Английская Википедия:Classification of low-dimensional real Lie algebras

Материал из Онлайн справочника
Версия от 12:33, 19 февраля 2024; EducationBot (обсуждение | вклад) (Новая страница: «{{Английская Википедия/Панель перехода}} {{Multiple issues| {{Prose|date=September 2023}} {{Context|date=September 2023}} }} This mathematics-related list provides Mubarakzyanov's '''classification of low-dimensional real Lie algebras''', published in Russian in 1963.<ref>{{harvnb|Mubarakzyanov|1963}}</ref> It complements the article on Lie algebra in the area of abstract algebra. An English version and review of...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску

Шаблон:Multiple issues This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963.[1] It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al.[2] in 2003.

Mubarakzyanov's Classification

Let <math>{\mathfrak g}_n</math> be <math>n</math>-dimensional Lie algebra over the field of real numbers with generators <math> e_1, \dots, e_n </math>, <math> n \leq 4</math>.Шаблон:Clarify For each algebra <math>{\mathfrak g}</math> we adduce only non-zero commutators between basis elements.

One-dimensional

  • <math>{\mathfrak g}_1</math>, abelian.

Two-dimensional

  • <math>2{\mathfrak g}_1</math>, abelian <math>\mathbb{R}^2</math>;
  • <math>{\mathfrak g}_{2.1}</math>, solvable <math>\mathfrak{aff}(1)=\left\{\begin{pmatrix} a&b \\ 0&0 \end{pmatrix}\,:\,a,b\in\mathbb{R}\right\}</math>,
<math>[e_1, e_2] = e_1.</math>

Three-dimensional

  • <math>3{\mathfrak g}_1</math>, abelian, Bianchi I;
  • <math>{\mathfrak g}_{2.1}\oplus {\mathfrak g}_1 </math>, decomposable solvable, Bianchi III;
  • <math>{\mathfrak g}_{3.1}</math>, Heisenberg–Weyl algebra, nilpotent, Bianchi II,
<math>[e_2, e_3] = e_1;</math>
  • <math>{\mathfrak g}_{3.2}</math>, solvable, Bianchi IV,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = e_1 + e_2; </math>
  • <math>{\mathfrak g}_{3.3}</math>, solvable, Bianchi V,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = e_2;</math>
  • <math>{\mathfrak g}_{3.4}</math>, solvable, Bianchi VI, Poincaré algebra <math>\mathfrak{p}(1,1)</math> when <math>\alpha = -1</math>,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = \alpha e_2, \quad -1 \leq \alpha < 1, \quad \alpha \neq 0;</math>
  • <math>{\mathfrak g}_{3.5}</math>, solvable, Bianchi VII,
<math>[e_1, e_3] = \beta e_1 - e_2, \quad [e_2, e_3] = e_1 + \beta e_2, \quad \beta \geq 0;</math>
  • <math>{\mathfrak g}_{3.6}</math>, simple, Bianchi VIII, <math>\mathfrak{sl}(2, \mathbb R ),</math>
<math>[e_1, e_2] = e_1, \quad [e_2, e_3] = e_3, \quad [e_1, e_3] = 2 e_2;</math>
  • <math>{\mathfrak g}_{3.7}</math>, simple, Bianchi IX, <math>\mathfrak{so}(3),</math>
<math>[e_2, e_3] = e_1, \quad [e_3, e_1] = e_2, \quad [e_1, e_2] = e_3.</math>

Algebra <math>{\mathfrak g}_{3.3}</math> can be considered as an extreme case of <math>{\mathfrak g}_{3.5}</math>, when <math> \beta \rightarrow \infty </math>, forming contraction of Lie algebra.

Over the field <math>{\mathbb C}</math> algebras <math>{\mathfrak g}_{3.5}</math>, <math>{\mathfrak g}_{3.7}</math> are isomorphic to <math>{\mathfrak g}_{3.4} </math> and <math>{\mathfrak g}_{3.6}</math>, respectively.

Four-dimensional

  • <math>4{\mathfrak g}_1</math>, abelian;
  • <math>{\mathfrak g}_{2.1} \oplus 2{\mathfrak g}_1</math>, decomposable solvable,
<math>[e_1, e_2] = e_1;</math>
  • <math>2{\mathfrak g}_{2.1}</math>, decomposable solvable,
<math>[e_1, e_2] = e_1 \quad [e_3, e_4] = e_3;</math>
  • <math>{\mathfrak g}_{3.1} \oplus {\mathfrak g}_1</math>, decomposable nilpotent,
<math>[e_2, e_3] = e_1;</math>
  • <math>{\mathfrak g}_{3.2} \oplus {\mathfrak g}_1</math>, decomposable solvable,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = e_1 + e_2;</math>
  • <math>{\mathfrak g}_{3.3} \oplus {\mathfrak g}_1</math>, decomposable solvable,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = e_2;</math>
  • <math>{\mathfrak g}_{3.4} \oplus {\mathfrak g}_1</math>, decomposable solvable,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = \alpha e_2, \quad -1 \leq \alpha < 1, \quad \alpha \neq 0;</math>
  • <math>{\mathfrak g}_{3.5} \oplus {\mathfrak g}_1</math>, decomposable solvable,
<math>[e_1, e_3] = \beta e_1 - e_2 \quad [e_2, e_3] = e_1 + \beta e_2, \quad \beta \geq 0;</math>
  • <math>{\mathfrak g}_{3.6} \oplus {\mathfrak g}_1</math>, unsolvable,
<math>[e_1, e_2] = e_1, \quad [e_2, e_3] = e_3, \quad [e_1, e_3] = 2 e_2;</math>
  • <math>{\mathfrak g}_{3.7} \oplus {\mathfrak g}_1</math>, unsolvable,
<math>[e_1, e_2] = e_3, \quad [e_2, e_3] = e_1, \quad [e_3, e_1] = e_2;</math>
  • <math>{\mathfrak g}_{4.1} </math>, indecomposable nilpotent,
<math>[e_2, e_4] = e_1, \quad [e_3, e_4] = e_2;</math>
  • <math>{\mathfrak g}_{4.2} </math>, indecomposable solvable,
<math>[e_1, e_4] = \beta e_1, \quad [e_2, e_4] = e_2, \quad [e_3, e_4] = e_2 + e_3, \quad \beta \neq 0;</math>
  • <math>{\mathfrak g}_{4.3} </math>, indecomposable solvable,
<math>[e_1, e_4] = e_1, \quad [e_3, e_4] = e_2;</math>
  • <math>{\mathfrak g}_{4.4} </math>, indecomposable solvable,
<math>[e_1, e_4] = e_1, \quad [e_2, e_4] = e_1 + e_2, \quad [e_3, e_4] = e_2+e_3;</math>
  • <math>{\mathfrak g}_{4.5} </math>, indecomposable solvable,
<math>[e_1, e_4] = \alpha e_1, \quad [e_2, e_4] = \beta e_2, \quad [e_3, e_4] = \gamma e_3, \quad \alpha \beta \gamma \neq 0;</math>
  • <math>{\mathfrak g}_{4.6} </math>, indecomposable solvable,
<math>[e_1, e_4] = \alpha e_1, \quad [e_2, e_4] = \beta e_2 - e_3, \quad [e_3, e_4] = e_2 + \beta e_3, \quad \alpha > 0;</math>
  • <math>{\mathfrak g}_{4.7} </math>, indecomposable solvable,
<math>[e_2, e_3] = e_1, \quad [e_1, e_4] = 2 e_1, \quad [e_2, e_4] = e_2, \quad [e_3, e_4] = e_2 + e_3;</math>
  • <math>{\mathfrak g}_{4.8} </math>, indecomposable solvable,
<math>[e_2, e_3] = e_1, \quad [e_1, e_4] = (1 + \beta)e_1, \quad [e_2, e_4] = e_2, \quad [e_3, e_4] = \beta e_3, \quad -1 \leq \beta \leq 1;</math>
  • <math>{\mathfrak g}_{4.9} </math>, indecomposable solvable,
<math>[e_2, e_3] = e_1, \quad [e_1, e_4] = 2 \alpha e_1, \quad [e_2, e_4] = \alpha e_2 - e_3, \quad [e_3, e_4] = e_2 + \alpha e_3, \quad \alpha \geq 0;</math>
  • <math>{\mathfrak g}_{4.10} </math>, indecomposable solvable,
<math>[e_1, e_3] = e_1, \quad [e_2, e_3] = e_2, \quad [e_1, e_4] = -e_2, \quad [e_2, e_4] = e_1.</math>

Algebra <math>{\mathfrak g}_{4.3}</math> can be considered as an extreme case of <math>{\mathfrak g}_{4.2}</math>, when <math> \beta \rightarrow 0 </math>, forming contraction of Lie algebra.

Over the field <math>{\mathbb C}</math> algebras <math>{\mathfrak g}_{3.5} \oplus {\mathfrak g}_1</math>, <math>{\mathfrak g}_{3.7} \oplus {\mathfrak g}_1</math>, <math>{\mathfrak g}_{4.6}</math>, <math>{\mathfrak g}_{4.9}</math>, <math>{\mathfrak g}_{4.10}</math> are isomorphic to <math>{\mathfrak g}_{3.4} \oplus {\mathfrak g}_1</math>, <math>{\mathfrak g}_{3.6} \oplus {\mathfrak g}_1</math>, <math>{\mathfrak g}_{4.5}</math>, <math>{\mathfrak g}_{4.8}</math>, <math>{2\mathfrak g}_{2.1}</math>, respectively.

See also

Notes

Шаблон:Reflist

References