Английская Википедия:Cauchy problem

Материал из Онлайн справочника
Версия от 21:57, 15 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Short description|Class of problems for PDEs}} {{Differential equations}} A '''Cauchy problem''' in mathematics asks for the solution of a partial differential equation that satisfies certain conditions that are given on a hypersurface in the domain.<ref>{{cite book |first=Jacques |last=Hadamard |authorlink=Jacques Hadamard |year=1923 |title=Lectures on Cauchy's Problem in Li...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Differential equations A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions that are given on a hypersurface in the domain.[1] A Cauchy problem can be an initial value problem or a boundary value problem (for this case see also Cauchy boundary condition). It is named after Augustin-Louis Cauchy.

Formal statement

For a partial differential equation defined on Rn+1 and a smooth manifold SRn+1 of dimension n (S is called the Cauchy surface), the Cauchy problem consists of finding the unknown functions <math>u_1,\dots,u_N</math> of the differential equation with respect to the independent variables <math>t,x_1,\dots,x_n</math> that satisfies[2] <math display="block">\begin{align}&\frac{\partial^{n_i}u_i}{\partial t^{n_i}} = F_i\left(t,x_1,\dots,x_n,u_1,\dots,u_N,\dots,\frac{\partial^k u_j}{\partial t^{k_0}\partial x_1^{k_1}\dots\partial x_n^{k_n}},\dots\right) \\ &\text{for } i,j = 1,2,\dots,N;\, k_0+k_1+\dots+k_n=k\leq n_j;\, k_0<n_j \end{align}</math> subject to the condition, for some value <math>t=t_0</math>,

<math display="block">\frac{\partial^k u_i}{\partial t^k}=\phi_i^{(k)}(x_1,\dots,x_n) \quad \text{for } k=0,1,2,\dots,n_i-1</math>

where <math>\phi_i^{(k)}(x_1,\dots,x_n)</math> are given functions defined on the surface <math>S</math> (collectively known as the Cauchy data of the problem). The derivative of order zero means that the function itself is specified.

Cauchy–Kowalevski theorem

The Cauchy–Kowalevski theorem states that If all the functions <math>F_i</math> are analytic in some neighborhood of the point <math>(t^0,x_1^0,x_2^0,\dots,\phi_{j,k_0,k_1,\dots,k_n}^0,\dots)</math>, and if all the functions <math>\phi_j^{(k)}</math> are analytic in some neighborhood of the point <math>(x_1^0,x_2^0,\dots,x_n^0)</math>, then the Cauchy problem has a unique analytic solution in some neighborhood of the point <math>(t^0,x_1^0,x_2^0,\dots,x_n^0)</math>.

See also

Шаблон:Portal

References

Шаблон:Reflist

External links

Шаблон:Authority control

de:Anfangswertproblem#Partielle Differentialgleichungen