Английская Википедия:Berezin integral

Материал из Онлайн справочника
Версия от 06:19, 8 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Integration for Grassmann variables}} In mathematical physics, the '''Berezin integral''', named after Felix Berezin, (also known as '''Grassmann integral''', after Hermann Grassmann), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra). It is not an integral in the Lebesgue integration|Leb...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematical physics, the Berezin integral, named after Felix Berezin, (also known as Grassmann integral, after Hermann Grassmann), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra). It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.

Definition

Let <math>\Lambda^n</math> be the exterior algebra of polynomials in anticommuting elements <math>\theta_{1},\dots,\theta_{n}</math> over the field of complex numbers. (The ordering of the generators <math>\theta_1,\dots,\theta_n</math> is fixed and defines the orientation of the exterior algebra.)

One variable

The Berezin integral over the sole Grassmann variable <math>\theta = \theta_1</math> is defined to be a linear functional

<math>\int [af(\theta)+bg(\theta)] \, d\theta = a\int f(\theta) \, d\theta + b\int g(\theta) \, d\theta, \quad a,b \in \C</math>

where we define

<math>\int \theta \, d\theta = 1, \qquad \int \, d\theta = 0 </math>

so that :

<math>\int \frac\partial{\partial\theta}f(\theta)\,d\theta = 0.</math>

These properties define the integral uniquely and imply

<math>\int (a\theta+b)\, d\theta = a, \quad a,b \in \C. </math>

Take note that <math>f(\theta)=a\theta + b</math> is the most general function of <math>\theta</math> because Grassmann variables square to zero, so <math>f(\theta)</math> cannot have non-zero terms beyond linear order.

Multiple variables

The Berezin integral on <math>\Lambda^{n}</math> is defined to be the unique linear functional <math>\int_{\Lambda^{n} }\cdot\textrm{d}\theta</math> with the following properties:

<math>\int_{\Lambda^n}\theta_{n}\cdots\theta_{1}\,\mathrm{d}\theta=1,</math>
<math>\int_{\Lambda^n}\frac{\partial f}{\partial\theta_{i}}\,\mathrm{d}\theta=0,\ i=1,\dots,n</math>

for any <math>f\in\Lambda^n,</math> where <math>\partial/\partial\theta_{i}</math> means the left or the right partial derivative. These properties define the integral uniquely.

Notice that different conventions exist in the literature: Some authors define instead[1]

<math>\int_{\Lambda^n}\theta_{1}\cdots\theta_{n}\,\mathrm{d}\theta:=1.</math>

The formula

<math>\int_{\Lambda^n}f(\theta) \, \mathrm{d}\theta=\int_{\Lambda^1}\left( \cdots \int_{\Lambda^1}\left(\int_{\Lambda^1}f(\theta) \, \mathrm{d}\theta_{1}\right) \, \mathrm{d}\theta_2 \cdots \right)\mathrm{d}\theta_n</math>

expresses the Fubini law. On the right-hand side, the interior integral of a monomial <math>f=g(\theta')\theta_{1}</math> is set to be <math>g( \theta'),</math> where <math>\theta'=\left(\theta_{2},\ldots,\theta_{n}\right)</math>; the integral of <math>f=g (\theta')</math> vanishes. The integral with respect to <math>\theta_{2}</math> is calculated in the similar way and so on.

Change of Grassmann variables

Let <math>\theta_{i}=\theta_{i}\left(\xi_{1},\ldots,\xi_{n}\right),\ i=1,\ldots,n,</math> be odd polynomials in some antisymmetric variables <math>\xi_{1},\ldots,\xi_{n}</math>. The Jacobian is the matrix

<math>D=\left\{ \frac{\partial\theta_{i}}{\partial\xi_{j}},\ i,j=1, \ldots, n\right\},</math>

where <math>\partial /\partial\xi_{j}</math> refers to the right derivative (<math>\partial(\theta_1\theta_2) /\partial\theta_2 = \theta_1, \; \partial(\theta_1\theta_2) /\partial\theta_1 = -\theta_2</math>). The formula for the coordinate change reads

<math>\int f(\theta) \, \mathrm{d}\theta=\int f(\theta( \xi))(\det D)^{-1} \, \mathrm{d}\xi.</math>

Integrating even and odd variables

Definition

Consider now the algebra <math>\Lambda^{m\mid n}</math> of functions of real commuting variables <math>x=x_{1},\ldots,x_{m}</math> and of anticommuting variables <math>\theta_{1},\ldots,\theta_{n}</math> (which is called the free superalgebra of dimension <math>(m|n)</math>). Intuitively, a function <math>f=f(x,\theta) \in\Lambda^{m\mid n}</math> is a function of m even (bosonic, commuting) variables and of n odd (fermionic, anti-commuting) variables. More formally, an element <math>f=f(x,\theta) \in\Lambda^{m\mid n}</math> is a function of the argument <math>x</math> that varies in an open set <math>X\subset\R^{m}</math> with values in the algebra <math>\Lambda^{n}.</math> Suppose that this function is continuous and vanishes in the complement of a compact set <math>K\subset\R^{m}.</math> The Berezin integral is the number

<math>\int_{\Lambda^{m\mid n}} f(x,\theta) \, \mathrm{d}\theta \, \mathrm{d}x=\int_{\R^m} \, \mathrm{d}x \int_{\Lambda^n} f(x,\theta) \, \mathrm{d}\theta.</math>

Change of even and odd variables

Let a coordinate transformation be given by <math>x_i=x_i (y,\xi),\ i=1,\ldots,m;\ \theta_j=\theta_j (y,\xi),j=1,\ldots, n,</math> where <math>x_i</math> are even and <math>\theta_j</math> are odd polynomials of <math>\xi</math> depending on even variables <math>y.</math> The Jacobian matrix of this transformation has the block form:

<math>\mathrm{J}=\frac{\partial(x,\theta)}{\partial (y,\xi)}= \begin{pmatrix} A & B\\ C & D\end{pmatrix},</math>

where each even derivative <math>\partial/\partial y_{j}</math> commutes with all elements of the algebra <math>\Lambda^{m\mid n}</math>; the odd derivatives commute with even elements and anticommute with odd elements. The entries of the diagonal blocks <math>A=\partial x/\partial y</math> and <math>D=\partial\theta/\partial\xi</math> are even and the entries of the off-diagonal blocks <math>B=\partial x/\partial \xi,\ C=\partial\theta/\partial y</math> are odd functions, where <math>\partial /\partial\xi_{j}</math> again mean right derivatives.

We now need the Berezinian (or superdeterminant) of the matrix <math>\mathrm{J}</math>, which is the even function

<math>\operatorname{Ber} \mathrm{J} =\det\left( A-BD^{-1}C\right) \det D^{-1}</math>

defined when the function <math>\det D</math> is invertible in <math>\Lambda^{m\mid n}.</math> Suppose that the real functions <math>x_i=x_i(y,0)</math> define a smooth invertible map <math>F:Y\to X</math> of open sets <math>X, Y</math> in <math>\R^m</math> and the linear part of the map <math>\xi\mapsto\theta=\theta(y,\xi)</math> is invertible for each <math>y\in Y.</math> The general transformation law for the Berezin integral reads

<math>

\begin{align} & \int_{\Lambda^{m\mid n}}f(x,\theta) \, \mathrm{d}\theta \, \mathrm{d}x = \int_{\Lambda^{m\mid n}} f(x(y,\xi),\theta (y,\xi)) \varepsilon \operatorname{Ber} \mathrm{J} \, \mathrm{d} \xi \, \mathrm{d}y \\[6pt] = {} &\int_{\Lambda^{m\mid n}} f (x(y,\xi),\theta (y,\xi)) \varepsilon \frac{\det\left(A-BD^{-1}C\right)}{\det D} \, \mathrm{d}\xi \, \mathrm{d}y, \end{align} </math>

where <math>\varepsilon=\mathrm{sgn}(\det\partial x(y,0)/\partial y</math>) is the sign of the orientation of the map <math>F.</math> The superposition <math>f(x(y,\xi),\theta(y,\xi))</math> is defined in the obvious way, if the functions <math>x_{i}(y,\xi)</math> do not depend on <math>\xi.</math> In the general case, we write <math>x_{i}(y,\xi) =x_{i}(y,0)+\delta_{i},</math> where <math>\delta_{i}, i=1,\ldots,m</math> are even nilpotent elements of <math>\Lambda^{m\mid n}</math> and set

<math>f(x(y,\xi),\theta) =f(x(y,0),\theta) +\sum_i\frac{\partial f}{\partial x_{i}}(x(y,0),\theta) \delta_{i}+\frac{1}{2} \sum_{i,j} \frac{\partial^{2}f}{\partial x_i \, \partial x_j}(x(y,0),\theta) \delta_i\delta_j+ \cdots,</math>

where the Taylor series is finite.

Useful formulas

The following formulas for Gaussian integrals are used often in the path integral formulation of quantum field theory:

  • <math>\int \exp\left[-\theta^TA\eta\right] \,d\theta\,d\eta = \det A </math>

with <math>A</math> being a complex <math>n \times n</math> matrix.

  • <math>\int \exp\left[- \tfrac{1}{2} \theta^T M \theta\right] \,d\theta = \begin{cases} \mathrm{Pf}\, M & n \mbox{ even} \\ 0 & n \mbox{ odd} \end{cases} </math>

with <math>M</math> being a complex skew-symmetric <math>n \times n</math> matrix, and <math>\mathrm{Pf}\, M</math> being the Pfaffian of <math>M</math>, which fulfills <math>(\mathrm{Pf}\, M)^2 = \det M</math>.

In the above formulas the notation <math> d \theta = d\theta_1\cdots \, d\theta_n </math> is used. From these formulas, other useful formulas follow (See Appendix A in[2]) :

  • <math>\int \exp\left[\theta^TA\eta +\theta^T J + K^T \eta \right] \,d\eta_1\,d\theta_1\dots d\eta_n d\theta_n = \det A \,\,\exp[-K^T A^{-1} J ] </math>

with <math> A</math> being an invertible <math>n \times n</math> matrix. Note that these integrals are all in the form of a partition function.

History

The mathematical theory of the integral with commuting and anticommuting variables was invented and developed by Felix Berezin.[3] Some important earlier insights were made by David John Candlin[4] in 1956. Other authors contributed to these developments, including the physicists Khalatnikov[5] (although his paper contains mistakes), Matthews and Salam,[6] and Martin.[7]

See also

References

Шаблон:Reflist

Further reading

  • Theodore Voronov: Geometric integration theory on Supermanifolds, Harwood Academic Publisher, Шаблон:Isbn
  • Berezin, Felix Alexandrovich: Introduction to Superanalysis, Springer Netherlands, Шаблон:Isbn

  1. Шаблон:Cite book
  2. S. Caracciolo, A. D. Sokal and A. Sportiello, Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians, Advances in Applied Mathematics, Volume 50, Issue 4, 2013, https://doi.org/10.1016/j.aam.2012.12.001; https://arxiv.org/abs/1105.6270
  3. A. Berezin, The Method of Second Quantization, Academic Press, (1966)
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal