Английская Википедия:Arnold's spectral sequence

Материал из Онлайн справочника
Версия от 20:58, 2 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, '''Arnold's spectral sequence''' (also spelled '''Arnol'd''') is a spectral sequence used in singularity theory and normal form theory as an efficient computational tool for reducing a function to canonical form near critical points. It was introduced by Vladimir...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, Arnold's spectral sequence (also spelled Arnol'd) is a spectral sequence used in singularity theory and normal form theory as an efficient computational tool for reducing a function to canonical form near critical points. It was introduced by Vladimir Arnold in 1975.[1][2][3]

Definition

Шаблон:Expand section

References

Шаблон:Reflist

Шаблон:Algebra-stub

  1. Vladimir Arnold "Spectral sequence for reduction of functions to normal form", Funct. Anal. Appl. 9 (1975) no. 3, 81–82.
  2. Victor Goryunov, Gábor Lippner, "Simple framed curve singularities" in Шаблон:Cite book
  3. Majid Gazor, Pei Yu, "Spectral sequences and parametric normal forms", Journal of Differential Equations 252 (2012) no. 2, 1003–1031.