Английская Википедия:Belyi's theorem

Материал из Онлайн справочника
Версия от 22:24, 7 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{short description|Connects non-singular algebraic curves with compact Riemann surfaces}} In mathematics, '''Belyi's theorem''' on algebraic curves states that any non-singular algebraic curve ''C'', defined by algebraic number coefficients, represents a compact Riemann surface which is a [[ramified covering]...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, Belyi's theorem on algebraic curves states that any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.

This is a result of G. V. Belyi from 1979. At the time it was considered surprising, and it spurred Grothendieck to develop his theory of dessins d'enfant, which describes non-singular algebraic curves over the algebraic numbers using combinatorial data.

Quotients of the upper half-plane

It follows that the Riemann surface in question can be taken to be the quotient

H

(where H is the upper half-plane and Γ is a subgroup of finite index in the modular group) compactified by cusps. Since the modular group has non-congruence subgroups, it is not the conclusion that any such curve is a modular curve.

Belyi functions

A Belyi function is a holomorphic map from a compact Riemann surface S to the complex projective line P1(C) ramified only over three points, which after a Möbius transformation may be taken to be <math> \{0, 1, \infty\} </math>. Belyi functions may be described combinatorially by dessins d'enfants.

Belyi functions and dessins d'enfants – but not Belyi's theorem – date at least to the work of Felix Klein; he used them in his article Шаблон:Harv to study an 11-fold cover of the complex projective line with monodromy group PSL(2,11).[1]

Applications

Belyi's theorem is an existence theorem for Belyi functions, and has subsequently been much used in the inverse Galois problem.

References

Шаблон:Reflist Шаблон:Refbegin

Шаблон:Refend

Further reading

Шаблон:Algebraic curves navbox