Английская Википедия:Bretherton equation

Материал из Онлайн справочника
Версия от 17:30, 11 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In mathematics, the '''Bretherton equation''' is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:<ref name=Bretherton>{{harvtxt|Bretherton|1964}}</ref> :<math>u_{tt}+u_{xx}+u_{xxxx}+u = u^p,</math> with <math>p</math> integer and <math>p \ge 2.</math> While <math>u_t, u_x</math> and <math>u_{xx}</math> denote partial derivati...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In mathematics, the Bretherton equation is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:[1]

<math>u_{tt}+u_{xx}+u_{xxxx}+u = u^p,</math>

with <math>p</math> integer and <math>p \ge 2.</math> While <math>u_t, u_x</math> and <math>u_{xx}</math> denote partial derivatives of the scalar field <math>u(x,t).</math>

The original equation studied by Bretherton has quadratic nonlinearity, <math>p=2.</math> Nayfeh treats the case <math>p=3</math> with two different methods: Whitham's averaged Lagrangian method and the method of multiple scales.[2]

The Bretherton equation is a model equation for studying weakly-nonlinear wave dispersion. It has been used to study the interaction of harmonics by nonlinear resonance.[3][4] Bretherton obtained analytic solutions in terms of Jacobi elliptic functions.[1][5]

Variational formulations

The Bretherton equation derives from the Lagrangian density:[6]

<math>
 \mathcal{L} = \tfrac12 \left( u_t \right)^2 + \tfrac12 \left( u_x \right)^2 -\tfrac12 \left( u_{xx} \right)^2 
             - \tfrac12 u^2 + \tfrac{1}{p+1} u^{p+1}

</math>

through the Euler–Lagrange equation:

<math>
   \frac{\partial}{\partial t} \left( \frac{\partial\mathcal{L}}{\partial u_t} \right)
 + \frac{\partial}{\partial x} \left( \frac{\partial\mathcal{L}}{\partial u_x} \right)
 - \frac{\partial^2}{\partial x^2} \left( \frac{\partial\mathcal{L}}{\partial u_{xx}} \right)
 - \frac{\partial\mathcal{L}}{\partial u} = 0.   

</math>

The equation can also be formulated as a Hamiltonian system:[7]

<math>

\begin{align}

 u_t & - \frac{\delta{H}}{\delta v} = 0,
 \\
 v_t & + \frac{\delta{H}}{\delta u} = 0,

\end{align} </math>

in terms of functional derivatives involving the Hamiltonian <math>H:</math>

<math> H(u,v) = \int \mathcal{H}(u,v;x,t)\; \mathrm{d}x </math> Шаблон:Pad and Шаблон:Pad <math>
 \mathcal{H}(u,v;x,t) = \tfrac12 v^2 - \tfrac12 \left( u_x \right)^2 +\tfrac12 \left( u_{xx} \right)^2 
                      + \tfrac12 u^2 - \tfrac{1}{p+1} u^{p+1}

</math>

with <math>\mathcal{H}</math> the Hamiltonian density – consequently <math>v=u_t.</math> The Hamiltonian <math>H</math> is the total energy of the system, and is conserved over time.[7][8]

Notes

Шаблон:Reflist

References

Шаблон:Ref begin

Шаблон:Ref end