Английская Википедия:Arumugam Manthiram
Шаблон:Short description Шаблон:Infobox scientist
Arumugam Manthiram (Шаблон:Respell;[1] born March 15, 1951) is an American materials scientist and engineer, best known for his identification of the polyanion class of lithium ion battery cathodes, understanding of how chemical instability limits the capacity of layered oxide cathodes, and technological advances in lithium sulfur batteries. He is a Cockrell Family Regents Chair in engineering, Director of the Texas Materials Institute, the Director of the Materials Science and Engineering Program at the University of Texas at Austin, and a former lecturer of Madurai Kamaraj University. Manthiram delivered the 2019 Nobel Lecture in Chemistry on behalf of Chemistry Laureate John B. Goodenough.[2][3]
Early life and education
Manthiram was born in Amarapuram, Tamil Nadu, a small village in southern India.[4] He completed his B.S. and M.S. degrees in chemistry at Madurai University. He then received his Ph.D. in chemistry from the Indian Institute of Technology, Madras.
Career
After working as a lecturer at Madurai Kamaraj University for four years, he joined John B. Goodenough's lab as a Research Associate, first at Oxford University and then at the University of Texas at Austin. Manthiram joined the faculty of the University of Texas at Austin in 1991.
Research
Manthiram identified the polyanion class of cathode materials for lithium ion batteries, which are widely used in commercial applications.[5][6] This is a class which includes lithium iron phosphate. He demonstrated that positive electrodes containing polyanions, e.g., sulfates, produce higher voltages than oxides due to the inductive effect of the polyanion. These polyanion cathodes are also used in sodium ion batteries.[7]
Manthiram discovered that the capacity limitations of layered oxide cathodes is a result of chemical instability that can be understood based on the relative positions of the metal 3d band relative to the top of the oxygen 2p band.[8][9][10] This discovery represents the theoretical underpinnings of the anion-redox energy storage mechanism and has had significant implications for the practically accessible compositional space of lithium ion batteries, as well as their stability from a safety perspective.
He has identified the critical parameters needed for transitioning lithium sulfur batteries towards commercial use.[11][12] Specifically, lithium sulfur batteries need to achieve a sulfur loading of >5 mg cm−2, a carbon content of <5%, electrolyte-to-sulfur ratio of <5 μL mg−1, electrolyte-to-capacity ratio of <5 μL (mA h)−1, and negative-to-positive capacity ratio of <5 in pouch-type cells.[11] Key technological advances for lithium sulfur batteries developed by Manthiram include the use of microporous carbon interlayers[13] and the use of doped graphene sponge electrodes.[14]
References
External links
- ↑ Шаблон:YouTube
- ↑ Шаблон:Cite web
- ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокecs
не указан текст - ↑ Ошибка цитирования Неверный тег
<ref>
; для сносокborn
не указан текст - ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ 11,0 11,1 Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- Английская Википедия
- University of Texas at Austin faculty
- American materials scientists
- 21st-century American engineers
- IIT Madras alumni
- Fellows of the American Association for the Advancement of Science
- Solid state chemists
- 1951 births
- Living people
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Английской Википедии
- Страницы с ошибками в примечаниях