Английская Википедия:ARM Cortex-A15

Материал из Онлайн справочника
Версия от 05:31, 27 декабря 2023; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Family of microprocessor cores with ARM microarchitecture}} {{Infobox CPU |name = ARM Cortex-A15 |image = 200px |image_size = Exynos 5250 on an Arndale Board |caption = |produced-start = In production late 2011,<ref name="firstdesign">[http://www.ana...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox CPU

The ARM Cortex-A15 MPCore is a 32-bit processor core licensed by ARM Holdings implementing the ARMv7-A architecture. It is a multicore processor with out-of-order superscalar pipeline running at up to 2.5 GHz.[1]

Overview

Шаблон:Main article ARM has claimed that the Cortex-A15 core is 40 percent more powerful than the Cortex-A9 core with the same number of cores at the same speed.[2] The first A15 designs came out in the autumn of 2011, but products based on the chip did not reach the market until 2012.[3]

Key features of the Cortex-A15 core are:

  • 40-bit Large Physical Address Extensions (LPAE) addressing up to 1 TB of RAM with a 32-bit virtual address space.[4][5][6]
  • 15 stage integer/17–25 stage floating point pipeline, with out-of-order speculative issue 3-way superscalar execution pipeline[7]
  • 4 cores per cluster, up to 2 clusters per chip with CoreLink 400 (CCI-400, an AMBA-4 coherent interconnect) and 4 clusters per chip with CCN-504.[8] ARM provides specifications but the licensees individually design ARM chips, and AMBA-4 scales beyond 2 clusters. The theoretical limit is 16 clusters; 4 bits are used to code the CLUSTERID number in the CP15 register (bits 8 to 11).[9]
  • DSP and NEON SIMD extensions onboard (per core)
  • VFPv4 Floating Point Unit onboard (per core)
  • Hardware virtualization support
  • Thumb-2 instruction set encoding to reduce the size of programs with little impact on performance
  • TrustZone security extensions
  • Jazelle RCT for JIT compilation
  • Program Trace Macrocell and CoreSight Design Kit for unobtrusive tracing of instruction execution
  • 32 KB data + 32 KB instruction L1 cache per core
  • Integrated low-latency level-2 cache controller, up to 4 MB per cluster

Chips

First implementation came from Samsung in 2012 with the Exynos 5 Dual, which shipped in October 2012 with the Samsung Chromebook Series 3 (ARM version), followed in November by the Google Nexus 10.

Press announcements of current implementations:

Other licensees, such as LG,[18][19] are expected to produce an A15 based design at some point.

