Английская Википедия:Bateman equation

Материал из Онлайн справочника
Версия от 21:09, 6 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Mathematical model in nuclear physics}}In nuclear physics, the '''Bateman equation''' is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905<ref>Rutherford, E. (1905). Radio-activity. University Pres...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short descriptionIn nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905[1] and the analytical solution was provided by Harry Bateman in 1910.[2]

If, at time t, there are <math>N_i(t)</math> atoms of isotope <math>i</math> that decays into isotope <math>i+1</math> at the rate <math>\lambda_i</math>, the amounts of isotopes in the k-step decay chain evolves as:

<math>

\begin{align} \frac{dN_1(t)}{dt} & =-\lambda_1 N_1(t) \\[3pt] \frac{dN_i(t)}{dt} & =-\lambda_i N_i(t) + \lambda_{i-1}N_{i-1}(t) \\[3pt] \frac{dN_k(t)}{dt} & = \lambda_{k-1}N_{k-1}(t) \end{align} </math>

(this can be adapted to handle decay branches). While this can be solved explicitly for i = 2, the formulas quickly become cumbersome for longer chains.[3] The Bateman equation is a classical master equation where the transition rates are only allowed from one species (i) to the next (i+1) but never in the reverse sense (i+1 to i is forbidden).

Bateman found a general explicit formula for the amounts by taking the Laplace transform of the variables.

<math>N_n(t)=N_1(0)\times\left(\prod_{i=1}^{n-1}\lambda_i\right)\times\sum_{i=1}^n\frac{e^{-\lambda_i t}}{\prod\limits_{j=1,j\neq i}^{n}\left(\lambda_j-\lambda_i\right)} </math>

(it can also be expanded with source terms, if more atoms of isotope i are provided externally at a constant rate).[4]

Файл:DecayChain241Pu-eng.svg
Quantity calculation with the Bateman-Function for plutonium-241

While the Bateman formula can be implemented in a computer code, if <math>\lambda_j \approx \lambda_i</math> for some isotope pair, catastrophic cancellation can lead to computational errors. Therefore, other methods such as numerical integration or the matrix exponential method are also in use.[5]

For example, for the simple case of a chain of three isotopes the corresponding Bateman equation reduces to

<math>

\begin{align} & A \,\xrightarrow{\lambda_A}\, B \,\xrightarrow{\lambda_B}\, C \\[4pt] & N_B= \frac{\lambda_A}{\lambda_B-\lambda_A}N_{A_0} \left( e^{-\lambda_A t} - e^{-\lambda_B t} \right) \end{align} </math>

Which gives the following formula for activity of isotope <math>B</math> (by substituting <math>A=\lambda N</math>)

<math>

\begin{align}

A_B= \frac{\lambda_B}{\lambda_B-\lambda_A}A_{A_0} \left( e^{-\lambda_A t} - e^{-\lambda_B t} \right)

\end{align} </math>

See also

References

Шаблон:Reflist

  1. Rutherford, E. (1905). Radio-activity. University Press. p. 331
  2. Bateman, H. (1910, June). The solution of a system of differential equations occurring in the theory of radioactive transformations. In Proc. Cambridge Philos. Soc (Vol. 15, No. pt V, pp. 423–427) https://archive.org/details/cbarchive_122715_solutionofasystemofdifferentia1843
  3. Шаблон:Cite web
  4. Шаблон:Cite web
  5. Шаблон:Cite journal