Английская Википедия:Cassini and Catalan identities

Материал из Онлайн справочника
Версия от 15:26, 15 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} __notoc__ {{short description|Mathematical identities for the Fibonacci numbers}} '''Cassini's identity''' (sometimes called '''Simson's identity''') and '''Catalan's identity''' are mathematical identities for the Fibonacci numbers. '''Cassini's identity''', a special case of '''Catalan's identity''', states that for the ''n''th Fibonacci number, :<math>...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Cassini's identity (sometimes called Simson's identity) and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number,

<math> F_{n-1}F_{n+1} - F_n^2 = (-1)^n.</math>

Note here <math> F_0 </math> is taken to be 0, and <math> F_1 </math> is taken to be 1.

Catalan's identity generalizes this:

<math>F_n^2 - F_{n-r}F_{n+r} = (-1)^{n-r}F_r^2.</math>

Vajda's identity generalizes this:

<math>F_{n+i}F_{n+j} - F_{n}F_{n+i+j} = (-1)^nF_{i}F_{j}.</math>

History

Cassini's formula was discovered in 1680 by Giovanni Domenico Cassini, then director of the Paris Observatory, and independently proven by Robert Simson (1753).[1] However Johannes Kepler presumably knew the identity already in 1608.[2]

Catalan's identity is named after Eugène Catalan (1814–1894). It can be found in one of his private research notes, entitled "Sur la série de Lamé" and dated October 1879. However, the identity did not appear in print until December 1886 as part of his collected works Шаблон:Harv. This explains why some give 1879 and others 1886 as the date for Catalan's identity Шаблон:Harv.

The Hungarian-British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.[3][4] However, the identity had been published earlier in 1960 by Dustan Everman as problem 1396 in The American Mathematical Monthly,[1] and in 1901 by Alberto Tagiuri in Periodico di Matematica.[5]

Proof of Cassini identity

Proof by matrix theory

A quick proof of Cassini's identity may be given Шаблон:Harv by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the Шаблон:Mathth power of a matrix with determinant −1:

<math>F_{n-1}F_{n+1} - F_n^2

=\det\left[\begin{matrix}F_{n+1}&F_n\\F_n&F_{n-1}\end{matrix}\right] =\det\left[\begin{matrix}1&1\\1&0\end{matrix}\right]^n =\left(\det\left[\begin{matrix}1&1\\1&0\end{matrix}\right]\right)^n =(-1)^n.</math>

Proof by induction

Consider the induction statement:

<math>F_{n-1}F_{n+1} - F_n^2 = (-1)^n</math>

The base case <math>n=1</math> is true.

Assume the statement is true for <math>n</math>. Then:

<math>F_{n-1}F_{n+1} - F_n^2 + F_nF_{n+1} - F_nF_{n+1} = (-1)^n</math>
<math>F_{n-1}F_{n+1} + F_nF_{n+1} - F_n^2 - F_nF_{n+1} = (-1)^n</math>
<math>F_{n+1}(F_{n-1} + F_n) - F_n(F_n + F_{n+1}) = (-1)^n</math>
<math>F_{n+1}^2 - F_nF_{n+2} = (-1)^n</math>
<math>F_nF_{n+2} - F_{n+1}^2 = (-1)^{n+1}</math>

so the statement is true for all integers <math>n>0</math>.

Proof of Catalan identity

We use Binet's formula, that <math>F_n=\frac{\phi^n-\psi^n}{\sqrt5}</math>, where <math>\phi=\frac{1+\sqrt5}{2}</math> and <math>\psi=\frac{1-\sqrt5}{2}</math>.

Hence, <math>\phi+\psi=1</math> and <math>\phi\psi=-1</math>.

So,

<math>5(F_n^2 - F_{n-r}F_{n+r})</math>
<math>= (\phi^n-\psi^n)^2 - (\phi^{n-r}-\psi^{n-r})(\phi^{n+r}-\psi^{n+r})</math>
<math>= (\phi^{2n} - 2\phi^{n}\psi^{n} +\psi^{2n}) - (\phi^{2n} - \phi^{n}\psi^{n}(\phi^{-r}\psi^{r}+\phi^{r}\psi^{-r}) + \psi^{2n})</math>
<math>= - 2\phi^{n}\psi^{n} + \phi^{n}\psi^{n}(\phi^{-r}\psi^{r}+\phi^{r}\psi^{-r})</math>

Using <math>\phi\psi=-1</math>,

<math>= -(-1)^n2 + (-1)^n(\phi^{-r}\psi^{r}+\phi^{r}\psi^{-r})</math>

and again as <math>\phi=\frac{-1}{\psi}</math>,

<math>= -(-1)^n2 + (-1)^{n-r}(\psi^{2r}+\phi^{2r})</math>

The Lucas number <math>L_n</math> is defined as <math>L_n=\phi^n+\psi^n</math>, so

<math>= -(-1)^n2 + (-1)^{n-r}L_{2r}</math>

Because <math>L_{2n} = 5 F_n^2 + 2(-1)^n</math>

<math>= -(-1)^n2 + (-1)^{n-r}(5 F_r^2 + 2(-1)^r)</math>
<math>= -(-1)^n2 + (-1)^{n-r}2(-1)^r + (-1)^{n-r}5 F_r^2</math>
<math>= -(-1)^n2 + (-1)^n2 + (-1)^{n-r}5 F_r^2</math>
<math>= (-1)^{n-r}5 F_r^2</math>

Cancelling the <math>5</math>'s gives the result.

Notes

  1. 1,0 1,1 Thomas Koshy: Fibonacci and Lucas Numbers with Applications. Wiley, 2001, Шаблон:ISBN, pp. 74-75, 83, 88
  2. Miodrag Petkovic: Famous Puzzles of Great Mathematicians. AMS, 2009, Шаблон:ISBN, S. 30-31
  3. Douglas B. West: Combinatorial Mathematics. Cambridge University Press, 2020, p. 61
  4. Steven Vadja: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover, 2008, Шаблон:ISBN, p. 28 (original publication 1989 at Ellis Horwood)
  5. Alberto Tagiuri: Equation (3) in Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1901), pp. 1–12.

References

External links