Английская Википедия:Chow's moving lemma

Материал из Онлайн справочника
Версия от 06:23, 18 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} In algebraic geometry, '''Chow's moving lemma''', proved by {{harvs|txt|authorlink= Wei-Liang Chow|first=Wei-Liang |last=Chow|year=1956}}, states: given algebraic cycles ''Y'', ''Z'' on a nonsingular quasi-projective variety ''X'', there is another algebraic cycle ''Z' '' on ''X'' such that ''Z' '' is rationally equivalent to ''Z'' and ''Y'' and ''Z'...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

In algebraic geometry, Chow's moving lemma, proved by Шаблон:Harvs, states: given algebraic cycles Y, Z on a nonsingular quasi-projective variety X, there is another algebraic cycle Z' on X such that Z' is rationally equivalent to Z and Y and Z' intersect properly. The lemma is one of key ingredients in developing the intersection theory, as it is used to show the uniqueness of the theory.

Even if Z is an effective cycle, it is not, in general, possible to choose the cycle Z' to be effective.

References


Шаблон:Algebraic-geometry-stub Шаблон:Math-hist-stub