Английская Википедия:Bhattacharyya angle

Материал из Онлайн справочника
Версия от 01:17, 9 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Distance between two probability measures in statistics}} In statistics, '''Bhattacharyya angle''', also called '''statistical angle''', is a measure of distance between two probability measures defined on a finite probability space. It is defined as : <math> \Delta(p,q) = \arccos \operatorname{BC}(p,q) </math> where ''p''<sub>''i''</sub>, ''q''<sub>''i'...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description

In statistics, Bhattacharyya angle, also called statistical angle, is a measure of distance between two probability measures defined on a finite probability space. It is defined as

<math> \Delta(p,q) = \arccos \operatorname{BC}(p,q) </math>

where pi, qi are the probabilities assigned to the point i, for i = 1, ..., n, and

<math> \operatorname{BC}(p,q) = \sum_{i=1}^n \sqrt{p_i q_i} </math>

is the Bhattacharya coefficient.[1]

The Bhattacharya distance is the geodesic distance in the orthant of the sphere <math>S^{n-1}</math> obtained by projecting the probability simplex on the sphere by the transformation <math>p_i \mapsto \sqrt{p_i},\ i=1,\ldots, n</math>.

This distance is compatible with Fisher metric. It is also related to Bures distance and fidelity between quantum states as for two diagonal states one has

<math>\Delta(\rho,\sigma) = \arccos \sqrt{F(\rho, \sigma)}.</math>

See also

References

Шаблон:Reflist