Английская Википедия:31 equal temperament

Материал из Онлайн справочника
Версия от 23:36, 25 декабря 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|In music, a microtonal tuning system}} upright=1.3|thumb|31-ET on the [[regular diatonic tuning continuum at P5= 696.77 cents<ref name=Milne>Milne, A., Sethares, W. A. and Plamondon, J., [http://www.mitpressjournals.org/doi/pdf/10.1162/comj.2007.31.4.15 "Is...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Rank-2 temperaments with the generator close to a fifth and period an octave.jpg
31-ET on the regular diatonic tuning continuum at P5= 696.77 cents[1]

In music, 31 equal temperament, 31-ET, which can also be abbreviated 31-TET (31 tone ET) or 31-EDO (equal division of the octave), also known as tricesimoprimal, is the tempered scale derived by dividing the octave into 31 equal-sized steps (equal frequency ratios). Шаблон:Audio Each step represents a frequency ratio of Шаблон:Radic, or 38.71 cents (Шаблон:Audio).

31-ET is a very good approximation of quarter-comma meantone temperament. More generally, it is a regular diatonic tuning in which the tempered perfect fifth is equal to 696.77 cents, as shown in Figure 1. On an isomorphic keyboard, the fingering of music composed in 31-ET is precisely the same as it is in any other syntonic tuning (such as 12-ET), so long as the notes are spelled properly—that is, with no assumption of enharmonicity.

History and use

Division of the octave into 31 steps arose naturally out of Renaissance music theory; the lesser diesis—the ratio of an octave to three major thirds, 128:125 or 41.06 cents—was approximately a fifth of a tone or a third of a semitone. In 1555, Nicola Vicentino proposed an extended-meantone tuning of 31 tones. In 1666, Lemme Rossi first proposed an equal temperament of this order. In 1691, having discovered it independently, scientist Christiaan Huygens wrote about it also.[2] Since the standard system of tuning at that time was quarter-comma meantone, in which the fifth is tuned to Шаблон:Radic, the appeal of this method was immediate, as the fifth of 31-ET, at 696.77 cents, is only 0.19 cent wider than the fifth of quarter-comma meantone. Huygens not only realized this, he went farther and noted that 31-ET provides an excellent approximation of septimal, or 7-limit harmony. In the twentieth century, physicist, music theorist and composer Adriaan Fokker, after reading Huygens's work, led a revival of interest in this system of tuning which led to a number of compositions, particularly by Dutch composers. Fokker designed the Fokker organ, a 31-tone equal-tempered organ, which was installed in Teyler's Museum in Haarlem in 1951 and moved to Muziekgebouw aan 't IJ in 2010 where it has been frequently used in concerts since it moved.

Interval size

Файл:31ed2.svg
21-Limit just intonation intervals approximated in 31-ET

Here are the sizes of some common intervals:

interval name size (steps) size (cents) midi just ratio just (cents) midi error
octave 31 1200 2:1 1200 0
minor seventh 26 1006.45 9:5 1017.60 −11.15
small just minor seventh 26 1006.45 16:9 996.09 +10.36
harmonic seventh 25 967.74 Шаблон:Audio 7:4 968.83 Шаблон:Audio Шаблон:01.09
perfect fifth 18 696.77 Шаблон:Audio 3:2 701.96 Шаблон:Audio Шаблон:05.19
greater septimal tritone 16 619.35 10:7Шаблон:0 617.49 +Шаблон:01.87
lesser septimal tritone 15 580.65 Шаблон:Audio 7:5 582.51 Шаблон:Audio Шаблон:01.86
undecimal tritone, 11th harmonic 14 541.94 Шаблон:Audio 11:8Шаблон:0 551.32 Шаблон:Audio Шаблон:09.38
perfect fourth 13 503.23 Шаблон:Audio 4:3 498.04 Шаблон:Audio +Шаблон:05.19
septimal narrow fourth 12 464.52 Шаблон:Audio 21:16 470.78 Шаблон:Audio Шаблон:06.26
tridecimal augmented third, and greater major third 12 464.52 Шаблон:Audio 13:10 454.21 Шаблон:Audio +10.31
septimal major third 11 425.81 Шаблон:Audio 9:7 435.08 Шаблон:Audio Шаблон:09.27
diminished fourth 11 425.81 Шаблон:Audio 32:25 427.37 Шаблон:Audio Шаблон:01.56
undecimal major third 11 425.81 Шаблон:Audio 14:11 417.51 Шаблон:Audio +Шаблон:08.30
major third 10 387.10 Шаблон:Audio 5:4 386.31 Шаблон:Audio +Шаблон:00.79
tridecimal neutral third Шаблон:09 348.39 Шаблон:Audio 16:13 359.47 Шаблон:Audio −11.09
undecimal neutral third Шаблон:09 348.39 Шаблон:Audio 11:9Шаблон:0 347.41 Шаблон:Audio +Шаблон:00.98
minor third Шаблон:08 309.68 Шаблон:Audio 6:5 315.64 Шаблон:Audio Шаблон:05.96
septimal minor third Шаблон:07 270.97 Шаблон:Audio 7:6 266.87 Шаблон:Audio +Шаблон:04.10
septimal whole tone Шаблон:06 232.26 Шаблон:Audio 8:7 231.17 Шаблон:Audio +Шаблон:01.09
whole tone, major tone Шаблон:05 193.55 Шаблон:Audio 9:8 203.91 Шаблон:Audio −10.36
whole tone, middle Шаблон:05 193.55 Шаблон:Audio 28:25 196.20 Шаблон:02.65
whole tone, minor tone Шаблон:05 193.55 Шаблон:Audio 10:9Шаблон:0 182.40 Шаблон:Audio +11.15
greater undecimal neutral second Шаблон:04 154.84 Шаблон:Audio 11:10 165.00 −10.16
lesser undecimal neutral second Шаблон:04 154.84 Шаблон:Audio 12:11 150.64 Шаблон:Audio +Шаблон:04.20
septimal diatonic semitone Шаблон:03 116.13 Шаблон:Audio 15:14 119.44 Шаблон:Audio Шаблон:03.31
diatonic semitone, just Шаблон:03 116.13 Шаблон:Audio 16:15 111.73 Шаблон:Audio +Шаблон:04.40
septimal chromatic semitone Шаблон:02 Шаблон:077.42 Шаблон:Audio 21:20 Шаблон:084.47 Шаблон:Audio Шаблон:07.05
chromatic semitone, Just Шаблон:02 Шаблон:077.42 Шаблон:Audio 25:24 Шаблон:070.67 Шаблон:Audio +Шаблон:06.75
lesser diesis Шаблон:01 Шаблон:038.71 Шаблон:Audio 128:125 Шаблон:041.06 Шаблон:Audio Шаблон:02.35
undecimal diesis Шаблон:01 Шаблон:038.71 Шаблон:Audio 45:44 Шаблон:038.91 Шаблон:Audio Шаблон:00.20
septimal diesis Шаблон:01 Шаблон:038.71 Шаблон:Audio 49:48 Шаблон:035.70 Шаблон:Audio +Шаблон:03.01

The 31 equal temperament has a very close fit to the 7:6, 8:7, and 7:5 ratios, which have no approximate fits in 12 equal temperament and only poor fits in 19 equal temperament. The composer Joel Mandelbaum (born 1932) used this tuning system specifically because of its good matches to the 7th and 11th partials in the harmonic series.[3] The tuning has poor matches to both the 9:8 and 10:9 intervals (major and minor tone in just intonation); however, it has a good match for the average of the two. Practically it is very close to quarter-comma meantone.

This tuning can be considered a meantone temperament. It has the necessary property that a chain of its four fifths is equivalent to its major third (the syntonic comma 81:80 is tempered out), which also means that it contains a "meantone" that falls between the sizes of 10:9 and 9:8 as the combination of one of each of its chromatic and diatonic semitones.

Scale diagram

The following are the 31 notes in the scale:

Interval (cents) 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
Note name A BШаблон:Music AШаблон:Music BШаблон:Music AШаблон:Music B CШаблон:Music BШаблон:Music C DШаблон:Music CШаблон:Music DШаблон:Music CШаблон:Music D EШаблон:Music DШаблон:Music EШаблон:Music DШаблон:Music E FШаблон:Music EШаблон:Music F GШаблон:Music FШаблон:Music GШаблон:Music FШаблон:Music G AШаблон:Music GШаблон:Music AШаблон:Music GШаблон:Music A
Note (cents)   0    39   77  116 155 194 232 271 310 348 387 426 465 503 542 581 619 658 697 735 774 813 852 890 929 968 1006 1045 1084 1123 1161 1200

The five "double flat" notes and five "double sharp" notes may be replaced by half sharps and half flats, similar to the quarter tone system:

Interval (cents) 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
Note name A AШаблон:Music AШаблон:Music BШаблон:Music BШаблон:Music B BШаблон:Music CШаблон:Music C CШаблон:Music CШаблон:Music DШаблон:Music DШаблон:Music D DШаблон:Music DШаблон:Music EШаблон:Music EШаблон:Music E EШаблон:Music FШаблон:Music F FШаблон:Music FШаблон:Music GШаблон:Music GШаблон:Music G GШаблон:Music GШаблон:Music AШаблон:Music AШаблон:Music A
Note (cents)   0    39   77  116 155 194 232 271 310 348 387 426 465 503 542 581 619 658 697 735 774 813 852 890 929 968 1006 1045 1084 1123 1161 1200
Файл:31-TET circle of fifths.png
Circle of fifths in 31 equal temperament
Key signature Number of
sharps
Key signature Number of
flats
C major C D E F G A B 0
G major G A B C D E F♯ 1
D major D E F♯ G A B C♯ 2
A major A B C♯ D E F♯ G♯ 3
E major E F♯ G♯ A B C♯ D♯ 4
B major B C♯ D♯ E F♯ G♯ A♯ 5
[[F-sharp major|FШаблон:Music major]] F♯ G♯ A♯ B C♯ D♯ E♯ 6
[[C-sharp major|CШаблон:Music major]] C♯ D♯ E♯ F♯ G♯ A♯ B♯ 7
G♯ major G♯ A♯ B♯ C♯ D♯ E♯ F𝄪 8
D♯ major D♯ E♯ F𝄪 G♯ A♯ B♯ C𝄪 9
A♯ major A♯ B♯ C𝄪 D♯ E♯ F𝄪 G𝄪 10 C𝄫♭ major C𝄫♭ D𝄫♭ E𝄫♭ F𝄫♭ G𝄫♭ A𝄫♭ B𝄫♭ 21
E♯ major E♯ F𝄪 G𝄪 A♯ B♯ C𝄪 D𝄪 11 G𝄫♭ major G𝄫♭ A𝄫♭ B𝄫♭ C𝄫♭ D𝄫♭ E𝄫♭ F𝄫 20
B♯ major B♯ C𝄪 D𝄪 E♯ F𝄪 G𝄪 A𝄪 12 D𝄫♭ major D𝄫♭ E𝄫♭ F𝄫 G𝄫♭ A𝄫♭ B𝄫♭ C𝄫 19
F𝄪 major F𝄪 G𝄪 A𝄪 B♯ C𝄪 D𝄪 E𝄪 13 A𝄫♭ major A𝄫♭ B𝄫♭ C𝄫 D𝄫♭ E𝄫♭ F𝄫 G𝄫 18
C𝄪 major C𝄪 D𝄪 E𝄪 F𝄪 G𝄪 A𝄪 B𝄪 14 E𝄫♭ major E𝄫♭ F𝄫 G𝄫 A𝄫♭ B𝄫♭ C𝄫 D𝄫 17
G𝄪 major G𝄪 A𝄪 B𝄪 C𝄪 D𝄪 E𝄪 F♯𝄪 15 B𝄫♭ major B𝄫♭ C𝄫 D𝄫 E𝄫♭ F𝄫 G𝄫 A𝄫 16
D𝄪 major D𝄪 E𝄪 F♯𝄪 G𝄪 A𝄪 B𝄪 C♯𝄪 16 F𝄫 major F𝄫 G𝄫 A𝄫 B𝄫♭ C𝄫 D𝄫 E𝄫 15
A𝄪 major A𝄪 B𝄪 C♯𝄪 D𝄪 E𝄪 F♯𝄪 G♯𝄪 17 C𝄫 major C𝄫 D𝄫 E𝄫 F𝄫 G𝄫 A𝄫 B𝄫 14
E𝄪 major E𝄪 F♯𝄪 G♯𝄪 A𝄪 B𝄪 C♯𝄪 D♯𝄪 18 G𝄫 major G𝄫 A𝄫 B𝄫 C𝄫 D𝄫 E𝄫 F♭ 13
B𝄪 major B𝄪 C♯𝄪 D♯𝄪 E𝄪 F♯𝄪 G♯𝄪 A♯𝄪 19 D𝄫 major D𝄫 E𝄫 F♭ G𝄫 A𝄫 B𝄫 C♭ 12
F♯𝄪 major F♯𝄪 G♯𝄪 A♯𝄪 B𝄪 C♯𝄪 D♯𝄪 E♯𝄪 20 A𝄫 major A𝄫 B𝄫 C♭ D𝄫 E𝄫 F♭ G♭ 11
C♯𝄪 major C♯𝄪 D♯𝄪 E♯𝄪 F♯𝄪 G♯𝄪 A♯𝄪 B♯𝄪 21 E𝄫 major E𝄫 F♭ G♭ A𝄫 B𝄫 C♭ D♭ 10
B𝄫 major B𝄫 C♭ D♭ E𝄫 F♭ G♭ A♭ 9
F♭ major F♭ G♭ A♭ B𝄫 C♭ D♭ E♭ 8
C♭ major C♭ D♭ E♭ F♭ G♭ A♭ B♭ 7
G♭ major G♭ A♭ B♭ C♭ D♭ E♭ F 6
D♭ major D♭ E♭ F G♭ A♭ B♭ C 5
A♭ major A♭ B♭ C D♭ E♭ F G 4
E♭ major E♭ F G A♭ B♭ C D 3
B♭ major B♭ C D E♭ F G A 2
F major F G A B♭ C D E 1
C major C D E F G A B 0
Comparison between 1/4-comma meantone and 31-ET (values in cents, rounded to 2 decimals)
  C CШаблон:Sharp DШаблон:Flat D DШаблон:Sharp EШаблон:Flat E EШаблон:Sharp F FШаблон:Sharp GШаблон:Flat G GШаблон:Sharp AШаблон:Flat A AШаблон:Sharp BШаблон:Flat B CШаблон:Flat C
1/4 comma: 0.00 76.05 117.11 193.16 269.21 310.26 386.31 462.36 503.42 579.47 620.53 696.58 772.63 813.69 889.74 965.78 1006.84 1082.89 1123.95 1200.00
31-ET: 0.00 77.42 116.13 193.55 270.97 309.68 387.10 464.52 503.23 580.65 619.35 696.77 774.19 812.90 890.32 967.74 1006.45 1083.87 1122.58 1200.00

Chords of 31 equal temperament

Many chords of 31-ET are discussed in the article on septimal meantone temperament. Chords not discussed there include the neutral thirds triad (Шаблон:Audio), which might be written C–EШаблон:Music–G, C–DШаблон:Music–G or C–FШаблон:Music–G, and the Orwell tetrad, which is C–E–FШаблон:Music–BШаблон:Music.

Файл:Simple I-IV-V-I isomorphic 31-TET.png
I–IV–V–I chord progression in 31 tone equal temperament.[1]Файл:Simple I-IV-V-I isomorphic 31-TET.midWhereas in 12TET BШаблон:Music is 11 steps, in 31-TET BШаблон:Music is 28 steps.
Файл:Csub Cmin Cmaj Csup.ogg
C subminor, C minor, C major, C supermajor (topped by AШаблон:Music) in 31 equal temperament

Usual chords like the major chord are rendered nicely in 31-ET because the third and the fifth are very well approximated. Also, it is possible to play subminor chords (where the first third is subminor) and supermajor chords (where the first third is supermajor).

Файл:Cmaj7 Gmin 31ET 12ET.ogg
C seventh and G minor, twice in 31 equal temperament, then twice in 12 equal temperament

It is also possible to render nicely the harmonic seventh chord. For example on C with C–E–G–AШаблон:Music. The seventh here is different from stacking a fifth and a minor third, which instead yields BШаблон:Music to make a dominant seventh. This difference cannot be made in 12-ET.

See also

  • Archicembalo, alternate keyboard instrument with 36 keys per octave that was sometimes tuned as 31TET.

References

  1. 1,0 1,1 Milne, A., Sethares, W. A. and Plamondon, J., "Isomorphic Controllers and Dynamic Tuning: Invariant Fingerings Across a Tuning Continuum", Computer Music Journal, Winter 2007, vol. 31, no. 4, pp. 15–32.
  2. Шаблон:Cite web
  3. Keislar, Douglas. "Six American Composers on Nonstandard Tunnings: Easley Blackwood; John Eaton; Lou Harrison; Ben Johnston; Joel Mandelbaum; William Schottstaedt", Perspectives of New Music, vol. 29, no. 1. (Winter 1991), pp. 176–211. Шаблон:JSTOR

External links

Шаблон:Microtonal music Шаблон:Musical tuning