda; described on the basis of fossil material representing a free-swimming medusa. The type species is B. phasmiformis.

Decimoconularia anisfacialis[15]

Sp. nov

Song et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

Шаблон:Flag

A medusozoan, possibly a member of Conulata.

Lytvolasma aheimerensis[11]

Sp. nov

El-Desouky, Herbig & Kora

Carboniferous (Kasimovian)

Aheimer Formation

Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Antiphyllidae.

Lytvolasma paraaucta[11]

Sp. nov

El-Desouky, Herbig & Kora

Carboniferous (Kasimovian)

Aheimer Formation

Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Antiphyllidae.

Monophyllum galalaensis[11]

Sp. nov

El-Desouky, Herbig & Kora

Carboniferous (Kasimovian)

Aheimer Formation

Шаблон:Flag

A rugose coral belonging to the group Stauriida and the family Antiphyllidae.

Notocyathus suzukii[16]

Sp. nov

Valid

Niko

Miocene

Katsuta Group

Шаблон:Flag

A stony coral.

Palaeoconotuba[17]

Gen. et comb. nov

Qu, Li & Ou

Cambrian

Шаблон:Flag

A stem-medusozoan; a new genus for "Burithes" yunnanensis Hou et al. (1999).

Parabyronia[18]

Gen et sp. nov

Mergl & Kraft

Devonian (Emsian)

Zlíchov Formation

Шаблон:Flag

A member of Scyphozoa belonging to the group Byroniida and the family Byroniidae. The type species is P. elegans.

Pentacoeniopsis[12]

Gen. et sp. nov

Valid

Samaniego-Pesqueira, Löser & Moreno-Bedmar

Early Cretaceous (Albian)

Espinazo del Diablo Formation

Шаблон:Flag

A coral belonging to the superfamily Eugyroidea and the family Solenocoeniidae. The type species is P. sonorensis.

Pidiconularia[18]

Gen. et sp. nov

Mergl & Kraft

Devonian (Emsian)

Zlíchov Formation

Шаблон:Flag

A member of Conulariida. The type species is P. tubulata.

Prestephanoscyphus branzovensis[18]

Sp. nov

Mergl & Kraft

Devonian (Lochkovian)

Lochkov Formation

Шаблон:Flag

A member of Scyphozoa belonging to the group Byroniida and the family Byroniidae.

Prestephanoscyphus robustus[18]

Sp. nov

Mergl & Kraft

Devonian (Eifelian)

Srbsko Formation

Шаблон:Flag

A member of Scyphozoa belonging to the group Byroniida and the family Byroniidae.

Proaplophyllia slovakensis[19]

Sp. nov

Lathuilière et al.

Middle Jurassic (Bajocian)

Шаблон:Flag

A coral.

Reticulaconularia caetensis[20]

Sp. nov

Valid

Guedes, Siviero & Scheffler

Devonian (Pragian–early Emsian)

Ponta Grossa Formation

Шаблон:Flag

A member of Conulariida.

Rugoconites reguibatensis[21]

Sp. nov

Hachour et al.

Neoproterozoic

Cheikhia-Bir Amrane Group

Шаблон:Flag

A scyphozoan of uncertain affinities.

Streptelasma rutkae[22]

Sp. nov

Valid

Elias & Hewitt

Ordovician (Hirnantian)

Whirlpool Formation

Шаблон:Flag
(Шаблон:Flag)

A rugose coral.

Stylina eguchii[23]

Sp. nov

Valid

Niko

Early Cretaceous (Aptian)

Miyako Group

Шаблон:Flag

A stony coral, a species of Stylina.

Sueciatractos[24]

Gen. et sp. nov

Valid

Reich & Kutscher

Silurian

Hemse Group

Шаблон:Flag

An octocoral belonging to the group Malacalcyonacea. The type species is S. leipnitzae.

Cnidarian research

  • Pywackia baileyi, originally classified as a bryozoan, is reinterpreted as a cnidarian by Hageman & Vinn (2023).[25]
  • Conulariid specimens preserved with muscle bundles and a possible gastric cavity are described from the Carboniferous Wewoka and Graham formations (Oklahoma and Texas, United States) by Sendino et al. (2023).[26]
  • Van Iten et al. (2023) describe soft parts of two specimens of Metaconularia manni from the Silurian (Sheinwoodian) Scotch Grove Formation (Iowa, United States), and interpret their anatomy as indicating that at least one species of conulariid might have lacked a free-living, medusoid life phase, and might have produced eggs and sperm within the body of the sessile polyp.[27]
  • Redescription of Conicula striata is published by Zhao et al. (2023), who report that C. striata had features of both anthozoans and medusozoan polyps, and recover it as a stem-medusozoan, potentially indicating that medusozoans had an anemone-like ancestor.[28]
  • Zhang et al. (2023) describe new fossil material of Qinscyphus necopinus from the Cambrian (Fortunian) Kuanchuanpu Formation (China), including the whole apical part and providing complete information on the morphology of Qinscyphus.[29]
  • Plotnick, Young & Hagadorn (2023) classify Essexella asherae as a sea anemone, and reinterpret Reticulomedusa greenei as the pedal or oral disc of E. asherae.[30]

Arthropods

Шаблон:Main

Bryozoans

New bryozoan taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Boardmanella spinigera[31]

Sp. nov

In press

Ernst & Rodríguez

Devonian (Emsian)

Шаблон:Flag

A trepostome bryozoan belonging to the family Anisotrypidae.

Cordobella[31]

Gen. et sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian)

Шаблон:Flag

A trepostome bryozoan of uncertain affinities. The type species is C. tenuis.

Diploclemella[31]

Gen. et sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian–Emsian)

Шаблон:Flag

A cyclostome bryozoan belonging to the family Diploclemidae. The type species is D. serenensis.

Elea parva[32]

Sp. nov

Valid

Koromyslova

Early Cretaceous (probably Hauterivian)

Шаблон:Flag
(Шаблон:Flag)

A cyclostome bryozoan belonging to the family Eleidae.

Iodictyum akaishiensis[33]

Sp. nov

Valid

Arakawa

Miocene (Langhian)

Moniwa Formation

Шаблон:Flag

A member of the family Phidoloporidae. Published online in 2022, but the issue date is listed as January 2023.[33]

Leptotrypa modesta[31]

Sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian)

Шаблон:Flag

A trepostome bryozoan belonging to the family Atactotoechidae.

Leptotrypa parva[31]

Sp. nov

In press

Ernst & Rodríguez

Devonian (Emsian)

Шаблон:Flag

A trepostome bryozoan belonging to the family Atactotoechidae.

Melicerita imperforata[34]

Sp. nov

Valid

López-Gappa & Pérez

Miocene

Monte León Formation

Шаблон:Flag

A member of the family Cellariidae.

Microporina minuta[35]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

Шаблон:Flag

A species of Microporina.

Microporina quadristoma[35]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

Шаблон:Flag

A species of Microporina.

Microporina sakakurai[35]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

Шаблон:Flag

A species of Microporina.

Microporina soebetsuensis[35]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

Шаблон:Flag

A species of Microporina.

Prophyllodictya khrevitsa[36]

Sp. nov

Valid

Tolokonnikova & Fedorov

Ordovician (Sandbian)

Шаблон:Flag
(Шаблон:Flag)

A cryptostome bryozoan.

Rorypora gunibensis[32]

Sp. nov

Valid

Koromyslova

Early Cretaceous (probably Hauterivian)

Шаблон:Flag
(Шаблон:Flag)

A cyclostome bryozoan.

Serenella[31]

Gen. et sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian–Emsian)

Шаблон:Flag

A cryptostome bryozoan belonging to the group Rhabdomesina. The type species is S. dubia.

Spiropora flaviae[37]

Nom. nov

Valid

Pacaud

Miocene

Шаблон:Flag

A member of Cyclostomata belonging to the family Spiroporidae; a replacement name for Spiropora elegans Millet de la Turtaudière (1865).

Suecipora[38]

Gen. et sp. nov

Ernst & Tolokonnikova

Ordovician

Шаблон:Flag

A possible cystoporate bryozoan. The type species is S. ebbestadi.

Toomipora[39]

Gen. et sp. nov

Valid

Ernst

Ordovician (Sandbian)

Viivikonna Formation

Шаблон:Flag

A trepostome bryozoan belonging to the family Monticuliporidae. The type species is T. kohtlaensis.

Brachiopods

New brachiopod taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acculina zhongliangziensis[40]

Sp. nov

In press

Wang et al.

Ordovician

Huadan Formation

Шаблон:Flag

Acrosaccus robustus[41]

Sp. nov

Valid

Mergl & Šmídtová

Devonian (Pragian)

Vinařice Limestone

Шаблон:Flag

A member of the family Discinidae.

Angustisulcispirifer[42]

Gen. et sp. nov

Valid

Serobyan et al.

Devonian (Frasnian, possibly also Famennian)

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag?

A member of Spiriferida belonging to the family Cyrtospiriferidae. The type species is A. arakelyani; genus might also include "Cyrtospirifer" kursaensis Sidjachenko (1962) and "Cyrtospirifer" limatus Solkina in Sidjachenko (1962) .

Argyrotheca ramshehensis[43]

Sp. nov

In press

Bitner et al.

Oligocene (Rupelian)

Lower Red Formation

Шаблон:Flag

A species of Argyrotheca.

Bulgariarhynchia[44]

Gen. et sp. nov

Valid

Radulović et al.

Jurassic

Шаблон:Flag

Genus includes new species B. ponorensis.

Capillirhynchia brezenensis[44]

Sp. nov

Valid

Radulović et al.

Jurassic

Шаблон:Flag

Celdobolus skrikus[45]

Sp. nov

Valid

Lavié & Benedetto

Ordovician (Tremadocian)

Pupusa Formation

Шаблон:Flag

A member of Siphonotretida belonging to the family Siphonotretidae.

Cisnerospira antipoda[46]

Sp. nov

Valid

MacFarlan

Early Jurassic

Шаблон:Flag

A member of Spiriferinida belonging to the group Paralaballidae.

Crinisarina merriami[47]

Sp. nov

Valid

Baranov et al.

Devonian (Famennian)

Khoshyeilagh Formation

Шаблон:Flag

A member of Athyridida.

Cyclothyris bitririca[48]

Sp. nov

Baeza-Carratalá, Berrocal-Casero & García Joral

Early Cretaceous (Albian)

Represa Formation

Шаблон:Flag

Cyclothyris ementitum[49]

Sp. nov

In press

Berrocal-Casero, Baeza-Carratalá & García Joral

Cretaceous (Albian–Cenomanian)

Represa Formation

Шаблон:Flag

Discinisca messii[50]

Sp. nov

Valid

Pérez et al.

Miocene

Gaiman Formation

Шаблон:Flag

A species of Discinisca.

Discinisca porvenir[50]

Sp. nov

Valid

Pérez et al.

Miocene

Gaiman Formation

Шаблон:Flag

A species of Discinisca.

Eoobolus acutulus[51]

Sp. nov

Zhang, Zhang & Holmer in Zhang et al.

Cambrian Series 2

Shuijingtuo Formation

Шаблон:Flag

A member of Linguloidea belonging to the family Eoobolidae.

Ffynnonia costata hibernica[52]

Ssp. nov

In press

Harper & Bates

Ordovician (Dapingian)

Tagoat Group

Шаблон:Flag

A plectorthid brachiopod.

Hirsutella sulcata[53]

Sp. nov

Wu et al.

Early Triassic (Olenekian)

Nanpanjiang Basin

Шаблон:Flag

A member of Spiriferinida belonging to the family Bittnerulidae.

Jigunsania[54]

Gen. et 2 sp. nov

Valid

Oh et al.

Ordovician (Darriwilian)

Jigunsan Formation

Шаблон:Flag

A member of Strophomenoidea belonging to the family Rafinesquinidae. The type species is J. guraeriensis; genus also includes J. hambaeksanensis.

Kassinella (Trimurellina) minuta[40]

Sp. nov

In press

Wang et al.

Ordovician

Huadan Formation

Шаблон:Flag

Latusobolus[51]

Gen. et sp. nov

Zhang, Zhang & Holmer in Zhang et al.

Cambrian Series 2

Shuijingtuo Formation

Шаблон:Flag

A member of Linguloidea belonging to the family Eoobolidae. The type species is L. xiaoyangbaensis.

Lobothyris richardsi[55]

Sp. nov

Valid

MacFarlan

Late Triassic (Rhaetian)

Шаблон:Flag

A member of Terebratulida belonging to the family Lobothyrididae.

Martinothyris pseudolineatus[56]

Sp. nov

Valid

Baranov et al.

Devonian (Famennian)

Khoshyeilagh Formation

Шаблон:Flag

A member of Spiriferida.

Ningnanmena[40]

Gen. et sp. nov

In press

Wang et al.

Ordovician

Huadan Formation

Шаблон:Flag

Genus includes new species N. longisepta.

Palaeotagoatia[52]

Gen. et comb. nov

In press

Harper & Bates

Ordovician

Шаблон:Flag

An alimbellid brachiopod. The type species is "Orthis" bailyana Davidson.

Paradoxothyris flatus[53]

Sp. nov

Wu et al.

Early Triassic (Olenekian)

Nanpanjiang Basin

Шаблон:Flag

A member of Terebratulida belonging to the family Angustothyrididae.

Plicapustula (Paraplicapustula) eleganta[57]

Sp. nov

Valid

Ma & Wang in Wang et al.

Devonian (Famennian)

Senzeille Formation

Шаблон:Flag

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Plicapustula (Paraplicapustula) magna[57]

Sp. nov

Valid

Ma & Wang in Wang et al.

Devonian (Famennian)

Senzeille Formation

Шаблон:Flag

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Rhaetina rainei[55]

Sp. nov

Valid

MacFarlan

Late Triassic (Rhaetian)

Шаблон:Flag
(Шаблон:Flag)
Шаблон:Flag

A member of Terebratulida belonging to the family Angustothyrididae.

Schizambon tongziensis[58]

Sp. nov

Jahangir et al.

Ordovician

Tungtzu Formation

Шаблон:Flag

A member of Siphonotretida.

Sellithyris binalubensis[48]

Sp. nov

Baeza-Carratalá, Berrocal-Casero & García Joral

Cretaceous (Albian–Cenomanian transition)

Represa Formation

Шаблон:Flag

A member of Terebratulida belonging to the family Sellithyrididae.

Sinospirifer transversus[57]

Sp. nov

Valid

Ma & Wang in Wang et al.

Devonian (Famennian)

Senzeille Formation

Шаблон:Flag

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Somalithyris roseperae[59]

Sp. nov

Valid

Feldman et al.

Middle Jurassic (Callovian)

Шаблон:Flag

A member of Terebratulida belonging to the family Postepithyrididae.

Spiriferina arakiwa[46]

Sp. nov

Valid

MacFarlan

Early Jurassic

Шаблон:Flag

A member of Spiriferinida belonging to the family Spiriferinidae.

Spiriferina sophiaealbae[46]

Sp. nov

Valid

MacFarlan

Early Jurassic

Шаблон:Flag

A member of Spiriferinida belonging to the family Spiriferinidae.

Sulcatinella elongata[53]

Sp. nov

Wu et al.

Early Triassic (Olenekian)

Nanpanjiang Basin

Шаблон:Flag

A member of Terebratulida belonging to the family Dielasmatidae.

Tasmanospirifer jervisbayensis[60]

Sp. nov

Valid

Waterhouse & Lee in Lee et al.

Permian (Kungurian)

Snapper Point Formation

Шаблон:Flag

Thecidellina persica[43]

Sp. nov

In press

Bitner et al.

Oligocene (Rupelian)

Lower Red Formation

Шаблон:Flag

A species of Thecidellina.

Tibetothyris hamishi[55]

Sp. nov

Valid

MacFarlan

Late Triassic (Rhaetian)

Шаблон:Flag
(Шаблон:Flag)
Шаблон:Flag

A member of Terebratulida belonging to the family Dielasmatidae.

Tibetothyris johnstoni[55]

Sp. nov

Valid

MacFarlan

Late Triassic (Rhaetian)

Шаблон:Flag
(Шаблон:Flag)
Шаблон:Flag

A member of Terebratulida belonging to the family Dielasmatidae.

Zeilleria minima[55]

Sp. nov

Valid

MacFarlan

Late Triassic (Rhaetian)

Шаблон:Flag
(Шаблон:Flag)
Шаблон:Flag

A member of Terebratulida belonging to the family Zeilleriidae.

Brachiopod research

  • A study on the diversification dynamics of brachiopods and bivalves throughout their evolutionary histories is published by Guo et al. (2023), who interpret their findings as indicating that the switch from brachiopods to bivalves as major seabed organisms was unlikely to be caused by competitive exclusion of brachiopods by bivalves, but rather was likely caused by loss of brachiopod diversity in the Permian–Triassic extinction event and by bivalve diversification in the Cretaceous and Cenozoic that wasn't matched by brachiopods.[61]
  • A study on the morphological diversity of lingulid brachiopods throughout the Phanerozoic is published by Liang et al. (2023), who find that Phanerozoic mass extinctions disproportionally wiped out lingulids that were not infaunal, and interpret the limited morphological and ecological diversity of modern lingulids as mainly resulting from differential effects of mass extinctions rather than from deterministic processes such as natural selection.[62]

Molluscs

Шаблон:Main

Echinoderms

New echinoderm taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Agaricocrinus murphyi[63]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

Шаблон:Flag
(Шаблон:Flag)

A camerate crinoid belonging to the group Monobathrida and the family Coelocrinidae.

Arbacia ballenensis[64]

Sp. nov

Valid

Courville et al.

Late Pliocene—Early Pleistocene

Шаблон:Flag

A species of Arbacia.

Arbacia larraini[65]

Sp. nov

Valid

Courville et al.

Pliocene

Шаблон:Flag

A species of Arbacia.

Arbacia quyllur[65]

Sp. nov

Valid

Courville et al.

Miocene

Шаблон:Flag

A species of Arbacia.

Arbacia terraeignotae[65]

Sp. nov

Valid

Courville et al.

Pliocene

Шаблон:Flag

A species of Arbacia.

Arenorbis santameraensis[66]

Sp. nov

Thuy, Piñuela & García-Ramos

Early Jurassic (Sinemurian)

Rodiles Formation

Шаблон:Flag

A brittle star belonging to the order Ophiacanthida and the suborder Ophiodermatina.

Bohemiacinctus[67]

Gen. et comb. nov

Valid

Zamora, Wright & Nohejlová

Cambrian (Wuliuan)

Шаблон:Flag

A member of the group Cincta belonging to the family Sucocystidae. The type species is "Asturicystis" havliceki Fatka & Kordule (2001).

Cactocrinus woosterensis[63]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

Шаблон:Flag
(Шаблон:Flag)

A camerate crinoid belonging to the group Monobathrida and the family Actinocrinitidae.

Calliocrinus hadros[68]

Sp. nov

Valid

Ausich et al.

Silurian (Homerian)

Laurel Formation

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Monobathrida and the family Eucalyptocrinitidae.

Calliocrinus poepplemani[68]

Sp. nov

Valid

Ausich et al.

Silurian (Homerian)

Laurel Formation

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Monobathrida and the family Eucalyptocrinitidae.

Cosmocyphus cantaber[69]

Sp. nov

Schlüter et al.

Late Cretaceous (Santonian)

Шаблон:Flag

A sea urchin belonging to the family Phymosomatidae.

Coulonia hokahira[70]

Sp. nov

Gale et al.

Early Cretaceous (Albian)

Enokuchi Formation

Шаблон:Flag

An astropectinid starfish.

Cusacrinus brushi[63]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

Шаблон:Flag
(Шаблон:Flag)

A camerate crinoid belonging to the group Monobathrida and the family Actinocrinitidae.

Dadocrinus montellonis[71]

Sp. nov

Valid

Saucède et al.

Early Triassic (Olenekian)

Thaynes Group

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Articulata and the family Dadocrinidae.

Decadocrinus inordinatus[63]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Cladida and the family Decadocrinidae.

Decadocrinus laevis[63]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Cladida and the family Decadocrinidae.

Dehmicystis ariasi[72]

Sp. nov

Valid

Zamora & Gutiérrez-Marco

Silurian (Ludlow)

Llagarinos Formation

Шаблон:Flag

A member of Soluta belonging to the group Dendrocystitida and the family Dendrocystitidae.

Dentatocrinus serratus[73]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

Шаблон:Flag

A crinoid belonging to the family Roveacrinidae.

Dubrisicrinus[73]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

Шаблон:Flag

A crinoid belonging to the family Roveacrinidae. The type species is D. minutus.

Edrioblastocystis[74]

Nom. nov

Ceccolini & Cianferoni

Ordovician

Шаблон:Flag

A replacement name for Blastocystis Jaekel (1918). Sałamatin & Kaczmarek (2022) coined a replacement name Astroblastocystis for the same genus.[75]

Euzonohymenosoma[74]

Nom. nov

In press

Ceccolini & Cianferoni

Devonian

Шаблон:Flag

A replacement name for Hymenosoma Lehmann (1957).

Goryeocrinus[76]

Gen. et sp. nov

Valid

Park & Lee

Ordovician (Darriwilian)

Jigunsan Formation

Шаблон:Flag

A camerate crinoid belonging to the group Diplobathrida and the family Rhodocrinitidae. Genus includes new species G. pentagrammos.

Holocrinus hagdorni[77]

Sp. nov

Stiller

Middle Triassic (Anisian)

Шаблон:Flag

A holocrinid crinoid.

Krommaster[78]

Gen. et sp. nov

Valid

Reddy et al.

Devonian (Pragian to Emsian)

Baviaanskloof Formation

Шаблон:Flag

A brittle star belonging to the group Oegophiurida and the family Encrinasteridae. The type species is K. spinosus.

Micraster quebrada[69]

Sp. nov

Schlüter et al.

Late Cretaceous (Santonian)

Шаблон:Flag

A sea urchin belonging to the family Micrasteridae.

Nimchacystis[79]

Gen. et sp. nov

Dupichaud et al.

Ordovician (Tremadocian)

Fezouata Formation

Шаблон:Flag

A member of Soluta belonging to the group Syringocrinida and the family Minervaecystidae. The type species is N. agterbosi.

Nucleolites solovjevi[80]

Sp. nov

Valid

Kalyakin & Barsukov

Early Cretaceous (Albian)

Шаблон:Flag
(Шаблон:Flag)

A sea urchin belonging to the group Cassiduloida and the family Nucleolitidae.

Ophiocoma avatar[81]

Sp. nov

Valid

Thuy & Numberger-Thuy

Late Cretaceous (Campanian)

Шаблон:Flag

A brittle star, a species of Ophiocoma.

Ophiozonella tumidasquama[70]

Sp. nov

Gale et al.

Early Cretaceous (Albian)

Enokuchi Formation

Шаблон:Flag

A hemieuryalid brittle star.

Pennsylvanicycloscapus[74]

Nom. nov

In press

Ceccolini & Cianferoni

Carboniferous

Шаблон:Flag
(Шаблон:Flag)

A replacement name for Cycloscapus Moore & Jeffords (1968).

Pleurocystites? scylla[82]

Sp. nov

Valid

Sweeney & Sumrall

Ordovician (Sandbian)

Benbolt Formation

Шаблон:Flag
(Шаблон:Flag)

A rhombiferan belonging to the group Glyptocystitida and the family Pleurocystitidae.

Pteraster lyddenensis[83]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

Grey Chalk Subgroup of the Chalk Group

Шаблон:Flag

A starfish, a species of Pteraster. Published online in 2022, but the issue date is listed as February 2023.[83]

Pulchercrinus[84]

Gen. et sp. nov

Valid

Müller & Ausich

Devonian

Seifen Formation

Шаблон:Flag

A periechocrinid camerate crinoid. The type species is P. hardyi.

Roveacrinus aboudensis[73]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Aït Lamine Formation

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the family Roveacrinidae.

Roveacrinus precarinatus[73]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

Шаблон:Flag

A crinoid belonging to the family Roveacrinidae.

Sergipecrinus[85]

Gen. et sp. nov

Poatskievick Pierezan, Gale & Fauth

Early Cretaceous (Aptian–Albian)

Sergipe-Alagoas Basin

Шаблон:Flag

A crinoid belonging to the family Roveacrinidae. Genus includes new species S. reticulatus.

Stegophiura takaisoensis[86]

Sp. nov

In press

Ishida et al.

Pliocene

Hatsuzaki Formation

Шаблон:Flag

A brittle star.

Styracocrinus shakespearensis[73]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

Шаблон:Flag

A crinoid belonging to the family Roveacrinidae.

Ticinocrinus moroccoensis[87]

Sp. nov

Salamon et al.

Early Jurassic (Pliensbachian)

Шаблон:Flag

A cyrtocrinid.

Triadoleucella[88]

Gen. et sp. nov

Ishida et al.

Late Triassic (Carnian)

Шаблон:Flag

A brittle star belonging to the group Ophioleucida. Genus includes new species T. meensis. Published online in 2022, but the issue date is listed as April 2023.[88]

Viridisaster[89]

Gen. et sp. nov

Valid

Fau & Villier

Late Cretaceous (Cenomanian)

Шаблон:Flag

A stem zoroasterid. The type species is V. guerangeri.

Echinoderm research

  • Cole, Wright & Thompson (2023) experimentally confirm that ratios of seawater magnesium and calcium have a profound effect on short-term regeneration rates in extant brittle star Ophioderma cinereum, but find no evidence of a significant relationship between changes of seawater magnesium and calcium ratios and long-term changes of echinoderm biodiversity over the past 500 million years.[90]
  • Evidence from a soft robotic representation and computer simulation, interpreted as indicating that pleurocystitids were likely able to move on the sea bottom by using their muscular stem that pushed the animal forward, is presented by Desatnik et al. (2023).[91]
  • Álvarez-Armada et al. (2023) describe a specimen of Hyperoblastus reimanni preserved with structures interpreted as three larvae and a gonad, and interpret this finding as indicative of the presence of sexual dimorphism in blastoids, as well as of early evolution of internal brooding of larvae in this group.[92]
  • A study on the evolution of plate systems in the calyx of crinoids, based on data from early crinoids from Tremadocian, is published by Guensburg, Mooi & Mongiardino Koch (2023).[93]
  • A study on the ontogeny of Erisocrinus typus, based on data from fossil material representing a growth series from the Carboniferous Barnsdall Formation (Oklahoma, United States), is published by Hernandez Gomez et al. (2023).[94]
  • Gorzelak et al. (2023) report the presence of microstructure similar to the diamond-type triply periodic minimal surfaces in the skeleton of a specimen of Haplocrinites from Devonian, similar to microstructure reported in extant Protoreaster nodosus, and representing the oldest record of such microstructure in echinoderms reported to date.[95]
  • The oldest fossil material of members of the genus Percevalicrinus reported to date is described from the Lower Jurassic deposits in the western Saharan Atlas (Algeria) by Salamon et al. (2023).[96]
  • Kolata et al. (2023) report the discovery of new specimens of Cyclocystoides scammaphoris from the Ordovician Platteville Formation (Illinois), Plattin and Decorah groups (Missouri) and Lebanon Limestone (Tennessee), providing new information on the anatomy of this cyclocystoid.[97]
  • Evidence from deep-sea sediment samples interpreted as indicative of continuous record of deep-sea Atelostomata dating back to the Early Cretaceous is presented by Wiese et al. (2023).[98]
  • The youngest stenuroid asterozoan specimen reported to date is described from the Permian (Wordian-Capitanian) Las Delicias Formation (Mexico) by Sour-Tovar, Quiroz-Barroso & Martín-Medrano (2023).[99]
  • Thuy et al. (2023) report the discovery of an assemblage of brittle star microfossils from Carboniferous deep-water sediments of Oklahoma (United States), including fossils of basal representatives of Amphilepidida and Ophioscolecida, and interpret this finding as indicating that a significant part of the early diversification of the brittle star crown group might have taken place in deep-water settings.[100]

Hemichordates

Name Novelty Status Authors Age Type locality Location Notes Images

Baltograptus floianus[101]

Sp. nov

Valid

Maletz

Ordovician

Шаблон:Flag

A graptolite belonging to the family Didymograptidae.

Baltograptus novus[101]

Sp. nov

Valid

Maletz

Ordovician

Шаблон:Flag

A graptolite belonging to the family Didymograptidae.

Cymatograptus kristinae[101]

Sp. nov

Valid

Maletz

Ordovician

Шаблон:Flag

A graptolite belonging to the family Didymograptidae.

Gothograptus berolinensis[102]

Sp. nov

In press

Maletz

Silurian

Шаблон:Flag

A graptolite belonging to the family Retiolitidae.

Gothograptus osgaleae[102]

Sp. nov

In press

Maletz

Silurian

Шаблон:Flag

A graptolite belonging to the family Retiolitidae.

Jishougraptus hunnebergensis[101]

Sp. nov

Valid

Maletz

Ordovician

Шаблон:Flag

A graptolite belonging to the family Kinnegraptidae/Sigmagraptidae.

Paraplectograptus hermanni[102]

Sp. nov

In press

Maletz

Silurian

Шаблон:Flag

A graptolite belonging to the family Retiolitidae.

Rotaciurca[103]

Gen. et sp. nov

Valid

Briggs & Mongiardino Koch

Silurian

Bertie Formation

Шаблон:Flag
(Шаблон:Flag)

A pterobranch with affinities with the cephalodiscids. The type species is R. superbus.

Tetragraptus gerhardi[101]

Sp. nov

Valid

Maletz

Ordovician

Шаблон:Flag

A graptolite belonging to the family Phyllograptidae.

Webbyites felix[104]

Sp. nov

Muir & Gutiérrez-Marco

Ordovician (Tremadocian)

Fezouata Formation

Шаблон:Flag

Probably a benthic graptolite of uncertain affinity.

Hemichordate research

  • Nanglu et al. (2023) report the discovery of an orthocone cephalopod phragmocone from the Ordovician Fezouata Formation (Morocco) which was extensively populated by rhabdopleurid-like epibionts after the death of the cephalopod, providing evidence of the use of mollusc shells as hard substrates by hemichordates dating back nearly 480 million years ago.[105]
  • Lopez et al. (2023) describe graptolite fossil material from the Silurian Rinconada Formation (Argentina), representing the first Pridolian graptolite assemblage from South America reported to date, and possibly providing evidence of faunal recovery interval after the Kozlowskii-Lau Event.[106]

Conodonts

New conodont taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Anellodontus[107]

Gen. et sp. nov

Rueda & Albanesi

Cambrian (Furongian)

Lampazar Formation

Шаблон:Flag

Genus includes A. anellus.

Eognathodus grandis[108]

Sp. nov

Lu

Devonian

Nahkaoling Formation

Шаблон:Flag

A member of the family Spathognathodontidae.

Erismodus saltaensis[109]

Sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

Шаблон:Flag

Erraticodon aldridgei[109]

Sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

Шаблон:Flag

Gallinatodus[109]

Gen. et sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

Шаблон:Flag

Genus includes new species G. elegantissimus.

Gladigondolella luodianensis[110]

Sp. nov

Chen et al.

Шаблон:Flag

Icriodus alchedatensis[111]

Sp. nov

Valid

Izokh

Devonian (Givetian)

Шаблон:Flag

Icriodus edentatus[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

Icriodus kuzbassiensis[111]

Sp. nov

Valid

Izokh

Devonian (Givetian)

Шаблон:Flag

Icriodus lebedyankensis[111]

Sp. nov

Valid

Izokh

Devonian (Givetian)

Шаблон:Flag

Pandorinellina exigua lingliensis[113]

Ssp. nov

Valid

Lu in Lu et al.

Devonian (Lochkovian)

Nahkaoling Formation

Шаблон:Flag

Paraserratognathus hupinaoensis[114]

Sp. nov

Valid

Pei & Ba

Шаблон:Flag

Pelekysgnathus arcuatus[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

A member of Prioniodontida belonging to the family Icriodontidae.

Pelekysgnathus ziqiuensis[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

A member of Prioniodontida belonging to the family Icriodontidae.

Pohlerodus[115]

Gen. et comb. nov

Valid

Zhen

Ordovician

Шаблон:Flag
Шаблон:Flag

Genus erected to substitute Texania Pohler (1994), which is a junior homonym of Texania Casey (1909). Includes species previously assigned to the genus Texania, as well as species previously assigned to the genus Fahraeusodus other than F. adentatus.

Polygnathus communis tomurtogooi[116]

Ssp. nov

In press

Suttner et al.

Devonian

Indert Formation

Шаблон:Flag

Polygnathus dispersus[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

Polygnathus peltatus[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

Polygnathus sagittiformis[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

Polygnathus wuqingnaensis[117]

Sp. nov

Huang et al.

Devonian (Famennian)

Wuqingna Formation

Шаблон:Flag

Polylophodonta curvata[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

A member of the family Polygnathidae.

Polylophodonta nodulosa[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

A member of the family Polygnathidae.

Polynodosus changyangensis[112]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

Шаблон:Flag

A member of the family Polygnathidae.

Prioniodus antiquus[118]

Sp. nov

Zhen et al.

Ordovician

Yinchufu Formation

Шаблон:Flag

Pyramidens[109]

Gen. et 2 sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

Шаблон:Flag

Genus includes new species P. cactus and P. spinatus.

Siphonodella thompfelli[119]

Sp. nov

Plotitsyn & Zhuravlev

Carboniferous (Tournaisian)

Шаблон:Flag

Zentagnathus gertrudisae[109]

Sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

Шаблон:Flag

Zieglerodina? tuojiangensis[113]

Sp. nov

Valid

Lu in Lu et al.

Devonian (Lochkovian)

Nahkaoling Formation

Шаблон:Flag

Conodont research

  • A study on the size-frequency distribution of the P1 elements of members of the genera Palmatolepis, Ancyrodella and Polygnathus during the late Frasnian and the Famennian is published by Girard et al. (2023), who don't confirm the temperature-size rule as a general rule explaining size variation in the studied fossils.[120]
  • Wu et al. (2023) report the discovery of an abundant conodont community in the Lower Triassic strata in the Zhangjiawan stratigraphic succession (Yuan'an County, Hubei, China), and interpret this finding as suggesting that the studied area might have been a refuge area for the Early Triassic conodont communities and marine ecosystem in general, as other Lower Triassic strata nearby yield only rare conodonts.[121]
  • Evidence indicating that co-occurring Late Triassic conodonts Metapolygnathus communisti and Epigondolella rigoi differed in their diets is presented by Kelz et al. (2023).[122]
  • A study on the diversity and biostratigraphy of late Norian conodont faunas from the Dashuitang and Nanshuba formations in the Baoshan area (Yunnan, China) is published by Zeng et al. (2023), who report evidence of a decline of conodont diversity during the late Norian, interpreted by the authors as the first crisis of the protracted suite of end-Triassic conodont extinctions.[123]
  • Evidence from the Kastuyama section in the Inuyama area in Honshu (Japan), argued to be indicative of the survival of the conodont species Misikella posthernsteini into the Early Jurassic, is presented by Du et al. (2023).[124]

Fish

Шаблон:Main

Amphibians

New amphibian taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Arenaerpeton[125]

Gen. et sp. nov

Hart et al.

Triassic

Terrigal Formation

Шаблон:Flag

A chigutisaurid temnospondyl. The type species is A. supinatus.

Compsocerops tikiensis[126] Sp. nov. Chakravorti & Sengupta Late Triassic Tiki Formation Шаблон:Flag A member of Chigutisauridae.
Funcusvermis[127] Gen. et sp. nov. Valid Kligman et al. Late Triassic (Norian) Chinle Formation Шаблон:Flag (Шаблон:Flag) A stem-caecilian. The type species is F. gilmorei. Файл:Funcusvermis.png

Gansubatrachus[128]

Gen. et sp. nov

Valid

Zhang et al.

Early Cretaceous

Zhonggou Formation

Шаблон:Flag

A frog, possibly a basal member of Lalagobatrachia. The type species is G. qilianensis.

Inbecetenanura[129]

Gen. et sp. nov

Valid

Lemierre et al.

Late Cretaceous (Coniacian–Santonian)

In Beceten Formation

Шаблон:Flag

A frog belonging to the family Pipidae. The type species is I. ragei.

Lepidobatrachus dibumartinez[130]

Sp. nov

Valid

Turazzini & Gómez

Late Miocene-Early Pliocene

Tunuyán Formation

Шаблон:Flag

A ceratophryid frog, a species of Lepidobatrachus.

Файл:Esqueleto de Lepidobatrachus dibumartinez.jpg

Mariliabatrachus[131]

Gen. et sp. nov

Santos, Carvalho & Zaher

Late Cretaceous (Campanian)

Шаблон:Flag

A neobatrachian frog, probably with affinities with hyloids. The type species is M. navai.

Piasimotriton[132]

Gen. et sp. nov

Werneburg et al.

Permian

Boskovice Basin

Шаблон:Flag

A branchiosaurid temnospondyl. The type species is P. kochovi.

Rhigerpeton[133]

Gen. et sp. nov

Gee, Beightol & Sidor

Triassic

Fremouw Formation

Antarctica

A lapillopsid temnospondyl. The type species is R. isbelli.

Xerodromeus[134]

Gen. et comb. nov

Valid

Schoch & Werneburg

Permian (possibly Sakmarian)

Niederhäslich–Schweinsdorf Formation

Шаблон:Flag

A branchiosaurid temnospondyl. The type species is "Branchiosaurus" gracilis Credner (1881).

Amphibian research

  • New reconstruction of the skull of Crassigyrinus scoticus is presented by Porro, Rayfield & Clack (2023).[135]
  • Pardo (2023) redescribes the anatomy of the neurocranium of Archeria crassidisca, based on data from a previously unreported partial braincase, and interprets embolomeres as more likely to be stem-tetrapods than stem-amniotes.[136]
  • A study on the morphology and ossification sequences of carpus and tarsus in basal stereospondylomorphs, providing evidence of variability in the development of the mesopodium, is published by Witzmann & Fröbisch (2023).[137]
  • Groenewald et al. (2023) describe body impressions and associated swim trails of rhinesuchid temnospondyls from the Permian Karoo Basin (South Africa), providing evidence that rhinesuchids used their tails for propulsion and held their legs tucked in next to the body while swimming.[138]
  • A study comparing the probable maximum sizes that could be reached by specimens belonging to the Early Triassic temnospondyl taxa from Eastern Europe is published by Morkovin (2023), who reports the discovery of an unusually large lower jaw of Vladlenosaurus alexeyevi from the Skoba locality (Komi Republic, Russia), and argues that the size differences characteristic of the standard adult states of the studied temnospondyl taxa were likely reduced in individuals belonging to very late age categories.[139]
  • New information on the anatomy of Mastodonsaurus cappelensis is presented by Schoch et al. (2023), who report the presence of anatomical differences between M. cappelensis and the stratigraphically younger M. giganteus, indicating that the latter species adapted to feed on a wider range of prey.[140]
  • A study on the histology of large temnospondyl humeri from the Late Triassic Krasiejów site (Poland) is published by Teschner et al. (2023), who report that the humeri of Cyclotosaurus intermedius and Metoposaurus krasiejowensis might show only minor differences in morphology, making histology a valuable tool for taxonomic assignment.[141]
  • A study on the skull morphology of Koskinonodon perfectum, Dutuitosaurus ouazzoui, Metoposaurus diagnosticus and Eocyclotosaurus appetolatus, providing evidence which might be indicative of the presence of sexual dimorphism in the studied taxa, is published by Rinehart & Lucas (2023).[142]
  • Review of the fossil record of the genus Mioproteus in Southeastern Europe is published by Syromyatnikova (2023).[143]
  • Skutschas et al. (2023) describe salamander dentaries from the Lower Cretaceous Teete locality (Batylykh Formation; Sakha, Russia) representing the northernmost record of non-karaurid salamanders in the Mesozoic reported to date.[144]
  • Bourque, Stanley & Hulbert (2023) describe two partial vertebrae of a member of the genus Batrachosauroides from the Clarendonian Love Bone Bed (Florida, United States), representing the latest record of a member of this genus reported to date.[145]
  • A study on the origin of the unique body plan of frogs, based on data from extant and fossil taxa, is published by Pérez-Ben, Lires & Gómez (2023), who interpret their findings as indicative of early diversification (resulting in diversity of locomotor modes in Jurassic stem frogs) followed by period of reduced morphological diversity and repeated convergent evolution of limb proportions and locomotor capabilities, and do not consider the interpretation of the body plan of frogs as resulting from an adaptation the ancestral frogs to jumping to be strongly supported by the fossil record.[146]
  • Description of the anatomy of the metamorphosing larvae, juveniles and fully grown adults of Genibatrachus is published by Roček, Dong & Wang (2023).[147]
  • The easternmost and the youngest frog remains from the Late Cretaceous of Asia reported to date are described from the Maastrichtian dinosaur locality in the city of Blagoveshchensk (Amur Oblast, Russia) by Skutschas et al. (2023).[148]
  • Báez & Turazzini (2023) redescribe the holotype of Avitabatrachus uliana, reinterpreting the urostyle as not fully fused to the sacral vertebra, and identify additional fossil material preserved in the slab including the holotype, interpreted as likely remains of a metamorphosing tadpole of A. uliana.[149]
  • Vallejo-Pareja et al. (2023) describe the first pre-Quaternary fossils referred to Eleutherodactylus from Florida, and interpret this finding as indicating that by the Late Oligocene Eleutherodactylus was already established in North America before colonizing Central America.[150]
  • Georgalis, Prendini & Roček (2023) describe new fossil material of Thaumastosaurus from the Eocene Quercy Phosphorites Formation (France), and report evidence of diversity of morphotypes in the fossil material of Thaumastosaurus which might be indicative of the presence of cryptic taxa.[151]
  • Lemierre et al. (2023) describe a skeleton of a member of the genus Pelophylax from the lowest Oligocene of Chartres-de-Bretagne (western France), representing one of the oldest occurrences of the genus reported to date.[152]
  • Jansen et al. (2023) describe the first frog fossils from the Paleogene and early Neogene sites in Peruvian Amazonia, including fossil material of pipids, as well representatives of different lineages of Brachycephaloidea and probably also of the family Leptodactylidae.[153]
  • Klembara et al. (2023) describe a specimen of Discosauriscus pulcherrimus from the Asselian Vrchlabí Formation, representing the oldest record of this species from the Czech Republic, and a specimen of Discosauriscus cf. pulcherrimus from the Upper Carboniferous Ilmenau Formation (Germany), representing the oldest record of the genus Discosauriscus and possibly the oldest seymouriamorph reported to date.[154]
  • Bazzana-Adams et al. (2023) reconstruct the first virtual cranial endocast of Seymouria.[155]
  • Barták & Ivanov (2023) describe an exceptionally well-preserved specimen of Sauropleura scalaris (including near-complete skull) from the upper Carboniferous deposits of Nýřany (Czech Republic), providing new information on the anatomy and ontogeny of this taxon.[156]
  • Bulanov (2023) reinterprets putative bolosaurid "Bolosaurus" traati as a diadectomorph, transfers it to the genus Stephanospondylus, and considers Ambedus to be a non-diadectomorph tetrapod of uncertain affinities.[157]
  • Calábková et al. (2023) describe tracks assigned to the ichnogenus Ichniotherium from the Permian (Asselian) Boskovice Basin (Czech Republic), including tracks with morphologies similar to footprints produced by Diadectes-like diadectomorphs, but with distances between the successive imprints similar to those seen in earlier-diverging diadectomorphs.[158]

Reptiles

Шаблон:Main

Synapsids

Non-mammalian synapsids

New synapsid taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Argodicynodon[159]

Gen. et sp. nov

Valid

Mueller et al.

Late Triassic

Tecovas Formation

Шаблон:Flag
(Шаблон:Flag)

A placeriine kannemeyeriiform dicynodont. The type species is A. boreni.

Bondoceras[160]

Gen. et sp. nov

Valid

Sidor

Permian (Guadalupian)

Madumabisa Mudstone Formation

Шаблон:Flag

A burnetiid burnetiamorph. The type species is B. bulborhynchus.

Eutheriodon[161]

Gen. et sp. nov

Valid

Kammerer

Permian (Guadalupian)

Abrahamskraal Formation

Шаблон:Flag

A scylacosaurid therocephalian. The type species is E. vandenheeveri.

Inostrancevia africana[162] Sp. nov Valid Kammerer et al. Permian Balfour Formation Шаблон:Flag A gorgonopsid.

Jimusaria monanensis[163]

Sp. nov

Valid

Shi & Liu

Permian

Naobaogou Formation

Шаблон:Flag

A dicynodont.

Koksharovia[164]

Gen. et sp. nov

Valid

Suchkova, Golubev & Shumov

Permian

Шаблон:Flag
(Шаблон:Flag)

A therocephalian. The type species is K. grechovi. Published online in 2023, but the issue date is listed as December 2022.[164]

Melanedaphodon[165]

Gen. et sp. nov

Valid

Mann et al.

Carboniferous (Moscovian)

Allegheny Group

Шаблон:Flag
(Шаблон:Flag)

A member of the family Edaphosauridae. The type species is M. hovaneci.

Moschowhaitsia lidaqingi[166]

Sp. nov

Valid

Jun & Abdala

Permian (Lopingian)

Sunan Formation

Шаблон:Flag

A whaitsiid therocephalian.

Nierkoppia[167]

Gen. et sp. nov

Valid

Day & Kammerer

Permian (Guadalupian)

Abrahamskraal Formation

Шаблон:Flag

A proburnetiine burnetiamorph. The type species is N. brucei.

Pembecephalus[160]

Gen. et sp. nov

Valid

Sidor

Permian (Lopingian)

Usili Formation

Шаблон:Flag

A burnetiid burnetiamorph. The type species is P. litumbaensis.

Santagnathus[168] Gen. et sp. nov Schmitt et al. Late Triassic (Carnian) Santa Maria Formation (Hyperodapedon Assemblage Zone) Шаблон:Flag A cynodont in the family Traversodontidae. The type species is S. mariensis
Woznikella[169] Gen. et sp. nov Valid Szczygielski & Sulej Late Triassic
(Carnian–?Norian)
Grabowa Formation Шаблон:Flag
Шаблон:Flag
A dicynodont closely related to the family Stahleckeriidae. The type species is W. triradiata.

Synapsid research

  • A study on the evolution of the dentary size in non-mammalian synapsids is published by Harano & Asahara (2023), who find evidence indicative of an evolutionary trend for enlargement of dentary relative to the overall lower jaw size across all non-mammalian synapsids, regardless of their relation to mammals, but find no evidence for an evolutionary trend in dentary enlargement at the expense of the postdentary bones.[170]
  • Studies on the evolution of the forelimb and hindlimb musculature of synapsids are published by Bishop & Pierce (2023).[171][172]
  • A study on the ecomorphology of synapsids throughout their evolutionary history is published by Hellert et al. (2023), who find carnivory to be the ancestral dietary regime of major synapsid radiations, but also find that small body size was established as the common ancestral state of radiations as late as in the Late Triassic, near the origin of Mammaliaformes, and report the presence of derived traits in the ancestors of major synapsid radiations.[173]
  • Calábková et al. (2023) describe tracks assignable to the ichnogenus Dimetropus and produced by "pelycosaur"-grade synapsids from the Permian (Asselian) Padochov and Letovice formations (Boskovice Basin, Czech Republic), including a specimen with preserved skin impressions, and providing new information on the diversity of the earliest Permian equatorial tetrapod faunas.[174]
  • Maho, Bevitt & Reisz (2023) describe fossil material of Varanops brevirostris from the Dolese Brother Limestone Quarry (Oklahoma, United States), confirming the presence of this taxon at Richards Spur, and interpret this finding as indicating that, although less abundant than Cacops and Acheloma, V. brevirostris was not as rare taxon as previously thought.[175]
  • Gônet et al. (2023) present a model which can be used to determine posture from humeral parameters in extant mammals, and use it to infer a sprawling posture for Dimetrodon natalis.[176]
  • Bazzana-Adams, Evans & Reisz (2023) describe the brain and inner ear of Dimetrodon loomisi, and interpret their findings as indicating that Dimetrodon was sensitive to a greater range of frequencies beyond the ultra-low-frequency ground-borne sounds anticipated in previous estimates.[177]
  • Partial humerus of a synapsid of uncertain affinities, with anatomical traits blurring the distinction between the "pelycosaur"-grade synapsids and therapsids, is described from the Permian (Capitanian) Main Karoo Basin (South Africa) by Bishop et al. (2023).[178]
  • An almost complete skull of Pampaphoneus biccai, providing new information on the anatomy of this species, is described from the Permian Rio do Rasto Formation (Brazil) by Santos et al. (2023).[179]
  • Benoit, Norton & Jirah (2023) describe the maxillary canal of Jonkeria truculenta, reporting that is structure shares more similarities with the maxillary canal of the tapinocephalid Moschognathus than with that of Anteosaurus.[180]
  • Rubidge, Day & Benoit (2023) report the first discovery of the fossil material of Colobodectes cluveri from the Grootfontein Member of the Abrahamskraal Formation (South Africa), providing correlation between strata of the Abrahamskraal Formation from the northwestern, western and southwestern part of the Karoo Basin.[181]
  • Laaß & Kaestner (2023) report the presence of a system of turbinal ridges for attachment of respiratory and olfactory turbinates (strongly resembling the mammalian condition) in the skull of Kawingasaurus fossilis, and interpret this finding as supporting a convergent origin of endothermy in dicynodonts, possibly influenced by their fossorial habitat.[182]
  • New information on the anatomy of Cistecephalus microrhinus is presented by Macungo et al. (2023), who interpret cistecephalids as probable ectotherms, and argue that purported turbinals such as those reported in Kawingasaurus fossilis by Laaß & Kaestner (2023)[182] are probably lines left by sediment infilling of the skull cavity.[183]
  • Sidor, Mann & Angielczyk (2023) report the discovery of the fossil material of the gorgonopsian Gorgonops sp. and the dicynodont Endothiodon sp. from the Permian Madumabisa Mudstone Formation, indicating that the stratigraphic range of vertebrate-bearing horizons in southern Zambia includes not only Guadalupian Tapinocephalus Assemblage Zone-equivalent strata, but also Lopingian Endothiodon Assemblage Zone-age strata.[184]
  • Bendel et al. (2023) describe a nearly complete skeleton of Gorgonops torvus from the Permian Endothiodon Assemblage Zone of the Karoo Basin (South Africa), and interpret the anatomy of the studied specimen as indicating that G. torvus was likely ambush predator, able to chase its prey over short distances.[185]
  • The first Permian tetrapod fossils from the Omingonde Formation, Namibia are described and identified as a dicynodont and a gorgonopsian therapsids by Mocke et al. (2023), comparable to Tropidostoma and Lycaenops, respectively.[186]
  • The holotypes of Dicynodon ingens and Scymnosaurus warreni are re-located and redescribed by Groenewald & Kammerer (2023), who re-identify them as specimens of Daptocephalus leoniceps and Moschorhinus kitchingi, respectively.[187]
  • The craniomandibular anatomy of the therocephalian Olivierosuchus is re-described by Gigliotti et al. (2023), including for the first time the braincase and inner ear, revealing similar neuroanatomy to other non-mammalian therapsids.[188]
  • A historical and taxonomic review of the Karoo and global record of non-mammalian cynodonts is published by Abdala et al. (2023).[189]
  • Redescription of the holotype of Nythosaurus larvatus is published by Pusch et al. (2023), who interpret N. larvatus as a taxon distinct from Thrinaxodon liorhinus.[190]
  • Kulik (2023) compares femoral histology of two specimens of Scalenodon angustifrons of the same size, report evidence of skeletal maturity in one of the studied specimens, and interprets her findings as indicative of a flexible growth strategy in S. angustifrons.[191]
  • A study on the dentition of Charruodon tetracuspidatus is published by Hoffmann, Ribeiro & de Andrade (2023), who interpret the holotype specimen as representing an early ontogenetic stage, and consider C. tetracuspidatus to be a nomen dubium.[192]
  • Hoffmann, de Andrade & Martinelli (2023) redescribe the skeletal anatomy of "Probelesodon" kitchingi, and transfer this species to the genus Chiniquodon.[193]
  • Description of new lower jaw remains of Agudotherium gassenae from the Late Triassic of Brazil, providing new information on the anatomy of this taxon, and a study on its phylogenetic affinities is published by Kerber, Pretto & Müller (2023), who recover A. gassenae as the sister taxon of Prozostrodontia.[194]
  • Stefanello et al. (2023) describe a new, complete and exceptionally well-preserved skull of Prozostrodon brasiliensis from the Upper Triassic strata in Brazil, and name a new endemic clade of South American cynodonts – Prozostrodontidae, including Prozostrodon and Pseudotherium.[195]
  • A study on the endocranial anatomy of Prozostrodon brasiliensis and Therioherpeton cargnini is published by Kerber et al. (2023).[196]
  • Lund, Norton & Benoit (2023) describe the postcranial, basicranial and palatal morphology of Diarthrognathus broomi.[197]
  • A study on the evolution of cynodont skulls is published by Lautenschlager et al. (2023), who find no evindence for an increase in cranial strength and biomechanical performance during the cynodont–mammalian transition.[198]
  • A study on tooth replacement pattern and deciduous teeth in Haldanodon exspectatus is published by Martin & Schultz (2023), who interpret the fossil material of Peraiocynodon inexpectatus, P. major and Cyrtlatherium canei as likely to be docodont milk teeth.[199]
  • Averianov, Lopatin & Leshchinskiy (2023) reinterpret one of the supposed lower premolars of Sibirotherium rossicum as the first molariform, and consider S. rossicum to have five rather than six lower premolars.[200]

Mammals

Шаблон:Main

Other animals

Other new animal taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acanthochaetetes reitneri[201]

Sp. nov

Valid

Sánchez-Beristain, Rodrigo & Schlagintweit

Early Cretaceous (Aptian-Albian)

Tuburan Limestone

Шаблон:Flag

A chaetetid demosponge.

Aetholicopalla grandipora[202]

Sp. nov

Valid

Luzhnaya et al.

Cambrian

Шаблон:Flag

A sponge of uncertain affinities.

Akrophyllas[203]

Gen. et comb. nov

Valid

Grimes et al.

Ediacaran

Ediacara Member of the Rawnsley Quartzite

Шаблон:Flag

An arboreomorph. The type species is "Rangea" longa Glaessner & Wade (1966).

Archiasterella anchoriformis[204]

Sp. nov

Valid

Peng et al.

Cambrian (Wuliuan)

Kaili Formation

Шаблон:Flag

A chancelloriid.

Calliospongia[205]

Gen. et sp. nov

Valid

Chen et al.

Cambrian Stage 3

Chiungchussu Formation

Шаблон:Flag

A sponge, possibly a member of Silicea. The type species is C. chunchengia.

Chancelloria zhaoi[204]

Sp. nov

Valid

Peng et al.

Cambrian (Wuliuan)

Kaili Formation

Шаблон:Flag

A chancelloriid.

Cretacimermis[206]

Gen. et 9 sp. nov

Valid

Poinar in Luo et al.

Cretaceous

Burmese amber
Lebanese amber

Шаблон:Flag
Шаблон:Flag

A collective genus erected for fossil nematodes belonging to the family Mermithidae. The name was used in earlier publications, but the taxon was formally named in 2023.[206] Genus includes new species C. incredibilis Luo & Poinar, C. calypta Luo & Poinar, C. adelphe Luo & Poinar, C. directa Luo & Poinar, C. longa Luo & Poinar, C. perforissi Luo & Poinar, C. manicapsoci Luo & Poinar, C psoci Luo & Poinar and C. cecidomyiae Luo & Poinar, as well as "Heleidomermis" libani Poinar et al. (1994), C. chironomae Poinar (2011), C. aphidophilus Poinar (2017) and C. protus Poinar & Buckley (2006).

Cyathophycus balori[207]

Sp. nov

Botting, Muir & Doyle

Carboniferous (Pennsylvanian)

Шаблон:Flag

A reticulosan sponge.

Ercaivermis[208]

Gen. et sp. nov

Valid

Wang et al.

Cambrian Stage 3

Yu'anshan Formation

Шаблон:Flag

A member of Priapulida. The type species is E. sparios.

Floraconformis[209]

Gen. et sp. nov

Valid

Goñi et al.

Cambrian Stage 3

Erkhelnuur Formation

Шаблон:Flag

A palaeoscolecid. The type species is F. egiinensis.

Gaoloufangchaeta[210]

Gen. et sp. nov

Valid

Zhao, Li & Selden

Cambrian Stage 4

Wulongqing Formation

Шаблон:Flag

A polychaete. The type species is G. bifurcus.

Файл:Gaoloufangchaeta bifurcus holotype.jpg

Iotuba[211]

Gen. et sp. nov

Zhang & Smith in Zhang, Smith & Ren

Cambrian Stage 3

Yu'anshan Formation

Шаблон:Flag

Probably an annelid belonging to the group Sedentaria, related to the families Flabelligeridae and Acrocirridae. The type species is I. chengjiangensis. The name was used in earlier publications, but the taxon wasn't formally described before 2023.[211]

Файл:Iotuba chengjiangensis.tif

Kalpinella fragilis[212]

Sp. nov

Valid

Świerczewska-Gładysz & Jurkowska

Late Cretaceous (Campanian)

Шаблон:Flag

A demosponge belonging to the family Phymatellidae.

Liexiscolex[213]

Gen. et sp. nov

Liu & Huang in Liu et al.

Ordovician

Madaoyu Formation

Шаблон:Flag

A palaeoscolecid. Genus includes new species L. hunanensis.

Longibirotula[214]

Gen. et sp. nov

Valid

Pronzato & Manconi in Samant et al.

Late Cretaceous–Paleocene

Naskal intertrappean beds

Шаблон:Flag

A demosponge belonging to the family Palaeospongillidae. The type species is L. antiqua Manconi & Samant.

Megasiphon[215]

Gen. et sp. nov

Valid

Nanglu et al.

Cambrian (Drumian)

Marjum Formation

Шаблон:Flag
(Шаблон:Flag)

A tunicate. The type species is M. thylakos.

Mobulavermis[216]

Gen. et sp. nov

Valid

McCall

Cambrian

Pioche Shale

Шаблон:Flag
(Шаблон:Flag)

A lobopodian belonging to the family Kerygmachelidae. The type species is M. adustus.

Файл:Mobulavermis adustus.png

Monoshanites[217]

Gen. et sp. nov

Valid

Demidenko

Cambrian

Bayangol Formation

Шаблон:Flag

Sclerites of an animal of uncertain affinities, belonging to the family Siphogonuchitidae. The type species is M. dentatus.

Neovermilia gundstrupensis[218]

Sp. nov

Valid

Kočí, Milàn & Jäger

Paleocene (Selandian)

Kerteminde Marl Formation

Шаблон:Flag

An annelid belonging to the family Serpulidae.

Petriterastroma[219]

Gen. et sp. nov

Valid

Jeon & Kershaw in Jeon et al.

Ordovician (Katian)

Beiguoshan Formation

Шаблон:Flag

A clathrodictyid stromatoporoid. The type species is P. exililamellatum.

Phakeloides[220]

Gen. et sp. nov

Valid

Wierzbowski & Błażejowski

Devionian (Famennian)

Шаблон:Flag

A member of Chaetognatha of uncertain affinities. The type species is P. polonicus.

Pickettispongia[221]

Gen. et comb. nov

Valid

Pisera, Bitner & Fromont

Eocene

Pallinup Formation

Шаблон:Flag

A demosponge belonging to the family Phymaraphiniidae. The type species is "Discodermia" tabelliformis Chapman & Crespin (1934).

Plexodictyon xibeiense[219]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Beiguoshan Formation

Шаблон:Flag

A clathrodictyid stromatoporoid.

Podoliagraptus[222]

Gen. et sp. nov

Valid

Skompski et al.

Silurian

Шаблон:Flag

A graptolite-like form of uncertain affinities. The type species is P. algaeoides.

Ptilospongia[223]

Gen. et sp. nov

Li & Reitner

Ordovician

Kaochiapien Formation

Шаблон:Flag

A demosponge belonging to the family Bubaridae. The type species is P. hemisphaeroidalis.

Shaihuludia[224]

Gen. et sp. nov

Kimmig et al.

Cambrian (Wuliuan)

Langston Formation

Шаблон:Flag
(Шаблон:Flag)

A polychaete. The type species is S. shurikeni.

Simplexodictyon conspicus[219]

Sp. nov

Valid

Jeon & Kershaw in Jeon et al.

Ordovician (Katian)

Beiguoshan Formation

Шаблон:Flag

A stromatoporellid stromatoporoid.

Styliolina giga[225]

Sp. nov

Vinn et al.

Silurian

Шаблон:Flag

A member of Tentaculita.

Teganium avalonensis[226]

Sp. nov

Valid

Botting, Muir & Ma

Ordovician

Gilwern Volcanic Formation

Шаблон:Flag

A hexactinellid sponge belonging to the family Teganiidae.

Twertupia[221]

Gen. et comb. nov

Valid

Pisera, Bitner & Fromont

Eocene

Pallinup Formation

Шаблон:Flag

A demosponge belonging to the family Phymaraphiniidae. The type species is "Thamnospongia" subglabra Chapman & Crespin (1934).

Ursactis[227]

Gen. et sp. nov

Valid

Osawa, Caron & Gaines

Cambrian (Wuliuan)

Burgess Shale

Шаблон:Flag
(Шаблон:Flag)

A polychaete. The type species is U. comosa.

Файл:Technical drawing and life reconstruction of Ursactis comosa.jpg

Other animal research

  • A study on the paleobiology of Eoandromeda octobrachiata is published by Botha et al. (2023), who interpret E. octobrachiata as a benthic, sessile, radially symmetrical organism, and consider it unlikely that E. octobrachiata was a stem-ctenophore.[228]
  • A study aiming to test the hypothesized feeding modes of Pectinifrons abyssalis is published by Darroch et al. (2023), who interpret their findings as supporting neither a suspension feeding or osmotrophic feeding habit, and indicating that rangeomorph fronds were organs adapted for oxygen uptake and gas exchange, rather than feeding.[229]
  • New information on the paleobiology of Culmofrons plumosa, based on data from specimens from the Trepassey Formation (Canada), is presented by Pasinetti & McIlroy (2023), who interpret rangeomorph impressions observed in Culmofrons as likely bundles of branches in the process of separating from the organism, potentially indicating that rangeomorphs had true modularity and the ability to separate modules as an asexual reproductive strategy.[230]
  • Purported fossil material of Dickinsonia reported from the Bhimbetka rock shelters in rocks of the Maihar Sandstone (India)[231] is reinterpreted as an impression resulting from decay of a modern beehive by Meert et al. (2023).[232]
  • A study aiming to assess the validity of species distinctions in the genus Dickinsonia is published by Evans et al. (2023), who interpret their findings as indicative of the presence of two distinct species from South Australia, D. costata and D. tenuis.[233]
  • New information on the body plan of Dickinsonia, based on data from the fossil material from the southeastern White Sea area (Russia), is presented by Ivantsov & Zakrevskaya (2023), who interpret the anatomy of Dickinsonia as indicative of its affinity to the urbilaterian.[234]
  • Evidence indicative of the impact of oxygen expansion driven by sea-level oscillations on the speciation of early Cambrian reef-building archaeocyaths from the Siberian Craton is presented by Zhuravlev, Wood & Bowyer (2023).[235]
  • Evidence from computational fluid dynamics simulations of digital models of Archaeolynthus porosus and Favilynthus mellifer, interpreted as indicating that the studied archaeocyaths could not have functioned effectively as predominantly passive suspension feeders but rather had to use active suspension feeding methods, is presented by Gibson et al. (2023).[236]
  • Yun et al. (2023) describe new fossil material of Hyalosinica archaica from the Cambrian Niutitang Formation (China), indicating that H. archaica developed a long stalk used to lift the main body above the sediment surface and reach more oxic water, and interpret H. archaica as a member of the stem group of Hexactinellida.[237]
  • Łukowiak et al. (2023) report the discovery of a diverse assemblage of Miocene sponge spicules from the Guadalquivir Basin (Spain), including sponges with affinities to extant taxa from the Indo-Pacific and Japanese waters, and interpret changes of distribution of the studied sponge taxa as likely resulting from the isolation of the Mediterranean and the Messinian salinity crisis.[238]
  • Fossil material of Nenoxites from the Ediacaran Khatyspyt Formation (Russia), originally interpreted as trace fossils providing evidence of early bioturbation,[239] is argued to more likely represent body fossil coquina of Shaanxilithes-like tubular organisms by Psarras et al. (2023), who interpret Shaanxilithes-type body fossils as possible total group eumetazoans.[240]
  • Yun, Reitner & Zhang (2023) describe new, well-preserved fossil material of the chancelloriid Dimidia simplex from the Cambrian Yu'anshan Formation (China), and consider Dimidia to be a taxon distinct from Allonnia.[241]
  • Yang et al. (2023) reinterpret putative Cambrian bryozoan Protomelission as an early dasycladalean green alga, and conclude that there are no unequivocal bryozoans of Cambrian age;[242] however, in a subsequent study Xiang et al. (2023) present new information on the morphology of Protomelission, and consider it to be a scleritome of Cambroclavus, which in turn is considered by the authors to be a probable epitheliozoan-grade eumetazoan like the contemporaneous chancelloriids, unrelated to bryozoans or to dasycladalean algae.[243]
  • A study on the body architecture of Xianguangia sinica is published by Zhao, Hou & Cong (2023), who interpret the putative "column" part of its body as formed by 18 tentacle-sheath complexes, and interpret X. sinica as a possible stem-ctenophore related to Dinomischus and Daihua.[244]
  • A specimen of the Ordovian hyolith Elegantilites custos with an operculum showing regeneration after non-lethal predatory attack is described by Fatka, Valent & Budil (2023).[245]
  • Parry et al. (2023) describe fossil material of Plumulites tafennaensis from the Ordovician (Katian) Upper Tiouririne Formation (Morocco), including aberrant shell plates interpreted as resulting from healed injuries, and consider the soft tissue that secreted the shell plate to be similar in morphology and size relative to the body to that seen in scaleworm elytra.[246]
  • Putative anostracan crustacean Gilsonicaris rhenanus is reinterpreted as a polychaete by Gueriau, Parry & Rabet (2023).[247]
  • New cycloneuralian microfossils, preserving a musculature system interpreted as indicative of a phylogenetic relationships with scalidophorans and possibly priapulans, are described from the Cambrian Kuanchuanpu Formation (China) by Zhang et al. (2023).[248]
  • Putative early leech from the Silurian Brandon Bridge Formation (Waukesha Biota; Wisconsin, United States) is considered to be a member of Cycloneuralia of uncertain affinities by Braddy, Gass & Tessler (2023).[249]
  • Wu, Pisani & Donoghue (2023) study the interrelationship between main groups of Panarthropoda, attempting to determine whether morphological datasets from the studies of extant and fossil panarthropod relationships published by Legg, Sutton & Edgecombe (2013),[250] Yang et al. (2016)[251] and Aria, Zhao & Zhu (2021)[252] can discriminate statistically between competing Tactopoda, Lobopodia and Protarthopoda hypotheses, and question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species.[253]
  • Kihm et al. (2023) compare the morphology of tardigrades and Cambrian lobopodians, and argue that ancestral tardigrades likely had a Cambrian lobopodian–like morphology and shared most recent ancestry with the luolishaniids.[254]
  • New fossil material of Rotadiscus grandis is reported from the Cambrian Chengjiang biota from Yunnan (China) by Li et al. (2023), who recover Rotadiscus as a stem-ambulacrarian, and argue that such deuterostome traits as post-anal region, gill bars and a U-shaped gut evolved through convergence rather than shared ancestry.[255]
  • Yang et al. (2023) report the discovery a previously unrecognized structure between the third and fourth segments of the posterior section of the body of weakly sclerotized vetulicolians, and interpret this structure as an internal organ, possibly used for reproduction, excretion or digestion.[256]
  • Yang et al. (2023) report the discovery of the fossil material of Herpetogaster collinsi from the Cambrian Balang Formation (China), representing the first record of this species from Gondwana, and interpret the distribution of H. collinsi in both Laurentia and Gondwana, coupled with its phylogenetic placement at the base of the ambulacrarian tree, as suggesting that the last common ancestor of the ambulacrarians might have already had a planktonic larval stage (or that such larvae developed multiple times within the Ambulacraria), which would have permitted dispersal over long distances.[257]
  • Claims of the presence of cellular cartilages, fibrillin and subchordal rod in yunnanozoan fossils made by Tian et al. (2022)[258] are contested by He et al. (2023)[259] and Zhang & Pratt (2023).[260][261]
  • Redescription of the holotype of Chamasaurus dolichognathus is published by Jenkins, Meyer & Bhullar (2023).[262]
  • A study on the anatomy and affinities of Tullimonstrum gregarium is published by Mikami et al. (2023), who interpret T. gregarium as more likely to be a non-vertebrate chordate or a protostome than a vertebrate.[263]

