Английская Википедия:Antiprism graph

Материал из Онлайн справочника
Версия от 16:59, 1 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Graph with an antiprism as its skeleton}} In the mathematical field of graph theory, an '''antiprism graph''' is a graph that has one of the antiprisms as its skeleton. An {{mvar|n}}-sided antiprism has {{math|2''n''}} vertices and {{math|4''n''}} edges. They are regular, polyhedral graph|...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

In the mathematical field of graph theory, an antiprism graph is a graph that has one of the antiprisms as its skeleton. An Шаблон:Mvar-sided antiprism has Шаблон:Math vertices and Шаблон:Math edges. They are regular, polyhedral (and therefore by necessity also 3-vertex-connected, vertex-transitive, and planar graphs), and also Hamiltonian graphs.[1]

Examples

The first graph in the sequence, the octahedral graph, has 6 vertices and 12 edges. Later graphs in the sequence may be named after the type of antiprism they correspond to:

Файл:3-cube t2.svg
3
Файл:Square antiprismatic graph.png
4
Файл:Pentagonal antiprismatic graph.png
5
Файл:Hexagonal antiprismatic graph.png
6
Файл:Heptagonal antiprism graph.png
7
Файл:Octagonal antiprismatic graph.png
8

Although geometrically the star polygons also form the faces of a different sequence of (self-intersecting) antiprisms, the star antiprisms, they do not form a different sequence of graphs.

Related graphs

An antiprism graph is a special case of a circulant graph, Ci2n(2,1).

Other infinite sequences of polyhedral graph formed in a similar way from polyhedra with regular-polygon bases include the prism graphs (graphs of prisms) and wheel graphs (graphs of pyramids). Other vertex-transitive polyhedral graphs include the Archimedean graphs.

References

Шаблон:Reflist

External links

  1. Read, R. C. and Wilson, R. J. An Atlas of Graphs, Oxford, England: Oxford University Press, 2004 reprint, Chapter 6 special graphs pp. 261, 270.