Английская Википедия:Axiom of real determinacy

Материал из Онлайн справочника
Версия от 16:49, 4 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Axiom of set theory}} In mathematics, the '''axiom of real determinacy''' (abbreviated as '''AD<sub>R</sub>''') is an axiom in set theory. It states the following: {{math theorem|Consider infinite two-person games with perfect information. Then, every game of length ω where both players choose [[real number]...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, the axiom of real determinacy (abbreviated as ADR) is an axiom in set theory. It states the following:

Шаблон:Math theorem

The axiom of real determinacy is a stronger version of the axiom of determinacy (AD), which makes the same statement about games where both players choose integers; ADR is inconsistent with the axiom of choice. It also implies the existence of inner models with certain large cardinals.

ADR is equivalent to AD plus the axiom of uniformization.

See also


Шаблон:Settheory-stub