Systems on a chip

Model Number Semiconductor technology CPU GPU Memory interface Wireless radio technologies Availability Utilizing devices
HiSilicon K3V3 28 nm HPL big.LITTLE architecture using
1.8 GHz dual-core ARM Cortex-A15
+ dual-core ARM Cortex-A7
Mali-T628 H2 2014
Nvidia Tegra 4 T40 28 nm HPL 1.9 GHz quad-core ARM Cortex-A15[20] + 1 low power core Nvidia GeForce @ 72 core, 672 MHz, 96.8 GFLOPS = 48 PS + 24 VU × 0.672 × 2 (96.8 GFLOPS)[21](support DirectX 11+, OpenGL 4.X, and PhysX) 32-bit dual-channel DDR3L or LPDDR3 up to 933 MHz (1866 MT/s data rate)[20] Category 3 (100 Mbit/s) LTE Q2 2013 Nvidia Shield Tegra Note 7
Nvidia Tegra 4 AP40 28 nm HPL 1.2-1.8 GHz quad-core + low power core Nvidia GPU 60 [20] cores (support DirectX 11+, OpenGL 4.X, and PhysX) 32-bit dual-channel 800 MHz LPDDR3 Category 3 (100 Mbit/s) LTE Q3 2013
Nvidia Tegra K1 28 nm HPm 2.3 GHz quad-core + battery saver core Kepler SMX (192 CUDA cores, 8 TMUs, 4 ROPs) 32-bit dual-channel DDR3L, LPDDR3 or LPDDR2 Q2 2014 Jetson TK1 development board,[22] Lenovo ThinkVision 28, Xiaomi MiPad, Shield Tablet
Texas Instruments OMAP5430 28 nm 1.7 GHz dual-core PowerVR SGX544MP2 @ 532 MHz + dedicated 2D graphics accelerator 32-bit dual-channel 532 MHz LPDDR2 Q2 2013 phyCore-OMAP5430[23]
Texas Instruments OMAP5432 28 nm 1.5 GHz dual-core PowerVR SGX544MP2 @ 532 MHz + dedicated 2D graphics accelerator 32-bit dual-channel 532 MHz DDR3 Q2 2013 DragonBox Pyra, SVTronics EVM,[24] Compulab SBC-T54[25]
Texas Instruments AM57x 28 nm 1.5 GHz single or dual-core PowerVR SGX544MP2 @ 532 MHz + dedicated 2D graphics accelerator 32-bit dual-channel 532 MHz DDR3 Q4 2015 BeagleBoard-X15,[26] BeagleBone AI,[27] Elesar Titanium[28]
Texas Instruments 66AK2x 28 nm 1.5 GHz single, dual, and quad core devices 1-8 C66x DSP cores, radio acceleration, and many other application specific accelerators Q4 2015
Exynos 5 Dual[29]
(previously Exynos 5250)[30]
32 nm HKMG 1.7 GHz dual-core ARM Cortex-A15 ARM Mali-T604[31] (quad-core) @ 533 MHz; 68.224 GFLOPS Шаблон:Citation needed 32-bit dual-channel 800 MHz LPDDR3/DDR3 (12.8 GB/sec) or 533 MHz LPDDR2 (8.5 GB/sec) Q3 2012[30] Samsung Chromebook XE303C12,[32] Google Nexus 10, Arndale Board,[33] Huins ACHRO 5250 Exynos,[34] Freelander PD800 HD,[35] Voyo A15, HP Chromebook 11, Samsung Homesync
Exynos 5 Octa[36][37][38]
(internally Exynos 5410)
28 nm HKMG 1.6 GHz[39] quad-core ARM Cortex-A15 and 1.2 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE)[40] IT PowerVR SGX544MP3 (tri-core) @ 480 MHz 49 GFLOPS (532 MHz in some full-screen apps)[41] 32-bit dual-channel 800 MHz LPDDR3 (12.8 GB/sec) Q2 2013 Samsung Galaxy S4 I9500,[42][43] Hardkernel ODROID-XU,[44] Meizu MX3, ZTE Grand S II TD[45] ODROID-XU
Exynos 5 Octa[46]
(internally Exynos 5420)
28 nm HKMG 1.8-1.9 GHz quad-core ARM Cortex-A15 and 1.3 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T628 MP6 @ 533 MHz; 109 GFLOPS 32-bit dual-channel 933 MHz LPDDR3e (14.9 GB/sec) Q3 2013 Samsung Chromebook 2 11.6",[47] Samsung Galaxy Note 3,[48] Samsung Galaxy Note 10.1 (2014 Edition), Samsung Galaxy Note Pro 12.2, Samsung Galaxy Tab Pro (12.2 & 10.1), Arndale Octa Board, Galaxy S5 SM-G900H [49]
Exynos 5 Octa[50]
(internally Exynos 5422)
28 nm HKMG 2.1 GHz quad-core ARM Cortex-A15 and 1.5 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T628 MP6 @ 695 MHz (142 Gflops) 32-bit dual-channel 933 MHz LPDDR3/DDR3 (14.9 GB/sec) Q2 2014 Galaxy S5 SM-G900, Hardkernel ODROID-XU3 & ODROID-XU4[51]
Exynos 5 Octa[52]
(internally Exynos 5800)
28 nm HKMG 2.1 GHz quad-core ARM Cortex-A15 and 1.3 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T628 MP6 @ 695 MHz (142 Gflops) 32-bit dual-channel 933 MHz LPDDR3/DDR3 (14.9 GB/sec) Q2 2014 Samsung Chromebook 2 13,3"[53]
Exynos 5 Hexa[54]
(internally Exynos 5260)
28 nm HKMG 1.7 GHz dual-core ARM Cortex-A15 and 1.3 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T624 32-bit dual-channel 800 MHz LPDDR3 (12.8 GB/sec) Q2 2014 Galaxy Note 3 Neo (announced January 31, 2014), Samsung Galaxy K zoom[55]
Allwinner A80 Octa[56] 28 nm HPm Quad-core ARM Cortex-A15 and Quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) PowerVR G6230 (Rogue) 32-bit dual-channel DDR3/DDR3L/LPDDR3 or LPDDR2[57]

