Английская Википедия:Aperiodic semigroup

Материал из Онлайн справочника
Версия от 23:42, 1 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, an '''aperiodic semigroup''' is a semigroup ''S'' such that every element is aperiodic, that is, for each ''x'' in ''S'' there exists a positive integer ''n'' such that ''x<sup>n</sup>'' = ''x''<sup>''n''+1</sup>.<ref>{{cite book | title=Monoids, Acts and Categories: With Applications to Wreath Products and Graphs. A Handbook for Students and Researchers | v...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, an aperiodic semigroup is a semigroup S such that every element is aperiodic, that is, for each x in S there exists a positive integer n such that xn = xn+1.[1] An aperiodic monoid is an aperiodic semigroup which is a monoid.

Finite aperiodic semigroups

A finite semigroup is aperiodic if and only if it contains no nontrivial subgroups, so a synonym used (only?) in such contexts is group-free semigroup. In terms of Green's relations, a finite semigroup is aperiodic if and only if its H-relation is trivial. These two characterizations extend to group-bound semigroups.Шаблон:Cn

A celebrated result of algebraic automata theory due to Marcel-Paul Schützenberger asserts that a language is star-free if and only if its syntactic monoid is finite and aperiodic.[2]

A consequence of the Krohn–Rhodes theorem is that every finite aperiodic monoid divides a wreath product of copies of the three-element flip-flop monoid, consisting of an identity element and two right zeros. The two-sided Krohn–Rhodes theorem alternatively characterizes finite aperiodic monoids as divisors of iterated block products of copies of the two-element semilattice.

See also

References

Шаблон:Reflist


Шаблон:Abstract-algebra-stub

  1. Шаблон:Cite book
  2. Schützenberger, Marcel-Paul, "On finite monoids having only trivial subgroups," Information and Control, Vol 8 No. 2, pp. 190–194, 1965.