Английская Википедия:Balaban 10-cage

Материал из Онлайн справочника
Версия от 14:10, 5 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Cubic graph with 70 nodes and 105 edges}} {{infobox graph | name = Balaban 10-cage | image = 220px | image_caption = The Balaban 10-cage | namesake = Alexandru T. Balaban | vertices = 70 | edges = 105 | automorphisms = 80 | girth = 10 | diameter = 6 | radius = 6 | chromatic_number = 2 | chromatic_index = 3 | book_thickness...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox graph

In the mathematical field of graph theory, the Balaban 10-cage or Balaban Шаблон:Math-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban.[1] Published in 1972,[2] It was the first 10-cage discovered but it is not unique.[3]

The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong.[4] There exist 3 distinct Шаблон:Math-cages, the other two being the Harries graph and the Harries–Wong graph.[5] Moreover, the Harries–Wong graph and Harries graph are cospectral graphs.

The Balaban 10-cage has chromatic number 2, chromatic index 3, diameter 6, girth 10 and is hamiltonian. It is also a 3-vertex-connected graph and 3-edge-connected. The book thickness is 3 and the queue number is 2.[6]

The characteristic polynomial of the Balaban 10-cage is

<math>(x-3) (x-2) (x-1)^8 x^2 (x+1)^8 (x+2) (x+3) \cdot</math>
<math>\cdot(x^2-6)^2 (x^2-5)^4 (x^2-2)^2 (x^4-6 x^2+3)^8.</math>

Gallery

See also

Molecular graph
Balaban 11-cage

References

Шаблон:Reflist

  1. Шаблон:MathWorld
  2. Alexandru T. Balaban, A trivalent graph of girth ten, Journal of Combinatorial Theory Series B 12 (1972), 1–5.
  3. Pisanski, T.; Boben, M.; Marušič, D.; and Orbanić, A. "The Generalized Balaban Configurations." Preprint. 2001. [1].
  4. Mary R. O'Keefe and Pak Ken Wong, A smallest graph of girth 10 and valency 3, Journal of Combinatorial Theory Series B 29 (1980), 91–105.
  5. Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 237, 1976.
  6. Jessica Wolz, Engineering Linear Layouts with SAT. Master Thesis, Universität Tübingen, 2018