Английская Википедия:Additive K-theory

Материал из Онлайн справочника
Версия от 05:26, 1 января 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, '''additive K-theory''' means some version of algebraic K-theory in which, according to Spencer Bloch, the general linear group ''GL'' has everywhere been replaced by its Lie algebra ''gl''.<ref>{{Cite journal |last=Bloch |first=Spencer |date=2006-07-23 |title=Algebraic Cycles and Additive Chow Groups |url=http://www.math.uchicago.edu/~bloch/addchow_...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, additive K-theory means some version of algebraic K-theory in which, according to Spencer Bloch, the general linear group GL has everywhere been replaced by its Lie algebra gl.[1] It is not, therefore, one theory but a way of creating additive or infinitesimal analogues of multiplicative theories.

Formulation

Following Boris Feigin and Boris Tsygan,[2] let <math> A </math> be an algebra over a field <math> k </math> of characteristic zero and let <math> {\mathfrak gl}(A) </math> be the algebra of infinite matrices over <math>A</math> with only finitely many nonzero entries. Then the Lie algebra homology

<math> H_\cdot ({\mathfrak gl}(A),k) </math>

has a natural structure of a Hopf algebra. The space of its primitive elements of degree <math> i</math> is denoted by <math>K^+_i(A)</math> and called the <math>i</math>-th additive K-functor of A.

The additive K-functors are related to cyclic homology groups by the isomorphism

<math> HC_i(A) \cong K^+_{i+1}(A). </math>

References

Шаблон:Reflist


Шаблон:Topology-stub

  1. Шаблон:Cite journal
  2. B. Feigin, B. Tsygan. Additive K-theory, LNM 1289, Springer