Other organisms

Other new organisms

Name Novelty Status Authors Age Type locality Location Notes Images

Baltisphaeridium razii[264]

Sp. nov

Ghavidel-Syooki & Piri-Kangarshahi

Ordovician

Lashkarak Formation

Шаблон:Flag

An acritarch.

Cambrocoryne[265]

Gen. et sp. nov

Valid

Peel

Cambrian (Wulian)

Henson Gletscher Formation

Шаблон:Flag

An organism of uncertain affinities, with similarities to wiwaxiid and annelid sclerites, thelodont scales and the foraminiferan Lagena. The type is species C. lagenamorpha.

Cangwuella[266]

Gen. et sp. nov

Wang et al.

Devonian (?Pragian-Emsian)

Cangwu Formation

Шаблон:Flag

A member of Arcellinida of uncertain affinities. The type species is C. ampulliformis.

Cyathochitina gerdkuhensis[264]

Sp. nov

Ghavidel-Syooki & Piri-Kangarshahi

Ordovician

Lashkarak Formation

Шаблон:Flag

A chitinozoan.

Grandilingulata[267]

Gen. et sp. nov

Chen et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

Шаблон:Flag

A multicellular eukaryote of uncertain affinities. The type species is G. qianxiensis.

Hocosphaeridium crispum[268]

Sp. nov

Valid

Vorob'eva & Petrov

Ediacaran and early Cambrian

Ura Formation

Шаблон:Flag

An acritarch.

Kuqaia scanicus[269]

Sp. nov

Peng et al.

Early Jurassic (Pliensbachian)

Rya Formation

Шаблон:Flag

A palynomorph. Argued to be a possible ephippium of a cladoceran by Peng et al. (2023),[269] but this interpretation was rejected by Van Damme (2023).[270]

Navifusa alborzensis[264]

Sp. nov

Ghavidel-Syooki & Piri-Kangarshahi

Ordovician

Lashkarak Formation

Шаблон:Flag

An acritarch.

Orthosphaeridium iranense[264]

Sp. nov

Ghavidel-Syooki & Piri-Kangarshahi

Ordovician

Lashkarak Formation

Шаблон:Flag

An acritarch.

Parmoligocena[271]

Gen. et sp. nov

Valid

Kaczmarska & Ehrman

Oligocene (Rupelian)

Menilite Formation

Шаблон:Flag

A member of Parmales. The type species is P. janusii.

Pentalaminamorpha[271]

Gen. et sp. nov

Valid

Kaczmarska & Ehrman

Oligocene (Rupelian)

Menilite Formation

Шаблон:Flag

A parmalean-like eukaryote of uncertain affinities. The type species is P. radiata.

Tuanshanzia linearis[267]

Sp. nov

Chen et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

Шаблон:Flag

A multicellular eukaryote of uncertain affinities.

Tuanshanzia parva[267]

Sp. nov

Chen et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

Шаблон:Flag

A multicellular eukaryote of uncertain affinities.

Tymkivia[272]

Gen. et sp. nov

Valid

Martyshyn

Ediacaran

Studenitsa Formation

Шаблон:Flag

An organism of uncertain affinities, possibly a benthic plant with similarities to green algae or a fossil of the polyp stage of a medusozoan. The type species is T. primitiva.

Xiamalingella[273]

Gen. et sp. nov

Valid

Tang et al.

Mesoproterozoic

Xiamaling Formation

Шаблон:Flag

An organism with similarities to cyanobacteria. The type species is X. sideria.

Other organism research

Файл:Volyn biota - Franz et al., 2023, fig. 3j.png
A specimen of the Volyn Biota
  • Franz et al. (2023) describe the morphology and the internal structure of at least 1.5-billion-years-old organisms from the Volyn pegmatite field associated with the Korosten Pluton (Ukraine), reporting the presence of a large variation of different types of filaments in the studied organisms, and providing evidence of the presence of fungi-like organisms and continental deep biosphere by 1.5 billion years ago.[275]
  • Hoshino et al. (2023) study the distribution of hopanoid C-2 methyltransferase in the bacterial domain, and interpret their findings as indicating that Alphaproteobacteria evolved hopanoid C-2 methyltransferase around 750 million years ago, thus re-establishing 2-methylhopanes as cyanobacterial biomarkers before 750 Ma.[276]
  • Strullu-Derrien et al. (2023) describe new fossil material of nostocalean cyanobacteria from the Devonian Rhynie chert, interpret both new fossils and similar specimens that were already known (including fossils of Kidstoniella fritschii and Rhyniella vermiformis) as fossil material of a single species Langiella scourfieldii that belonged to the family Hapalosiphonaceae and thrived in soils, freshwater and hot springs like its extant relatives.[277]
  • Li et al. (2023) describe new fossil material of Horodyskia from the Tonian Shiwangzhuang and Jiuliqiao formations (China), and reconstruct Horodyskia as a colonial organism composed of a chain of organic-walled vesicles that likely represent multinucleated cells of early eukaryotes.[278]
  • Li et al. (2023) interpret discoidal fossils from the Tonian Jiuliqiao Formation (Anhui, China) as detached holdfasts of the worm-like annulated tubular fossils from the same formation.[279]
  • Evidence of widespread presence of pyritized spherical microorganisms (likely coccoid bacterial body fossils) on the surface of invertebrate fossils from the Lower Cretaceous Crato Formation (Brazil) is presented by Barling, Saleh & Ma (2023).[280]
  • Bryłka et al. (2023) reevaluate purported earliest fossils of diatoms from the Early and Middle Jurassic, and interpret them as unlikely to be fossil material of diatoms.[281]
  • Evidence of the impact of nutrient availability gradient on changes in the calcareous dinocyst assemblages is reported from the Turonian Dubivtsi Formation (Ukraine) by Ciurej, Dubicka & Poberezhskyy (2023).[282]
  • A study on the Cretaceous benthic foraminiferal assemblages from the Western Interior Seaway is published by Bryant, Meehan & Belanger (2023), who find no genera, guilds or morphotypes unique to cold seeps, and find assemblages from cold seeps to be overall more similar to offshore assemblages than nearshore ones, but also report that the composition of the studied assemblages did reflect the environmental differences present at seeps.[283]
  • A study on the fossil record of the planktonic foraminifera, interpreted as indicating that a modern-style latitudinal diversity gradient for these foraminifera arose only 15 million years ago, is published by Fenton et al. (2023).[284]
  • A study on the geographical distribution of the ecological and morphological groups of fossil planktonic foraminifera, interpreted as indicative of a global shift towards the Equator over the past 8 million years in response to the late Cenozoic temperature changes related to the polar ice sheet formation, is published by Woodhouse et al. (2023).[285]
  • Fonseca et al. (2023) describe possible fossil material of choanoflagellates from the Upper Cretaceous (Cenomanian–Turonian) Capas Blancas Formation (Spain), representing the first putative occurrence of choanoflagellates in the fossil record reported to date.[286]

History of life in general

  • Brocks et al. (2023) report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age, and interpret this finding as evidence of the existence of a widespread and abundant biota of protosterol-producing bacteria and stem-group eukaryotes, living in aquatic environments from at least 1,640 to around 800 million years ago.[287]
  • Choudhuri et al. (2023) describe exceptionally-preserved bedding plane structures from the 1.6-billion-years-old Chorhat Sandstone (India), and argue that some of the studied structures were more likely to be created by movement through a microbiota-rich surficial sediment than by passive migration of any inorganic or organic masses under influence of an external force.[288]
  • Possible body and trace fossils, representing the oldest potential macrofossils from the Nama Group, are described from the lower Mara Member of the lower Dabis Formation (Tsaus Mountains, Namibia) by Wood et al. (2023), who interpret the studied fossils as remains of holdover soft-bodied taxa that appeared prior to the appearance of tubular and biomineralized animals.[289]
  • A study on the timing and environmental context of the earliest biotic assemblage from the Nama Group, based on data from the Dabis Formation (Tsaus Mountains, Namibia), is published by Bowyer et al. (2023), who interpret their findings as indicating that the evolution of skeletonization and the first appearance of Cloudina happened in open marine carbonate settings and might have been driven by major sea level lowstands.[290]
  • Kolesnikov et al. (2023) report the discovery of the fossil material of Ediacara-type soft-bodied organisms, including palaeopascichnids, arboreomorphs, chuariomorphids, microbial colonies, from the Dzhezhim Formation of the Timan Range (Komi Republic, Russia).[291]
  • Revision of the Ediacaran fossils and pseudofossils from the Ura Formation (Patom Basin; Russia) is published by Petrov & Vorob'eva (2023).[292]
  • Mussini & Dunn (2023) interpret the gradual but escalatory upping of ecological pressure resulting from evolutionary innovations such as bioturbation, predation and reef building as likely to be the most significant cause of the replacement of the Ediacaran biota by Phanerozoic biotas dominated by crown eumetazoans, and argue that changes to the originally homogenous distribution of resources in the benthos initiated by the Ediacaran biota itself might have driven the origins of bilaterians, their evolutionary innovations and ultimately their takeover.[293]
  • Servais et al. (2023) review estimates of taxonomic richness of marine organisms during the early Paleozoic based on different published datasets, and question the existence of a distinct Cambrian explosion and global Ordovician biodiversification event instead of a single, long-term radiation of life during the early Paleozoic.[294]
  • Evidence indicating that continental configuration and climate state specific to the early Paleozoic resulted in higher susceptibility of marine animals to extinction than during the rest of the Phanerozoic is presented by Pohl et al. (2023).[295]
  • A study on the extinction selectivity of benthic brachiopods belonging to the groups Rhynchonellata and Strophomenata, gastropods, bivalves and trilobites throughout the Phanerozoic is published by Monarrez, Heim & Payne (2023), who report evidence of stronger extinction selectivity with respect to geographical range than body size, particularly during background intervals, but also evidence indicating that Phanerozoic mass extinctions may have been overall less selective than extinctions during background intervals, as well as indicative of more variable strength and direction of extinction selectivity by clade during Phanerozoic mass extinctions relative to background intervals.[296]
  • Høyberget et al. (2023) report the discovery of a new, diverse early Cambrian biota (the Skyberg Biota) from the Skyberg Member of the Ringstranda Formation (Norway).[297]
  • Li et al. (2023) compare the lamello-fibrillar nacre and similar fibrous microstructures in Early Cambrian molluscs and hyoliths from the Zavkhan Basin (Mongolia) and in extant coleoid cuttlebones and serpulid tubes, report differences in shell microstructures of the studied lophotrochozoan groups, and interpret their findings as indicative of prevalence of calcitic shells in the Terreneuvian.[298]
  • A study aiming to identify the biases affecting the knowledge of the biodiversity during the Cambrian and Ordovician is published by Du et al. (2023), who interpret the significant decline in known biodiversity during Furongian interval as influenced by temporal, geographic, taxonomic and lithological biases, hindering the understanding of the real biodiversity changes in this interval.[299]
  • Eliahou Ontiveros et al. (2023) study possible causes of the Great Ordovician Biodiversification Event, and interpret global cooling as the most likely primary driver.[300]
  • A diverse Ordovician fauna (the Castle Bank fauna), comparable with the Burgess Shale and Chengjiang biotas in paleoenvironment and preservational style, is described from Wales (United Kingdom) by Botting et al. (2023).[301]
  • A study on the structure of the Givetian shallow-water reef ecosystem from the Madène el Mrakib site (Morocco) is published by Majchrzyk et al. (2023), who report that the studied community from most known Devonian reefs, as it was dominated by large branching tabulate corals while stromatoporoids were of minor importance, and note similarities between the studied community and extant shallow-water reefs.[302]
  • A study on the paleosols from the Devonian Zhongning Formation (China) is published by Guo, Retallack & Liu (2023), who find the paleosols and palaeobotany of the fossil bed where the fossil material of Sinostega was found to be similar to those of Devonian tetrapod localities in Pennsylvania, and interpret their findings as indicating that early tetrapods lived in meandering streams in semiarid to subhumid woodlands.[303]
  • A study on the fossil record of tetrapods living from the Bashkirian to the Kungurian is published by Dunne et al. (2023), who argue that apparent changes in diversity of the studied tetrapods can be explained by variation in sampling intensity through time.[304]
  • Francischini et al. (2023) describe straight, curved and quasi-helical burrows from the Permo-Triassic Buena Vista Formation (Brazil), similar to burrows reported from the Karoo Basin of South Africa, and interpret the studied burrows as likely produced by synapsids and/or procolophonians living in a desert environment, representing the oldest unambiguous record of tetrapod dwelling structures in such an environment.[305]
  • A study on the impact of the Permian–Triassic extinction event on the marine ecosystems is published by Huang et al. (2023), who find that the first extinction phase resulted in the loss of more than half of taxonomic diversity but only a slight decrease of community stability, which subsequently decreased significantly in the second extinction phase.[306]
  • Evidence indicating that reef recovery in the aftermath of the Permian–Triassic extinction was gradual and delayed compared to nonreef ecosystems is presented by Kelley et al. (2023).[307]
  • Dai et al. (2023) report the discovery of an exceptionally preserved Early Triassic (approximately 250.8 million years ago) fossil assemblage (the Guiyang biota) from the Daye Formation near Guiyang (China), providing evidence of the existence of a complex marine ecosystem shortly after the Permian–Triassic extinction event.[308]
  • Czepiński et al. (2023) report the discovery of a new, diverse vertebrate assemblage from the Ladinian Miedary site (Poland), including abundant fossil material of Tanystropheus, making the studied site the richest source of three-dimensionally preserved Tanystropheus material in the world reported to date.[309]
  • New information on the composition of the Late Triassic paleocommunity from the Polzberg Lagerstätte (Austria), based on data from thousands of new fossils, is published by Lukeneder & Lukeneder (2023).[310]
  • A study comparing changes in the marine and terrestrial biospheres across the Triassic-Jurassic transition is published by Cribb et al. (2023), who find evidence interpreted as suggestive of greater ecological severity of the Triassic–Jurassic extinction event for terrestrial ecosystems than marine ones.[311]
  • El Atfy, Abeed & Uhl (2023) describe a diverse assemblage of non-pollen palynomorphs from the Lower Cretaceous (Berriasian-Valanginian) Yamama Formation (Iraq), and interpret the studied assemblage as deposited in anoxic, neritic conditions relatively near to the land.[312]
  • Del Mouro et al. (2023) provide evidence of the preservation of organic walled microfossils (including pollen grains, spores and acritarchs) from wet peperites from the Lower Cretaceous Paraná-Etendeka intertrappean deposits of the Paraná Basin (Brazil), and interpret the studied microfossils as indicative of changes from desertic to more humid conditions in south-central Gondwana during the Valanginian.[313]
  • Cortés & Larsson (2023) reconstruct the ecological network of the marine Mesozoic fauna from the Lower Cretaceous Paja Formation (Colombia), who report that the largest marine reptile predators from the studied fauna occupied higher trophic levels than any extant marine apex predator.[314]
  • A study on the fossil record of Late Cretaceous invertebrates from the Western Interior Seaway and the adjacent Gulf Coastal Plain is published by Purcell, Scuderi & Myers (2023), who interpret their findings as indicating that the Western Interior Seaway did not contain biotic subprovinces in the Late Cretaceous, but faunal associations were affected by sea-level changes.[315]
  • Description of a diverse Santonian-?early Campanian marine vertebrate assemblage from the Akkermanovka locality (Orenburg Oblast, Russia), including fossil material of a mosasaur, plesiosaurs, bony and cartilaginous fishes (with lamniform sharks being the most diverse and abundant group in the assemblage), is published by Jambura et al. (2023).[316]
  • Bobe et al. (2023) describe fossil material of marine and terrestrial animals (including a new hyrax taxon) and woods from new sites from the Miocene Mazamba Formation (Mozambique), and interpret the studied sites as formed in coastal settings.[317]
  • Hayward et al. (2023) report the discovery of a diverse Pliocene (Waipipian) fauna from sediment excavated from two shafts at Māngere Wastewater Treatment Plant (New Zealand), dominated by molluscs and including new species records for New Zealand, as well as extending known time ranges of taxa already known from New Zealand.[318]
  • Harrison et al. (2023) provide the systematic account of the Pliocene fauna from the Lower Laetolil Beds (Laetoli, Tanzania).[319]
  • A study on the timing of Pleistocene megafaunal extinction in the high plains of Peru is published by Rozas-Davila, Rodbell & Bush (2023), who find that the collapse of megafaunal populations in high grasslands coincided with upticks in fire activity, which were likely associated with human activity.[320]
  • Martinez et al. (2023) find no evidence of a significant relation between the relative surface area of the maxilloturbinal and physiological traits such as metabolism and body temperature in extant mammals, and interpret their findings as challenging the hypothesis positing that respiratory turbinals reflect the thermal and metabolic physiology in extant and extinct tetrapods (especially in mammals).[321]

Other research

  • A study on changes to the regional and global geochemical environment in the aftermath of the Sturtian glaciation is published by Bowyer et al. (2023), who find that the shift to dominant green algal primary production and the first appearance of putative sponges and problematic macrofossils might be related to global stabilization of geochemical environments following the deglaciation, to the expansion of less reducing (and likely more oligotrophic) marine environments, and to the shift from postglacial super-greenhouse conditions to a cooler climate.[322]
  • Evidence from the Cryogenian Nantuo Formation (China), interpreted as indicating that habitable open ocean conditions providing refugia for eukaryotic organisms during the Marinoan glaciation extended into mid-latitude coastal oceans, is presented by Song et al. (2023).[323]
  • Evidence of the impact of tectonic and ecological factors on redox changes in upper ocean, deep shelf and restricted basin settings throughout the Phanerozoic, which in turn were correlated with background extinction rates of marine animals, is presented by Wang et al. (2023).[324]
  • A study on the stratigraphy of the Siberian Platform (Russia), and on its implications for the knowledge of the age of the fossils and timing of first appearances of late Ediacaran and early Cambrian organisms from the Siberian Platform (including anabaritids and cloudinids), is published by Bowyer et al. (2023).[325]
  • A study on the evolution of the Earth's landscape throughouth the Phanerozoic, providing evidence of impact of landscape dynamics on the diversification of both marine life and terrestrial life, is published by Salles et al. (2023).[326]
  • Nelson et al. (2023) present high-precision age constraints for the lower Wood Canyon Formation (Nevada, United States), and interpret their findings as indicating that the base of the Cambrian Period was younger than 533 million years ago, making the early Cambrian animal radiation faster than previously recognized.[327]
  • Nolan et al. (2023) interpret Brooksella alternata as a likely pseudofossil, and the bulk of its characteristics as consistent with concretions.[328]
  • Wellman et al. (2023) present data supporting a Silurian (late Wenlock) age of the "Lower Old Red Sandstone" deposits of the Midland Valley (Scotland, United Kingdom) preserving the fossil material of Pneumodesmus newmani, supporting the interpretation of this myriapod as the oldest known air-breathing land animal.[329]
  • A study on the preservation of chemical information in the fossils from the Devonian Rhynie chert (United Kingdom) is published by Loron et al. (2023), who report that differences between prokaryotes and eukaryotes and between eukaryotic tissue types from the Rhynie chert assemblage can be identified based on the fossilization products of lipids, sugar and protein.[330]
  • A study on the geochemistry of the Bakken Formation, interpreted as indicative of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events, is published by Sahoo et al. (2023).[331]
  • Evidence from mercury concentrations and isotopes from terrestrial sections from the Sydney Basin (Australia) and Karoo Basin (South Africa), interpreted as indicative of global volcanic effects of the Siberian Traps during the Permian-Triassic transition, is presented by Shen et al. (2023).[332]
  • Evidence from concentrations of UV-B–absorbing compounds in the exine of fossil pollen from the Qubu section in southern Tibet (China), interpreted as consistent with increased UV-B radiation during the Permian–Triassic extinction event, is presented by Liu et al. (2023);[333] their conclusions are subsequently contested by Seddon & Zimmermann (2023).[334][335]
  • Lovelace et al. (2023) present data supporting a Carnian age for the majority of the Popo Agie Formation.[336]
  • Evidence from molybdenum records from cores in Germany and Northern Ireland corresponding to the Tethyan shelf, interpreted as indicative of pulses of localized marine de-oxygenation which were limited largely to marginal marine environments and likely related to shallow-marine extinctions at the end of the Triassic, is presented by Bond et al. (2023).[337]
  • Sedimentologic evidence of glaciers developing in continental Iberia during the Hauterivian is reported from the Enciso Group in the eastern Cameros Basin (Spain) by Rodríguez-López et al. (2023).[338]
  • A study on the Cenomanian–Turonian benthic foraminiferal assemblages from the Western Interior Seaway is published by Bryant & Belanger (2023), who report that the interval of increased density and diversity of benthic foraminifera known as the Benthonic Zone is not a reliable biostratigraphic marker for the onset of the Oceanic Anoxic Event 2 in the Western Interior Seaway, and that different samples of the Benthonic Zone don't reflect basin-wide changes in oxygenation.[339]
  • Evidence from two sites offshore of southwest Australia, interpreted as indicative of ocean acidification at the onset of Oceanic Anoxic Event 2 which was linked to the onset of volcanic activity, and which persisted for approximately 600,000 years due to biogeochemical feedbacks, is presented by Jones et al. (2023).[340]
  • Evidence from concentrations of sulfur and fluorine in Deccan Traps lavas, interpreted as indicative of recurring eruptive pulses of Deccan Traps volcanism before the Cretaceous–Paleogene extinction event which might have caused short-lived global drops in temperature, is presented by Callegaro et al. (2023).[341]
  • A study on the history of the Eocene waterbody within the Giraffe Pipe crater (Northwest Territories, Canada), inferred from changes in the fossil record of microorganisms, is published by Siver & Lott (2023), who interpret their findings as indicative of the presence of a series of successive shallow environments, each correlated with changes in lakewater chemistry.[342]
  • Evidence from tooth enamel of specimens of Hippopotamus antiquus from Early Pleistocene sites in Southern and Central Europe (primarily from Upper Valdarno and Vallparadís Section in Italy and Spain, respectively), interpreted as indicative of a progressive increase of environmental seasonality around the Mediterranean Basin during the Early Pleistocene, is presented by Fidalgo et al. (2023).[343]
  • Abbas et al. (2023) report the presence of Late Quaternary wetland sediments at the Wadi Hasa, Gregra and Wadi Gharandal areas in the Jordan desert, and interpret their findings as indicating that during the Marine Isotope Stage 5 the Levant was a well-watered route for human dispersal out of Africa.[344]
  • Essel et al. (2023) report the development of a new method for the gradual release of DNA trapped in ancient bone and tooth artefacts, and use this method to recover ancient human and deer mitochondrial genomes from the Upper Paleolithic deer tooth pendant from Denisova Cave (Russia).[345]
  • Reeves & Sansom (2023) present a new method which can be used to determine the impact of multiple factors (decay, ontogeny and phylogeny) on morphological variation between fossils, and apply this method to fossils of Tethymyxine, Mayomyzon, Priscomyzon, "euphaneropoids" and Palaeospondylus.[346]
  • Wang, Shu & Wang (2023) present a new method for element mapping of the fossils' 3D surface using nondestructive X-ray fluorescence, providing information on degraded material from the soft body parts in the sediments surrounding the studied fossil specimens, and apply this method to a specimen of Keichousaurus hui.[347]
  • Slater et al. (2023) study the impact of thermal maturation on eumelanin and phaeomelanin, develop a predictive model for authentic signals for eumelanin and phaeomelanin in fossil tissues, and use this model to provide molecular evidence of preservation of eumelanin in fossil feathers of Confuciusornis, as well as molecular evidence of preservation of phaeomelanin in the fossil material of the Miocene frog Pelophylax pueyoi.[348]
  • Peters et al. (2023) study collagen survival in bones from Quaternary sites across Australia, providing evidence of preservation of bone collagen dating back more than 50,000 years in the material from Tripot Cave in the subtropical Broken River limestone karst area.[349]
  • Brooke et al. (2023) demonstrate the utility of agent-based modelling for study of the ecologies of past ecosystems, using such a model to determine the drivers of distribution of large ungulates from the Palaeo-Agulhas Plain during the peak of the Last Glacial Maximum.[350]

Paleoclimate

  • A study on the evolution of the monsoon system over the past 250 million years, providing evidence of the impact of continental area, latitudinal location and fragmentation, is published by Hu et al. (2023).[351]
  • Evidence indicating that injection of the silicate dust from the Chicxulub impact into the atmosphere contributed to the global cooling and disruption of photosynthesis that followed is presented by Senel et al. (2023).[352]
  • The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium reconstructs the Cenozoic history of atmospheric CO2 on the basis of reevaluation of all available proxies.[353]
  • Evidence from seawater osmium isotope data from Pacific Ocean sediments, interpreted as indicating that enhanced magmatism could have played a dominant role in causing the Miocene Climatic Optimum, is presented by Goto et al. (2023).[354]
  • Wen et al. (2023) present a new land surface temperature record from the Chinese Loess Plateau in East Asia, interpreting it as indicative of late Miocene cooling and aridification that occurred synchronously with ocean cooling, highlighting a global climate forcing mechanism.[355]
  • Evidence of periodic deposition of sapropelic mud in Eastern Mediterranean during the Plio-Pleistocene and records of precipitation and vegetation from leaf wax biomarkers from the studied sapropel layers, interpreted as indicative of the impact of orbital cycles on monsoon variability in northeast Africa and on greening of the Sahara which created routes of dispersal out of Africa for hominins, is presented by Lupien et al. (2023).[356]
  • Margari et al. (2023) provide evidence of pronounced climate variability in Europe during a glacial period ~1.154 to ~1.123 million years ago, culminating in extreme glacial cooling, and argue that these conditions led to the depopulation of Europe.[357]

References

Шаблон:Reflist

  1. Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. 11,0 11,1 11,2 11,3 Шаблон:Cite journal
  12. 12,0 12,1 12,2 Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite journal
  18. 18,0 18,1 18,2 18,3 Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite journal
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. 31,0 31,1 31,2 31,3 31,4 31,5 Шаблон:Cite journal
  32. 32,0 32,1 Шаблон:Cite journal
  33. 33,0 33,1 Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. 35,0 35,1 35,2 35,3 Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. 40,0 40,1 40,2 Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. 43,0 43,1 Шаблон:Cite journal
  44. 44,0 44,1 Шаблон:Cite journal
  45. Шаблон:Cite journal
  46. 46,0 46,1 46,2 Шаблон:Cite journal
  47. Шаблон:Cite journal
  48. 48,0 48,1 Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. 50,0 50,1 Шаблон:Cite journal
  51. 51,0 51,1 Шаблон:Cite journal
  52. 52,0 52,1 Шаблон:Cite journal
  53. 53,0 53,1 53,2 Шаблон:Cite journal
  54. Шаблон:Cite journal
  55. 55,0 55,1 55,2 55,3 55,4 Шаблон:Cite journal
  56. Шаблон:Cite journal
  57. 57,0 57,1 57,2 Шаблон:Cite journal
  58. Шаблон:Cite journal
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. 63,0 63,1 63,2 63,3 63,4 Шаблон:Cite journal
  64. Шаблон:Cite journal
  65. 65,0 65,1 65,2 Шаблон:Cite journal
  66. Шаблон:Cite journal
  67. Шаблон:Cite journal
  68. 68,0 68,1 Шаблон:Cite journal
  69. 69,0 69,1 Шаблон:Cite journal
  70. 70,0 70,1 Шаблон:Cite journal
  71. Шаблон:Cite journal
  72. Шаблон:Cite journal
  73. 73,0 73,1 73,2 73,3 73,4 Шаблон:Cite journal
  74. 74,0 74,1 74,2 Шаблон:Cite journal
  75. Шаблон:Cite journal
  76. Шаблон:Cite journal
  77. Шаблон:Cite journal
  78. Шаблон:Cite journal
  79. Шаблон:Cite journal
  80. Шаблон:Cite journal
  81. Шаблон:Cite journal
  82. Шаблон:Cite journal
  83. 83,0 83,1 Шаблон:Cite journal
  84. Шаблон:Cite journal
  85. Шаблон:Cite journal
  86. Шаблон:Cite journal
  87. Шаблон:Cite journal
  88. 88,0 88,1 Шаблон:Cite journal
  89. Шаблон:Cite journal
  90. Шаблон:Cite journal
  91. Шаблон:Cite journal
  92. Шаблон:Cite journal
  93. Шаблон:Cite journal
  94. Шаблон:Cite journal
  95. Шаблон:Cite journal
  96. Шаблон:Cite journal
  97. Шаблон:Cite journal
  98. Шаблон:Cite journal
  99. Шаблон:Cite journal
  100. Шаблон:Cite journal
  101. 101,0 101,1 101,2 101,3 101,4 Шаблон:Cite book
  102. 102,0 102,1 102,2 Шаблон:Cite journal
  103. Шаблон:Cite journal
  104. Шаблон:Cite journal
  105. Шаблон:Cite journal
  106. Шаблон:Cite journal
  107. Шаблон:Cite journal
  108. Шаблон:Cite journal
  109. 109,0 109,1 109,2 109,3 109,4 Шаблон:Cite journal
  110. Шаблон:Cite journal
  111. 111,0 111,1 111,2 Шаблон:Cite journal
  112. 112,0 112,1 112,2 112,3 112,4 112,5 112,6 112,7 112,8 Шаблон:Cite journal
  113. 113,0 113,1 Шаблон:Cite journal
  114. Шаблон:Cite journal
  115. Шаблон:Cite journal
  116. Шаблон:Cite journal
  117. Шаблон:Cite journal
  118. Шаблон:Cite journal
  119. Шаблон:Cite journal
  120. Шаблон:Cite journal
  121. Шаблон:Cite journal
  122. Шаблон:Cite journal
  123. Шаблон:Cite journal
  124. Шаблон:Cite journal
  125. Шаблон:Cite journal
  126. Шаблон:Cite journal
  127. Шаблон:Cite journal
  128. Шаблон:Cite journal
  129. Шаблон:Cite journal
  130. Шаблон:Cite journal
  131. Шаблон:Cite journal
  132. Шаблон:Cite journal
  133. Шаблон:Cite journal
  134. Шаблон:Cite journal
  135. Шаблон:Cite journal
  136. Шаблон:Cite journal
  137. Шаблон:Cite journal
  138. Шаблон:Cite journal
  139. Шаблон:Cite journal
  140. Шаблон:Cite journal
  141. Шаблон:Cite journal
  142. Шаблон:Cite journal
  143. Шаблон:Cite journal
  144. Шаблон:Cite journal
  145. Шаблон:Cite journal
  146. Шаблон:Cite journal
  147. Шаблон:Cite journal
  148. Шаблон:Cite journal
  149. Шаблон:Cite journal
  150. Шаблон:Cite journal
  151. Шаблон:Cite journal
  152. Шаблон:Cite journal
  153. Шаблон:Cite journal
  154. Шаблон:Cite journal
  155. Шаблон:Cite journal
  156. Шаблон:Cite journal
  157. Шаблон:Cite journal
  158. Шаблон:Cite journal
  159. Шаблон:Cite journal
  160. 160,0 160,1 Шаблон:Cite journal
  161. Шаблон:Cite journal
  162. Шаблон:Cite journal
  163. Шаблон:Cite journal
  164. 164,0 164,1 Шаблон:Cite journal
  165. Шаблон:Cite journal
  166. Шаблон:Cite journal
  167. Шаблон:Cite journal
  168. Шаблон:Cite journal
  169. Шаблон:Cite journal
  170. Шаблон:Cite journal
  171. Шаблон:Cite journal
  172. Шаблон:Cite journal
  173. Шаблон:Cite journal
  174. Шаблон:Cite journal
  175. Шаблон:Cite journal
  176. Шаблон:Cite journal
  177. Шаблон:Cite journal
  178. Шаблон:Cite journal
  179. Шаблон:Cite journal
  180. Шаблон:Cite journal
  181. Шаблон:Cite journal
  182. 182,0 182,1 Шаблон:Cite journal
  183. Шаблон:Cite book
  184. Шаблон:Cite journal
  185. Шаблон:Cite journal
  186. Шаблон:Cite journal
  187. Шаблон:Cite journal
  188. Шаблон:Cite journal
  189. Шаблон:Cite journal
  190. Шаблон:Cite journal
  191. Шаблон:Cite journal
  192. Шаблон:Cite journal
  193. Шаблон:Cite journal
  194. Шаблон:Cite journal
  195. Шаблон:Cite journal
  196. Шаблон:Cite journal
  197. Шаблон:Cite journal
  198. Шаблон:Cite journal
  199. Шаблон:Cite journal
  200. Шаблон:Cite journal
  201. Шаблон:Cite journal
  202. Шаблон:Cite journal
  203. Шаблон:Cite journal
  204. 204,0 204,1 Шаблон:Cite journal
  205. Шаблон:Cite journal
  206. 206,0 206,1 Шаблон:Cite journal
  207. Шаблон:Cite journal
  208. Шаблон:Cite journal
  209. Шаблон:Cite journal
  210. Шаблон:Cite journal
  211. 211,0 211,1 Шаблон:Cite journal
  212. Шаблон:Cite journal
  213. Шаблон:Cite journal
  214. Шаблон:Cite journal
  215. Шаблон:Cite journal
  216. Шаблон:Cite journal
  217. Шаблон:Cite journal
  218. Шаблон:Cite journal
  219. 219,0 219,1 219,2 Шаблон:Cite journal
  220. Шаблон:Cite journal
  221. 221,0 221,1 Шаблон:Cite journal
  222. Шаблон:Cite journal
  223. Шаблон:Cite journal
  224. Шаблон:Cite journal
  225. Шаблон:Cite journal
  226. Шаблон:Cite journal
  227. Шаблон:Cite journal
  228. Шаблон:Cite journal
  229. Шаблон:Cite journal
  230. Шаблон:Cite journal
  231. Шаблон:Cite journal
  232. Шаблон:Cite journal
  233. Шаблон:Cite journal
  234. Шаблон:Cite journal
  235. Шаблон:Cite journal
  236. Шаблон:Cite journal
  237. Шаблон:Cite journal
  238. Шаблон:Cite journal
  239. Шаблон:Cite journal
  240. Шаблон:Cite journal
  241. Шаблон:Cite journal
  242. Шаблон:Cite journal
  243. Шаблон:Cite journal
  244. Шаблон:Cite journal
  245. Шаблон:Cite journal
  246. Шаблон:Cite journal
  247. Шаблон:Cite journal
  248. Шаблон:Cite journal
  249. Шаблон:Cite journal
  250. Шаблон:Cite journal
  251. Шаблон:Cite journal
  252. Шаблон:Cite journal
  253. Шаблон:Cite journal
  254. Шаблон:Cite journal
  255. Шаблон:Cite journal
  256. Шаблон:Cite journal
  257. Шаблон:Cite journal
  258. Шаблон:Cite journal
  259. Шаблон:Cite journal
  260. Шаблон:Cite journal
  261. Шаблон:Cite journal
  262. Шаблон:Cite journal
  263. Шаблон:Cite journal
  264. 264,0 264,1 264,2 264,3 Шаблон:Cite journal
  265. Шаблон:Cite journal
  266. Шаблон:Cite journal
  267. 267,0 267,1 267,2 Шаблон:Cite journal
  268. Шаблон:Cite journal
  269. 269,0 269,1 Шаблон:Cite journal
  270. Шаблон:Cite journal
  271. 271,0 271,1 Шаблон:Cite journal
  272. Шаблон:Cite journal
  273. Шаблон:Cite journal
  274. Шаблон:Cite journal
  275. Шаблон:Cite journal
  276. Шаблон:Cite journal
  277. Шаблон:Cite journal
  278. Шаблон:Cite journal
  279. Шаблон:Cite journal
  280. Шаблон:Cite journal
  281. Шаблон:Cite journal
  282. Шаблон:Cite journal
  283. Шаблон:Cite journal
  284. Шаблон:Cite journal
  285. Шаблон:Cite journal
  286. Шаблон:Cite journal
  287. Шаблон:Cite journal
  288. Шаблон:Cite journal
  289. Шаблон:Cite journal
  290. Шаблон:Cite journal
  291. Шаблон:Cite journal
  292. Шаблон:Cite journal
  293. Шаблон:Cite journal
  294. Шаблон:Cite journal
  295. Шаблон:Cite journal
  296. Шаблон:Cite journal
  297. Шаблон:Cite journal
  298. Шаблон:Cite journal
  299. Шаблон:Cite journal
  300. Шаблон:Cite journal
  301. Шаблон:Cite journal
  302. Шаблон:Cite journal
  303. Шаблон:Cite journal
  304. Шаблон:Cite journal
  305. Шаблон:Cite journal
  306. Шаблон:Cite journal
  307. Шаблон:Cite journal
  308. Шаблон:Cite journal
  309. Шаблон:Cite journal
  310. Шаблон:Cite journal
  311. Шаблон:Cite journal
  312. Шаблон:Cite journal
  313. Шаблон:Cite journal
  314. Шаблон:Cite journal
  315. Шаблон:Cite journal
  316. Шаблон:Cite journal
  317. Шаблон:Cite journal
  318. Шаблон:Cite q
  319. Шаблон:Cite journal
  320. Шаблон:Cite journal
  321. Шаблон:Cite journal
  322. Шаблон:Cite journal
  323. Шаблон:Cite journal
  324. Шаблон:Cite journal
  325. Шаблон:Cite journal
  326. Шаблон:Cite journal
  327. Шаблон:Cite journal
  328. Шаблон:Cite journal
  329. Шаблон:Cite journal
  330. Шаблон:Cite journal
  331. Шаблон:Cite journal
  332. Шаблон:Cite journal
  333. Шаблон:Cite journal
  334. Шаблон:Cite journal
  335. Шаблон:Cite journal
  336. Шаблон:Cite journal
  337. Шаблон:Cite journal
  338. Шаблон:Cite journal
  339. Шаблон:Cite journal
  340. Шаблон:Cite journal
  341. Шаблон:Cite journal
  342. Шаблон:Cite journal
  343. Шаблон:Cite journal
  344. Шаблон:Cite journal
  345. Шаблон:Cite journal
  346. Шаблон:Cite journal
  347. Шаблон:Cite journal
  348. Шаблон:Cite journal
  349. Шаблон:Cite journal
  350. Шаблон:Cite journal
  351. Шаблон:Cite journal
  352. Шаблон:Cite journal
  353. Шаблон:Cite journal
  354. Шаблон:Cite journal
  355. Шаблон:Cite journal
  356. Шаблон:Cite journal
  357. Шаблон:Cite journal