See also

Шаблон:Portal

References

Шаблон:Reflist

External links

Шаблон:Application ARM-based chips

  1. ARM Cortex-A15 - ARM Processor
  2. Exclusive : ARM Cortex-A15 "40 Per Cent" Faster Than Cortex-A9
  3. Ошибка цитирования Неверный тег <ref>; для сносок firstdesign не указан текст
  4. Шаблон:Cite web
  5. Шаблон:Cite web
  6. Шаблон:Cite web
  7. Exploring the Design of the Cortex-A15 Processor Шаблон:Webarchive Travis Lanier
  8. "ARM A15 web page, Specification tab"
  9. "Cortex-A15 MPCore Technical Reference Manual"
  10. Broadcom announces plans for ARM's Cortex-A15 SoC | thinq
  11. Huawei Announces HiSilicon K3V3 Chipset For Smartphones on Tom's Hardware
  12. NVIDIA Announces "Project Denver" to Build Custom CPU Cores Based on ARM Architecture, Targeting Personal Computers to Supercomputers - NVIDIA Newsroom
  13. Samsung Announces Industry First ARM Cortex-A15 Processor Samples for Tablet Computers
  14. Changing the game: ST-Ericsson Unveils NovaThor Family of Smartphone Platforms Combining its Most Advanced Application Processors with the Latest Generation of Modems Шаблон:Webarchive
  15. Шаблон:Cite web
  16. Шаблон:Cite web
  17. TI disrupts the embedded market with the most powerful SoCs featuring real-time processing and multimedia
  18. LG Electronics Licenses ARM Processor Technology to Drive - ARM
  19. Why LG Getting ARM Cortex A15 License Is A Big Deal | ITProPortal.com
  20. 20,0 20,1 20,2 Шаблон:Cite web
  21. Шаблон:Cite web
  22. Шаблон:Cite web
  23. Шаблон:Cite web
  24. Шаблон:Cite web
  25. Шаблон:Cite web
  26. Шаблон:Cite web
  27. Шаблон:Cite web
  28. Шаблон:Cite web
  29. Шаблон:Cite web
  30. 30,0 30,1 Шаблон:Cite web
  31. Шаблон:Cite web
  32. Шаблон:Cite web
  33. Шаблон:Cite web
  34. Шаблон:Cite web
  35. Шаблон:Cite web
  36. Шаблон:Cite web
  37. Шаблон:Cite web
  38. Шаблон:Cite web
  39. Шаблон:Cite web
  40. Шаблон:Cite web
  41. Шаблон:Cite web
  42. Шаблон:Cite web
  43. Шаблон:Cite web
  44. Шаблон:Cite web
  45. Шаблон:Cite web
  46. Шаблон:Cite web
  47. Шаблон:Cite web
  48. Шаблон:Cite web
  49. Шаблон:Cite web
  50. Шаблон:Cite web
  51. Шаблон:Cite web
  52. Шаблон:Cite web
  53. Шаблон:Cite web
  54. Шаблон:Cite web
  55. Шаблон:Cite web
  56. Шаблон:Cite web
  57. Шаблон:Cite web